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Abstract

I give a brief overview of my recent keynote at the 2022 European Conference on Information
Retrieval that was held in Stavanger, Norway. I pay particular attention to some basic
questions involving the F-score that appear to lead to confusion. I also settle a question
raised at the conference by reconstructing an account from Van Rijsbergen’s classic text
Information Retrieval.

1 Background

Evaluation of predictive models is of primary importance in machine learning and information
retrieval. Empirical evaluation is an act of measurement, and as such very common but perhaps
not as straightforward as one might expect. For example, it is almost always the case that there
is a discrepancy between what is of interest (e.g., mathematical ability of a student, or population
performance of a model) and what is directly measurable (performance of the student or model
on a specific set of questions or labelled data points, with many contextual aspects influencing
performance). One would also often like to have a causal account of what is observed: e.g., an
explanation why one student or algorithm outperforms another, possibly in counterfactual form
(if the test were manipulated in a particular way, the performance difference would disappear).

Even more fundamental issues arise when one considers measurement scales and how to com-
bine different quantities into aggregate measurements. We are all familiar with this: e.g., classi-
fication accuracy can be seen as a weighted arithmetic mean of true positive and negative rates,
with class prevalences as weights; the F-score is commonly defined as the harmonic mean of pre-
cision and recall; and some people prefer the geometric mean to aggregate precision and recall.
Choosing a different mean amounts to a change of scale (e.g., the log of the geometric mean is
the arithmetic mean of the logs) and as such admissible, even if the change of scale requires jus-
tification. But mixing different means (and hence scales) can easily lead to incoherence: taking
expectations involves the arithmetic mean, which implies for example that the area under the
precision-recall curve bears no direct relationship to an aggregate F-score (while the area under
the ROC curve does relate to aggregate accuracy by traversing the operating points on the curve
in a particular way [Hernández-Orallo et al., 2012]).
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2 The Keynote

I started my talk with a general introduction1 which involved audience participation on the fol-
lowing questions:

Q1. Why is F1 the harmonic mean of precision and recall?

1. It’s a choice, it could equally well have been an arithmetic or geometric mean.
2. It corresponds to averaging the mistakes a classifier makes.
3. Another reason.

Q2. When is F1 preferred over accuracy-based measures (micro/macro-accuracy)?

1. When we have many more negatives than positives.
2. When true negatives don’t add value.
3. Another reason.

Q3. If we use F1/2, then. . .

1. Precision gets twice the weight of recall.
2. Precision gets four times the weight of recall.
3. Neither.

Interestingly, none of these questions received a very clear majority answer from the audience.
My own answers are the second alternative in each case.

For the first question, this is most easily seen by rearranging terms from the usual harmonic
mean definition to obtain

F1 =
TP

TP + FP+FN
2

which is my preferred definition of F1 as it clearly shows how the two kinds of mistakes (false
positives and false negatives) are arithmetically averaged. Using the geometric mean – preferred
by some – corresponds employing logarithmic scales for precision and recall, since the log of the
geometric mean is the arithmetic mean of the logs. This emphasises smaller values, but would
need to be justified.

It is well-known that instance-averaged accuracy suffers from over-emphasising the majority
class for highly imbalanced data. However, this can be remedied to switching to macro-accuracy,
which is an unweighted arithmetic mean of per-class recall. So class imbalance by itself is insuf-
ficient justification for using F-score. As I showed in the talk, F-score can be seen as accuracy
on a modified confusion matrix, replacing the number of true negatives with the number of true
positives (or 0, if one wanted to obtain the Jaccard index instead). In this way we don’t downplay
the false positives (mistakes on the negative class), but only the true negatives (as Google doesn’t
make money on not returning a web page I’m not interested in).

1The slides I used at the keynote are viewable within a web browser at https://flach.github.io/slides/2
022 ecir/.
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The third question hinges on whether one uses β2 or β in the definition of Fβ, where a value of
β different from 1 allows one to put more emphasis on either precision or recall. Van Rijsbergen’s
original definition uses 1

β2+1
and β2

β2+1
for the weights of precision and recall, respectively, in the

weighted harmonic mean, the ratio of which is 1/β2 or 4 for β = 1/2. The use of the square here
has always puzzled me – I have thought a bit more about this since and will discuss further in the
next section.

The talk then continued by giving a short overview of ROC curves, a topic I have researched
for over 20 years. Among the many advantages of ROC curves are the following:

linear interpolation: any point on a straight line between thresholds (or classifiers) A and B
can be achieved by making a suitably biased random choice between them, leading to the
ROC convex hull (ROCCH);

area under curve: AUROC estimates the probability that a randomly selected positive is ranked
before a randomly selected negative, and is moreover linearly related to expected classifica-
tion performance if thresholds are set to make a particular proportion of positive predictions
[Hernández-Orallo et al., 2012];

calibration: slopes of ROCCH segments are empirical likelihood ratios associated with intervals
of classifier scores, and can be used to obtain calibrated probabilities (isotonic regression); in
particular, if a perfectly calibrated classifier assigns score c to an instance, then it is on the
decision boundary for accc = 2cπtpr + 2c(1 − π)fpr , where π is the prevalence of positives
and acc1/2 is standard accuracy [Silva Filho et al., 2021].

ROC curves use two of the three degrees of freedom in a normalised confusion matrix (true
and false positive rates), with the remaining one (class ratio) fixing the slope of iso-accuracy
lines. Instead of false positive rate we could use precision, so there is clearly a point-to-point
correspondence between ROC curves and precision-recall curves. However, PR curves don’t have
any of the nice properties of ROC curves: for example, interpolation is not linear, and AUPR is
not a coherent measure of aggregated performance.

Following Flach and Kull [2015], I went into some detail in my talk how this can be overcome
by using non-linearly scaled versions of precision, recall and F-score. The key idea is to first take
reciprocals (e.g., prec = TP/(TP + FP ) becomes 1/prec = 1 + FP/TP ); clip the latter to the
[1, 1/π] interval to exclude overly small values of precision and recall; and linearly map this back
to the unit interval. The resulting measures quantify the gain over the baseline always-positive
classifier (e.g., precG = 1 − π

1−π
FP/TP ). F-gain is now simply the arithmetic mean of precision

gain and recall gain, and the resulting Precision-Recall-Gain curves are almost entirely “ROC-
like”. In particular, AUPRG can be interpreted as an aggregate F1-score, similar to how AUROC
can be interpreted as an aggregate accuracy.

After this I briefly discussed some new results that relate AUPRG to a weighted ranking
score, potentially providing a well-founded alternative to measures such as normalised discounted
cumulative gain. I ended the keynote talking about the need for more sophisticated measurement
models [Flach, 2019] that include latent variables [Chen et al., 2019; Song and Flach, 2021] and
allow causal explanations of performance differences.
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3 After the Conference

At the Q&A following my talk, David Lewis asked me whether my proposed measures satisfied this
property ascribed to F-score by Keith Van Rijsbergen:“[β] measures the effectiveness of retrieval
with respect to a user who attaches β times as much importance to recall as precision”. I knew
the quote but had never properly understood it, so couldn’t answer the question then. After the
conference I looked it up in in Chapter 7 of the online version of Van Rijsbergen’s book2 and found
that the text continues as follows: “The simplest way I know of quantifying this is to specify the
P/R ratio at which the user is willing to trade an increment in precision for an equal loss in recall.
Definition 6. The relative importance a user attaches to precision and recall is the P/R ratio at
which ∂E/∂R = ∂E/∂P , where E = E(P,R) is the measure of effectiveness based on precision
and recall.”

My elaboration of this goes as follows. Take a weighted harmonic mean of precision and recall
as effectiveness measure:

E =
1

α/P + (1− α)/R

The partial derivatives with respect to P and R can be written as follows:

∂E

∂P
= E2 α

P 2

∂E

∂R
= E21− α

R2

Setting these equal gives

P/R =

√
α

1− α
= 1/β

So if β = 1/2, as in my Q3, then precision is twice as high as recall – at the particular point
where “the user is willing to trade an increment in precision for an equal loss in recall” (equal
partial derivatives). On the other hand, re-expressing the weights used in the harmonic mean we
obtain α = 1/(β2 + 1) and 1− α = β2/(β2 + 1), and hence precision has four times the weight
of recall. While there is no contradiction between these two interpretations of β, I would argue
that the latter is considerably more transparent. I would furthermore suggest that α ∈ [0, 1] is
more interpretable as a parameter.

So what about David Lewis’ original question? We define FGβ as a weighted arithmetic mean
of precision gain and recall gain, parametrised in the same way as Fβ. The partial derivatives are
hence α and 1−α, which are only equal for α = 1/2 or β = 1. As this is independent of the values
of precision/recall gain, we don’t derive a similar ratio as in Van Rijsbergen’s account – but the
transparent interpretation of α as a weight in the mean carries over all the same.
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