
Scatter/Gather: A Cluster-based Approach to

Browsing Large Document Collections

Douglass R. Cuttingl David R. Kargerl’2

Abstract

Document clustering has not been well received as an in-

formation retrieval tool. Objections to its use fall into

two main categories: first, that clustering is too slow for

large corpora (with running time often quadratic in the

number of documents); and second, that clustering does

not appreciably improve retrieval.

We argue that these problems arise only when cluster-

ing is used in an attempt to improve conventional search

techniques. However, looking at clustering as an informa-

tion access tool in its own right obviates these objections,

and provides a powerful new access paradigm. We present

a document browsing technique that employs docum-ent

clustering as its primary operation. We also present fast

(linear time) clustering algorithms which support this in-

teractive browsing paradigm.

1 Introduction

Document clustering has been extensively investigated as

a methodology for improving document search and re-

trieval (see [15] for an excellent review). The general as-

sumption is that mutually similar documents will tend

to be relevant to the same queries, and, hence, that au-

tomatic determination of groups of such documents can

improve recall by effectively broadening a search request

(see [11] for a discussion of the cluster hypothesis). Typ-

ically a fixed corpus of documents is clustered either into

an exhaustive partition, disjoint or otherwise, or into a

hierarchical tree structure (see, for example, [8, 13, 2]).

In the case of a partition, queries are matched against

clusters and the contents of the best scoring clusters are

returned as a result, possibly sorted by score. In the case

1Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304

2St anford University

3Princeton University

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direQt .a?mmerGial advantage, the ACM Gopyright notice and the

titla of the publication and its date appaar, and notice is given

that copying is by permission of tha Association for Computing

Machinery, To copy otherwise, or to republish, requires a fee

and/or specific permission.

15th Ann Int’1 SIGIR ‘92/Denmark-6/92
@ 1992 ACM 0.8979J-52+0/92/0006/03J 8,..$1,50

Jan O. Pedersenl John W. Tukey13

of a hierarchy, queries are processed downward, always

taking the highest scoring branch, until some stopping

condition is achieved. The subtree at that point is then

returned as a result. Hybrid strategies are also available.

These strategies are essentially variations of near-

neighbor searchl where nearness is defined in terms of

the pairwise document similarity measure used to gen-

erate the clustering. Indeed, cluster search techniques

are typically compared to direct near-neighbor search [9],

and are evaluated in terms of precision and recall. Vari-

ous studies indicate that cluster search strategies are not

markedly superior to near-neighbor search, and, in some

situations, can be inferior (see, for example, [6, 12, 4]).

Furthermore, document clustering algorithms are often

slow, with quadratic running times. It is therefore un-

surprising that cluster search, with its indifferent perfor-

mance, has not gained wide popularity.

Document clustering has also been studied as a method

for accelerating near-neighbor search, but the develop-

ment of fast algorithms for near-neighbor search has de-

creased interest in that possibility [1].

In this paper, we take a new approach to document

clustering. Rather than dismissing document clustering

as a poor tool for enhancing near-neighbor search, we ask

how clustering can be effective as an access method in its

own right. We describe a document browsing method,

called Scatter/Gather, which uses document clustering

as its primitive operation. This technique is directed

towards information access with non-specific goals and

serves as a complement to more focused techniques.

To implement Scatter/Gather, fast document cluster-

ing is a necessity. We introduce two new near linear time

clustering algorithms which experimentation has shown

to be effective, and also discuss reasons for their effec-

tiveness.

1.1 Browsing vs Search

The standard formulation of the information access prob-

lem presumes a query, the user’s expression of an infor-

mation need. The task is then to search a corpus for doc-

uments that match this need. However, it is not difficult

to imagine a situation in which it is hard, if not impossi-

ble, to formulate such a query precisely. For example, the

1Also known as “vector space” or ‘(similarity” search

318

ACM SIGIR Forum 148 Vol. 51 No. 2, July 2017

user may not be familiar with the vocabulary appropri-

ate for describing a topic of interest, or may not wish to

commit himself to a particular choice of words. Indeed,

the user may not be looking for anything specific at all,

but rather may wish to discover the general information

content of the corpus. Access to a document collection in

fact covers an entire spectrum: at one end is a narrowly

specified sea~ch for a particular document, given some-

thing as specific as its title; at the other end is a browstng

session with no well defined goal, satisfying a need to

learn more about the document collection. It is common

for a session to move across the spectrum, from browsing

to search: the user starts with a partially defined goal

which is refined as he finds out more about the document

collection. Standard information access techniques tend

to emphasize the search end of the spectrum. A glaring

example of this emphasis is cluster search, where clus-

tering, a technology capable of topic extraction, is sub-

merged from view and used only to assist near-neighbor

search.

We propose an alternative application for clustering in

information access, taking our inspiration from the access

methods typically provided with a conventional textbook.

If one has a specific question in mind, and specific terms

which define that question, one consults the index, which

directs one to passages of interest. However, if one is

simply interested in gaining an overview, or has a gen-

eral question, one peruses the table of contents, which

lays out the logical structure of the text. The table of

contents gives a sense of what sort of questions might be

answered by a more intensive examination of the text, and

may also lead to specific sections of interest. One can eas-

ily alternate between browsing the table of contents. and

searching the index.

By direct analogy, we propose an information access

system with two components: our browsing method,

Scatter/Gather, which uses a cluster-based, dynamic

table-of-contents metaphor for navigating a collection of

documents; and one or more word-based, directed, text

search methods, such as near-neighbor search or snippet

search [7]. The browsing component describes groups of

similar documents, one or more of which can be selected

for further examination. This can be iterated until the

user is directly viewing individual documents. Based on

documents found in this process, or on terms used to de-

scribe document groups, the user may, at any time, switch

to a more focused search method. In particular, we antic-

ipate that the browsing tool will not necessarily be used

to find particular documents, but may instead help the

user formulate a search request, which will then be ser-

viced by some other means. Scatter/Gather may also be

used to organize the results of word-based queries that

retrieve too many documents.

2 Scatter/Gather Browsing

In the basic iteration of the proposed browsing method,

the user is presented with short summaries of a small

number of document groups.

Initially the system scatters the collection into a small

number of document groups, or clusters, and presents

short summaries of them to the user. Based on these

summaries, the user selects one or more of the groups for

further study. The selected groups are gathered together

to form a subcollection. The system then applies clus-

tering again to scatter the new subcollection into a small

number of document groups, which are again presented

to the user. With each successive iteration the groups

become smaller, and therefore more detailed. Ultimately,

when the groups become small enough, this process bot-

toms out by enumerating individual documents.

2.1 An Illustration

We now describe a Scatter/Gather session, where the text

collection consists of about 5000 articles posted to the

New York Tzmes News Servzce during the month of Au-

gust 1990. This session is summarized in figure 1. Here,

to simplify the figure, we manually assigned single-word

labels based on the full cluster descriptions. The full ses-

sion is provided as Appendix A.

Suppose the user wants to find out what happened that

month. Several issues prevent the application of conven-

tional search techniques:

●

●

●

●

The information need is too vague to be described as

a single topic.

Even if a topic were available, the words used to de-

scribe it may not be known to the user.

The words used to describe a topic may not be those

used to discuss the topic and may thus fail to ap-

pear in articles of interest. For example, articles

concerning international events need never use the

words “international event”.

Even if some words used in discussion of the topic

were available, documents may fail to use precisely

those words, e.g., synonyms may be used instead.

With Scatter/Gather, rather than being forced to pro-

vide terms, the user is presented with a set of clusters, an

outline of the corpus. She need only select those clusters

which seem potentially relevant to the topic of interest.

In the example, the big stories of the month are imme-

diately obvious from the initial scattering: Iraq invades

Kuwait, and Germany considers reunification. This leads

the user to focus on international issues: she selects the

‘Kuwait’ and ‘Germany’ and ‘oil’ clusters. These three

clusters are gathered together.

319

ACM SIGIR Forum 149 Vol. 51 No. 2, July 2017

New York Trees News Service, August 1990

Education Domestic Iraq kts sports oil Gemany Legal

\Gathe//
International Stories

Deployment Politics Germany Pakistan Africa Markets Oil Hostages

‘/Gather

+

Smaller International Stories

Trinidad W. Africa S. Africa security International Lebanon Pakistan Japan

Figure 1: Illustration of Scatter/Gather

This reduced corpus is then reclustered on the fly to

produce eight new clusters covering the reduced corpus.

Since the reduced corpus contains a subset of the articles,

these new clusters reveal a finer level of detail than the

original eight. The articles on the Iraqi invasion and some

of the ‘Oil’ articles have now been separated into clusters

discussing the U.S. military deployment, the effects of

the invasion upon the oil market, and one which the user

deduces is about hostages in Kuwait.

The user feels her understanding of these large stories is

adequate, but wishes to find out what happened in other

corners of the world. She selects the ‘Pakistan’ cluster,

which also contains other foreign political stories, and

a cluster containing articles about Africa. This reveals

a number of specific international situations as well as

a small collection of miscellaneous international articles.

The user thus learns of a coup in Pakistan, and about

hostages being taken in Trinidad, stories otherwise lost

among the major stories of that month.

2.2 Requirements

Scatter/Gather depends on the existence of two facili-

ties. First, since clustering and reclustering is an essential

part of the basic iteration, we need an algorithm which

can appropriately cluster a large number of documents

within a time tolerable for user interaction (e. g., less than

a minute). Second, given a group of documents, some

method for automatically summarizing that group must

be specified. This cluster description must be sufficiently

revealing for to give the user a sense of the topic defined

by the group, yet short enough for many descriptions to

be appreciated simultaneously.

We will present two algorithms that meet the first

requirement. Buckshot is a fast clustering algorithm

suitable for the online reclustering essential for Scat-

ter/Gather. Fractionation is another, more careful, clus-

tering algorithm whose greater accuracy makes it suit-

able for the static offline partitioning of the entire corpus

which is presented first to the user. We also define the

cluster digest, an easy to generate, concise description of

a cluster suitable for Scatter/Gather.

3 Document Clustering

Before presenting our document clustering algorithms, we

review the terminology established in prior work, and dis-

cuss why existing clustering algorithms fail to meet our

needs. Throughout this paper, n denotes the number of

documents in the collection, and k denotes the desired

number of clusters.

In order to cluster documents one must first establish a

pairwise measure of document similarity and then define

a method to partition the collection into clusters of simi-

lar documents. Numerous document similarity measures

have been proposed, all of which treat each document as a

320

ACM SIGIR Forum 150 Vol. 51 No. 2, July 2017

set of words, often with frequency information, and mea-

sure the degree of word overlap between documents [1 1].

The documents are typically represented by sparse vec-

tors of length equal to the number of unique words (or

types) in the corpus. Each component of the vector has a

value reflecting the occurrence of the corresponding word

in the document. We may use a binary scale, in which

the value is one or zero, to represent the presence or the

absence of the word, or the value might be some function

of the word’s frequency within that document, If a word

does not occur in a document, its value is zero. A popu-

lar similarity measure, the cosine measure, computes the

cosine of the angle between these two sparse vectors. If

both document vectors are normalized to unit length, the

cosine is, of course, simply the inner product of the two

vectors. Other measures include the Dice and Jaccard

coefficients, which are normalized word overlap counts.

Willett [15] has suggested that that the choice of simi-

larity measure has less qualitative impact on clustering

results than the choice of clustering algorithm.

Two different types of document clusters can be con-

structed. One is a flat partztton of the documents into

a collection of subsets. The other is a hzerarchzcal clus-

teT, which can be defined recursively as either an indi-

vidual document or a partition of the corpus into sets,

each of which is then hierarchically clustered. A hierar-

chical clustering defines a tree, called a demirogram, on

the documents.

Numerous clustering algorithms have been applied to

build hierarchical document clusters, including, most

prominently, single-linkage hierarchical clustering [5, 2],

These algorithms generally proceed by iteratively consid-

ering all pairs of clusters built so far, and fusing the pair

which exhibits the greatest similarity into a single docu-

ment group (which then becomes a node of the dendro-

gram). They differ in the procedure used to compute sim-

ilarity when one of the pair is the product of a previous

fusion. Single-linkage clustering defines the similarity as

the maximum similarity between any two individuals, one

from each of the two groups. Alternative methods con-

sider the minimum similarity (complete-linkage), the av-

erage similarity (group-average linkage), as well as other

aggregate measures. Although single-linkage clustering is

known to have an undesirable chaining behavior, typically

forming elongated straggly clusters, it remains popular

due to its simplicity and the availability of an optimal

space and time algorithm for its computation [1 O].

These algorithms share certain common characteristics.

They are agglomerative, in that they proceed by itera-

tively choosing two document groups to agglomerate into

a single document group. They agglomerate in a gmedv

manner, in that the pair of document groups chosen for

agglomeration is the pair which is considered best or most

similar under some criterion. Lastly, they are global in

that all pairs of inter-group similarities are considered in

the course of selecting an agglomeration. Global algo-

rithms have running times which are intrinsically O(n”), z

because all pairs of similarities must be considered. This

sharply limits their usefulness, even given algorithms that

attain the theoretical quadratic lower bound on perfor-

mance.

Partitional strategies, those that strive for a flat decom-

position of the collection into sets of documents rather

than a hierarchy of nested partitions, have also been

studied [8, 13]. Some of these algorithms are global

in nature and thus have the same slow performance as

the above mentioned greedy, global, agglomerative algo-

rithms. Other partitional algorithms, by contrast, typi-

cally have rectangular running times, i.e., 0(kn). Gener-

ally, these algorithms proceed by choosing, in some man-

ner, a number of seeds equal to the desired size (number of

sets) of the final partition. Each document in the collec-

tion is then assigned to the closest seed. As a refinement,

the procedure can be iterated, with, at each stage, an im-

proved selection of cluster seeds. It is noteworthy that

any partitional clustering algorithm can be transformed

into a hierarchical clustering algorithm by recursively par-

titioning each of the clusters found in an application of

the partitioning algorithm.

One application of a partitional clustering has been to

improve the performance of near-neighbor search by in-

cluding, with each document, some closely related doc-

uments that might otherwise be missed. However, to

be useful for near-neighbor search, the partition must be

fairly fine, since it is desirable for each set to only contain

a few documents. For example, Willett generates a parti-

tion who size is related to the number of unique words in

the document collection [13]. From this perspective, the

potential computational benefits of a seed-based strat-

egy are largely obviated by the large size (relative to the

number of documents) of the required partition. For this

reason partitional strategies have not been aggressively

pursued by the information retrieval community.

We present two partitioning algorithms which use tech-

niques drawn from the hierarchical algorithms, but which

acheive rectangular time bounds. For our application, the

number of clusters desired is small and thus the speedup

over quadratic time algorithms is substantial.

2Willett [14] discusses an reverted file approach which can ame-
liorate this quadratic behavior when a large number of small clusters
are desn-ed. Unfortunately, when clusters are large enough to con-
tain a large proportion of the terms in the corpus, this approach
yields less improvement

321
ACM SIGIR Forum 151 Vol. 51 No. 2, July 2017

4 Definitions

For each document a in a collection (or corpus) C, let the

countfile c(a) be the set of words, with their frequencies,

that occur in that document.3 Let V be the set of unique

words occurring in C. Then c(a) can be represented as a

vector of length IVI;

c(a) = {f(uI,, cs)}j!~

where w, is the ith word in V and ~(w%, a) is the frequency

of w% in a.

To measure the similarity between pairs of documents,

a and ~, let us employ the cosine between monotone

element-wise functions of C(O) and c(f?). In particular,

let

(9(4Q))) 9(@)))
S(CY,/3) =

119(C(Q))II119(4P))II

where g is a monotone damping function, “(., .)” denotes

inner product, and II . II denotes vector norm. It has

been our experience that taking g to be component-wise

square-root produces better results than the traditional

component-wise logarithm.

It is useful to consider similarity to be a function of

document profiles p(a), where

p(a) ==
g(c(ff))

119(4~))11’

in which case

Ivl

S(a, p) = (pap) = ~p(ci)zp(p),.
Z=l

Suppose 17 is a set of documents, or a document group.

A simple profile can be associated with 17 by defining it

to be the normalized sum of profiles of the contained in-

dividuals. Let

CXEI?

be the unnormalized sum profile, and then

j(r)
p(r) = m.

Similarly, the cosine measure can be extended to r by

employing this profile definition:

qr,z) ~ (p(r), P(x)).

Sometimes for our purposes, the normalized sum profile

is not a good measure of a document group’s “contents”

because it takes into account documents which lie on the

3Throughout this paper, lower case Greek letters wJ1 be used to
denote individual documents, Upper case Greek letters wdl denote

sets of documents (document groups) and upper case Roman letters
will denote sets of document groups,

outskirts of the group. To solve this problem, we de-

fine the tmmrned sum profile pm(I’) for any cluster r by

considering only the m “most central” documents of the

cluster. For every a in r let rm(17) be the m documents

a whose similarity to 17, namely S(IX, I’), is largest. Then

define

~~~m(r)

and

Pm(O = &(r)/llfim(r)N.

This computation can be completed in time proportional

to 1171.4The trimming parameter m maybe defined adap-

tively as some percentage of ]r 1, or may be fixed.

4.1 Cluster Digest

Another description of a document group is in some sense

dual to the trimmed sum profile. Rather than considering

the central documents of a cluster, we can consider the

central wo~ds, namely those which appear most frequently

in the group as a whole. We thus define tw(I’),the topical

words of 17, to be the w highest weighted terms in p(I’)

(or perhaps in pm(r)).

Taken together, the two sets (rm(I’), tw(I’)) form the

(m, w) cluster digest of I’, a short description of the con-

tents of the cluster. The cluster digest can easily be com-

puted in time 0(11’ + lV\), and is in fact the summary

used to describe a cluster to a user of Scatter/Gather.

5 Partitional Clustering

Seed-based partitional clustering algorithms have three

phases:

1 Find k centers.

2 Assign each document in the collection to a center.

3 Refine the partition so constructed.

The result is a set P of k disjoint document groups such

that U==P II = C.

The Buckshot and Fractionation algorithms are both

designed to find the initial centers. They can be thought

of as rough clustering algorithms, however their output

is only used to define centers. Both algorithms assume

the existence of some algorithm which clusters well, but

which may run slowly. Let us call this procedure the

clusteT subroutine. We use group average agglomerative

clustering for this subroutine (see appendix B). Each of

our algorithms uses this cluster subroutine locally over

small sets, and builds on its results to find the k centers.

4A full sort of the similarities IS not requmed.

ACM SIGIR Forum 152 Vol. 51 No. 2, July 2017



Buckshot applies the cluster subroutine to a random

sample to find centers. Fractionation uses successive ap-

placation of the cluster subroutine over fixed sized groups

to find centers. We believe that Fractionation is the more

accurate center finding procedure. However, Buckshot is

significantly faster, and, hence, is more appropriate for

the on-the-fly online reclustering required by iterations of

Scatter/Gather. Fractionation can be used to establish

the primary partitioning of the entire corpus, which is

displayed in the first iteration of Scatter/Gather.

We implement Step 2 by assigniag each document to

the “nearest” center (in a sense to be defined later).

Our refinement algorithms also reflect a time-accuracy

tradeoff. The simplest refinement procedure, iterated

move-to-nearest, is fast but limited. A more comprehen-

sive refinement is achieved through repeated application

of procedures that attempt to Split, Join, and clarify el-

ements of the partition P.

5.1 Finding Initial Centers

Buckshot

The idea of the buckshot algorithm is quite simple. To

achieve a rectangular time clustering algorithm, merely

choose a small random sample of the documents (of size

&), and apply the cluster subroutine. Return the cen-

ters of the clusters found. This algorithm clearly runs in

time O(kn).

Since random sampling is employed, the Buckshot al-

gorithm is not deterministic. That is, repeated calls to

this algorithm on the same corpus may produce differ-

ent partitions, although in our experience repeated trials

generally produce qualitatively similar partitions.

Fractionation

The Fractionation algorithm finds k centers by initially

breaking C into N/m buckets of a fixed size m > k. The

cluster subroutine is then applied to each of these buck-

ets separately to agglomerate individuals into document

groups such that the reduction in number (from individ-

uals to groups in each bucket) is roughly a factor of p.

These groups are now treated as if they were individuals,

and the entire process repeated. The iteration terminates

when only k groups remain. Fractionation can be viewed

as building a I/p branching tree bottom up, where the

leaves are individual documents, terminating when only

k roots remain.

Suppose the individuals in C are enumerated, so that

c=al, ffz, . . .. c%. This ordering could reflect an extrin-

sic ordering on C, but a better procedure sorts C based

on a key which is the word index of the jth most com-

mon word in each individual. Typically j is a small num-

ber, such as three, which favors medium frequency terms.

This procedure thus encourages nearby individuals in the

corpus ordering to have at least one word in common.

The initial bucketing creates a partition

B={@l, @2, . . ..@m}m}

such that

Q = {%( Z-l)+ l,% (Z-1)+2, . .> CG?U}.

Each @, is then separately clustered (using the cluster

subroutine) into pm groups, where p is the desired reduc-

tion factor. Note that each of these computations occurs

in m~ time, and, hence, all n/m occur in nm time. Each

application of agglomerative clustering produces an asso-

ciated partition Rz = {@z,l, @8,2, . . . . @,,,m}. The union

of the documents groups contained in these partitions are

then treated as individuals for the next iteration, That

is, define

C’={@,,J: l<i Sri/m, lgj Spin}

C’ inherits an enumeration order by taking the @,,J in

lexicographic order on i and J. The process is then re-

peated with C’ replacing C. That is, the pn components

of C’ are broken into pn/m buckets, which are further

reduced to p2n groups through separate agglomeration.

The process terminates at iteration j if # n < k. At this

point one final application of agglomerative clustering can

reduce the remaining groups to a partition P of size k.

To determine the running time, observe that the jth

iteration, which operates on # n items, takes time pJ nm.

The overall running time is thus O(nm( 1 +P+P2 +. . .)) =

O(rnn). Thus if m = O(k) this algorithm has rectangular

running time.

5.2 Assigning Documents to Centers

Once k centers have been found, and suitable profiles de-

fined for those centers, each document in C must be as-

signed to one of those centers based on some criterion.

The simplest algorithm, Asszgn-to-Nea~est, assigns each

document to the nearest center.

Let G be a partition of the collection into k groups, and

let r, be the ith group in G. Let a < II, if i maximizes

s(cz17i). Ties can be broken by assigning a to the group

with lowest index. The set P = {11%}, O < i < k is then

the desired partition.

P can be efficiently computed by constructing an in-

verted map for the k centers p~(I’, ), and for each a : C

simultaneously computing the similarity to all the centers.

In any case, the cost of this procedure is proportional to

kn.

5.3 Refinement

Given an initial clustering, it is now desirable to refine

it into a better one. As with our initial clustering algo-

rithms, there is a tradeoff between speed and accuracy.

323

ACM SIGIR Forum 153 Vol. 51 No. 2, July 2017



The simplest process is simply to iterate the Assign-to-

Nearest process just discussed. The Split algorithm sepa-

rates poorly defined clusters into two well separated parts

and Join merges clusters which are too similar.

Iterated Assign-to-Nearest

The Assign-to-Nearest procedure mentioned above can

also be seen as the first of our refinement algorithms.

From a given set of clusters, we generate cluster centers

using the trimmed sum profiles above, and we then assign

each document to the nearest center so as to form new

clusters. This process can be iterated indefinitely, though

it makes its greatest gains in the first few steps, and hence

is typically iterated only a small fixed number of times.5

Split

Split divides each document group !J in a partition P into

two new groups. This can be accomplished by applying

Buckshot clustering (without refinement) with C = r and

k = 2. The resulting Buckshot partition G provides the

two new groups.

Let P={ Fl, I’z, ..., J7~} and let G, = {17,,1, 1’,,2} be a

two element Buckshot partition of 17,. The new partition

P’ is simply the union of the G, ‘s:

k

P’ = UG,.

t=l

Each application of Buckshot requires time proportional

to II’, 1. Hence, the overall computation can be performed

in time proportional to N.

A modification of this procedure would only split

groups that score poorly on some coherency criterion.

One simple criterion is the cluster self similarity s(I’, I’).

This quantity is in fact proportional to the average simi-

larity between documents in the cluster, as well as to the

average similarity of a document to the cluster centroid.

We thus define:

A(r) = s(r, r).

Let r(f’,, P) be the rank of A(I’, ) in the set

{A(r, ), A(r,),..., A(rk)}.

The procedure would then only split groups such that

i-(r, P) < pk for some p, O < p s 1. This modification

does not change the order of the algorithm since the co-

herence criterion can be computed in time proportional

to N.

5Excessive Iteration may in fact worsen the partition rather than
improving it, since ‘{fuzzy” elongated clusters can pull documents
away from other clusters and become even fuzzier.

Join

The purpose of the Join refinement operator is to merge

document groups in a partition P that are not usefully

distinguished by their cluster digests. Since, by definition,

any two elements of P are disjoint, they will never have

“typical” documents in common. However, their lists of

“topical” words may well overlap. Therefore the criterion

of distinguishability between two groups 17 and A will be

T(r, A) = ItU(r) n tu(A)l

where t~ (I’) is the list of w most topical words for 17. We

merge r and A if I“(I’, A) > p, for some P, 0 < P < W.

Determining the topical words for each cluster takes

time proportional to the number of words in the cor-

pus, and we must then compute k2 intersections to decide

which clusters to merge. In large corpora, the number of

words is typically less than the number of documents, and

the running time of Join is thus O(kn).

6 Application to Scatter/Gather

Combinations of the various initial clustering and refine-

ment procedures give several possible complete clustering

algorithms. We have used two of these combinations in

the course of implementing the Scatter/Gather method.

The initial partition used in Scatter/Gather is com-

pletely determined by the corpus under consideration.

Hence, when the corpus is available in advance, one can

compute the initial partition offline. We can therefore use

a slower clustering algorithm to improve the accuracy of

the initial partition. However, for corpora consisting of

tens of thousands of documents, a quadratic time algo-

rithm is likely to be too slow even for offline computation.

We thus use the Fractionation algorithm to find centers,

and then perform a great deal of refinement using the

Split, Join, and Assign-to-Nearest operators. Not e that

the running time for each of the refinement procedures is

O(k N) and thus does not affect the overall running time.

In an interactive session, however, it is vital for the clus-

tering algorithm to run as quickly as possible, even at the

expense of some accuracy. We therefore use the Buck-

shot center finding procedure, and then follow it with a

bare minimum of refinement. We have found that two

iterations of the Assign-to-Nearest procedure yield a rea-

sonably accurate clustering, and that further refinement

produces additional improvement, but with quickly di-

minishing returns.

By virtue of the Buckshot center finding procedure this

algorithm is not deterministic. However, in the contem-

plated application, Scatter/Gather, it is more important

that the partition be computed at high speed than that

the algorithm be deterministic. Indeed, the lack of deter-

minism might be interpreted as a feature, since the user

then has the option of discarding an unrevealing partition

in favor of a fresh reclustering.

324

ACM SIGIR Forum 154 Vol. 51 No. 2, July 2017



The overall complexity of both clustering procedures

described in this section is clearly O(klV). The constant

factor for the Buckshot-based procedure is small enough

to permit interactive use with large document collections.

The Fractionation-based procedure has a somewhat larger

constant factor, but one which is still acceptable for offline

applications.

6.1 Naturally Clustered Data

It is worth examining the performance of our algorithms

when the data set consists of well separated clusters of

points. If the input data has k natural clusters, i.e., the

smallest intra-cluster document similarity is larger than

the largest inter-cluster document similarity, then both of

our algorithms will find this partition.

For Buckshot, if we have a corpus containing k widely

separated and equal size centers, then a random sample

of size & will select some documents from each of the

centers with high probability so long as n >> k in k. This

will certainly be true for our case in which k = 20 or so.

To see this, compute the probability that, if we choose

a sample of size .s, we fail to get any individual from

some cluster. This is at most k times the probability that

none of our s individuals is a member of cluster Z, namely

(1 – I/k)’. So, the total probability of failure is at most

k(l – I/k)’. If we now take s = aklnk for some a, then

the failure probability is at most

k(l – l/k) Gklnk < kl-a.

Thus in our case, with k = 20, taking a = 5 means that

400 samples find all the clusters 999 times in 1000. Given

that we start with at least one element from each cluster,

our resulting clusters will each be a subset of one of the

clusters. Thus the set of centers found will include a

center within each actual cluster.

For Fractionation, we need merely note that if we have

more than k documents in a single bucket, some pair

of them is necessarily in the same actual cluster. Then

clearly, this pair will be merged in preference to any other

pair. Therefore, no pair of documents not in the same

cluster will ever be merged. Thus, when we finish, each

cluster we have found will be a subset of some one of the

actual clusters.

7 Conclusion

Scatter/Gather demonstrates that document clustering

can be an effective information access tool in its own right.

The table-of. contenks metaphor give. the method an in-

tuitive basis, and experience has shown that it is indeed

easy to use. Scatter/Gather is particularly helpful in sit-

uations in which it is difficult or undesirable to specify

a query formally. Claims of improved performance must

await evaluation metrics appropriate to the vaguely de-

fined information access goals in which Scatter/Gather

excels.

To support Scatter/Gather, fast clustering algorithms

are essential. Clustering can be done quickly by working

in a local manner on small groups of documents rather

than trying to deal with the entire corpus globally.

For extremely large corpora, even the linear time clus-

tering achieved by the Buckshot or Fractionation algo-

rithms may be too slow. We are working to develop vari-

ations on Scatter/Gather which will scale to arbitrarily

large corpora, under the assumption that linear time pre-

processing will always be feasible.

Clearly, the accuracy of the Buckshot and Fractiona-

tion algorithms is affected by the quality of the clustering

provided by the slow cluster subroutine. This provides

further motivation to find highly accurate clustering al-

gorithms, whatever their running time may be.

A A Scatter/Gather Session

In figures 2 through 5, we present the full output of the

Scatter/Gather session described in section 2.1. The cor-

pus is the set of articles distributed by the New York

Times News SeTvice during the month of August 1990.

This consists of roughly 30 megabytes of ASCII text in

about 5000 articles. Some articles are repeated due to

updates of news stories.

Here our goal is to learn about international political

events during this month. To create the initial parti-

tion we’ve applied the Buckshot clustering algorithm (fig-

ure 2). Fractionation is recommended for this task, time

permitting.

Each cluster is described with the two line display of

its cluster digest. The first line contains the number of

the cluster, the number of documents in the cluster, and

titles of documents near the centroid. The second line

contains words frequent in the cluster.

We select clusters 2 (Iraq’s invasion of Kuwait), 5 (Mar-

kets, including oil) and 6 (Germany, and probably other

international issues) as those which seem likely to contain

articles of interest, recluster, and display a new cluster di-

gest (figure 3).

Next, in figure 4, we iterate, this time selecting clusters

3 (Pakistan, and probably other international issues) and

4 (African issues). Specific incidents have been separated

out. We find hostages in Trinidad, war in Liberia, police

action in South Africa, and so on.

We obtain more detail about the situation in Liberia by

viewing the titles of the articles contained in that cluster

(figure 5).

325

ACM SIGIR Forum 155 Vol. 51 No. 2, July 2017



> (time (setq first (outline (all-dots tdb))))

cluster 4970 items

global cluster 199 Items.. sizes: 18 24 53 5 25 47 13 14

move to nearest. ..sizes: 517 1293 835 86 677 1020 273 269

move to nearest. ..sizes: 287 1731 749 275 481 844 310 293

0 (287) CRITICS URGE NEW METHODS; PROGRAMS FOR PARENTS THE; TEACHING SUBJECTS T

school, year, student, child, unlverslty, state, program, percent, study, educ

1 (1731) FEDERAL WORK PROGRAMS HE; RESORT TAKES STEPS TO PR; AMERICANS CUT BACK

year, state, york, city, million, day, service, company, week, official, house

2 (749) PENTAGON SAYS 60,000 IRA; BUSH “DRAWS A LINE” IN; BUSH SAYS FOREIGNER

iraq, Iraqi, kuwalt, american, state, unite, saudi, official, railltary, presld

3 (275) Trillin’s Many Hats; New Musical from the cre; After Nasty Teen-Agers 1
film, year, music, play, company, movie, art, angeles, york, american, directo

4 (481) TWISTS AND TURNS MAY MEA; SAX LOOKING FOR RELIEF I; PAINTING THE DODGER

game, year, play, team, season, win, player, day, league, hit, right, coach, 1

5 (844) CRISIS PUSHES OIL PRICES; WHY MAJOR PANIC OVER A M; OIL PRICES RISE AS

price, oil, percent, market, company, year, mxllion, stock, day, rate, week, s

6 (310) LEADERS OF TWO GERMANYS ; REPRESENTATIVES OF TWO G; SECURITY COUNCIL RE

government, year, state, party, political, country, official, leader, preslden

7 (293) U.S. APPEALS ORDER FREEI; DID JUDGE MOVE TOO HASTI; MAYOR BARRY CONVICT

case, court, charge, year, Judge, lawyer, attorney, trial, Jury, federal, dlst

real time 131258 msec

Figure 2: Initial Scattering

> (time (setq second (outline first 2 5 6)))

cluster 1903 Items

global cluster 123 items. ..sizes: 51 8 5 5 4 7 28 15

move to nearest. . . sizes: 730 67 65 62 56 99 714 110

move to nearest. ..sizes: 650 66 57 117 59 242 586 126

0 (650) PENTAGON SAYS 60,000 IRA; BUSH SAYS FOREIGNERS DET; BUSH “DRAWS A LINE

iraq, iraql, american, kuwait, state, unite, military, offzci.al, president, sa

1 (66) LEGISLATIVE LEADERS BACK; THE PROBLEM WITH AN EARL; ROAD STILL TOUGH FOR

party, state, election, year, political, candidate, vote, campaign, democratic

2 (57) IN PUSH FOR UNIFICATION, ; IN PUSH FOR UNIFICATION, ; LEADERS OF TWO GERMA

german, east, germany, west, year, government, soviet, union, state, unificati

3 (117) BHUTTO GOVERNMENT DISMIS; IN FRACTIOUS PAKISTAN, G; PAKISTANIS FEEL LET

government, mumster, year, party, polltlcal, mllxtary, country, official, sta

4 (59) DEATH TOLL EXCEEDS 500 I; DE KLERK, MANDELA HOLD U; NEGOTIATIONS TO SETT

a+r~ean, government, south, leader, palica, national, fi~ht, group, offlclal,

5 (242) WEST GERMANS TO BUY FIRE; FIRST EXECUTIVE CORP. EA; FARM BANK, MERRILL

company, million, percent, share, year, corp, stock, market, sell, price, pres

6 (586) OIL PRICES RISE AS STOCK; MIDEAST CRISIS PUSHES 01; WHY MAJOR PANIC OVE

oil, price, percent, market, year, company, day, stock, mdlzon, rate, week, f

7 (126) IRAQ GRANTS 237 FOREIGN ; WOMAN TELLS OF 12 DAYS I; CONCERN HEIGHTENS F

kuwait , lraqi, american, iraq, saudi, day, year, invasion, country, state, ara

real time 54184 msec

Figure3: Second Scatter

326
ACM SIGIR Forum 156 Vol. 51 No. 2, July 2017



> (time (setq third (outline second 3 4)))

cluster 176 items

global cluster 37 items...slzes: 1 4 12 1 5 3 8 3

move to nearest. ..sizes: 4 16 44 1 23 7 71 10

move to nearest. ..sizes: 5 16 28 1 51 7 55 13

0 (5) MUSLIM MILITANTS LAY DOW; MUSLIM MILITANTS LAY DOW; DRAMA IS OVER BUT BOO

government, trinidad, minister, parliament, wednesday, bakr, hostage, robinson

1 (16) NEGOTIATIONS TO SETTLE L; NEGOTIATIONS TO SETTLE L; WEST AFRICAN FORCE S

rebel, african, taylor, west, liberia, troop, group, llberian, leader, officla

2 (28) DEATH TOLL EXCEEDS 500 I; DE KLERK, MANDELA HOLD U; COMPETING FACTIONS T

south, pollee, african, black, mandela, africa, congress, ant, politlcal, gove

3 (1) SHIFT IN U.S. COMPUTER S;

security, agency, computer, technology, national, center, communication, milit

4 (51) SECURITY COUNCIL REACHES; @SECURITY COUNCIL REACHE; NEW U.S. POLICY IS W

government, year, state, official, army, country, group, guerrilla, war, natio

5 (7) CLASHES BETWEEN RIVAL SH; MUSLIM FACTIONS BATTLE I; BOMBINGS IN SOUTHERN

lebanon, muslim, chru+tlan, al, party, kill, god, lebanese, aoun, beirut, amal

6 (55) BHUTTO GOVERNMENT DISMIS; MS. BHUTTO CALLS HER OUS; MS. BHUTTO CALLS HER

government, minister, party, politlcal, military, prime, pakxstan, president,

7 (13) SHEVARDNADZE TO VISIT TO; 45 YEARS AFTER WAR’S END; JAPAN’S ROLE IN WORL

Japan, soviet, war, korean, japanese, year, tokyo, government, south, korea, w

real time 11140 msec

Figure 4: Third Scatter

> (prmt-titles (nth 1 thmd))

3720 REBEL LEADER SEIZES ABOUT A DOZEN FOREIGNERS

4804 WEST AFRICAN FORCE SENT TO LIBERIA AS TALKS REMAIN DEADLOCKED

4778 WAR THREATENS TO WIDEN AS NEIGHBORING COUNTRIES TAKE SIDES

3719 REBEL LEADER AGREES TO HOLD CEASE-FIRE TALKS

3409 OUSTER OF LIBERIAN PRESIDENT NOW SEEMS INEVITABLE

3114 NEGOTIATIONS TO SETTLE LIBERIAN WAR END IN FAILURE

3113 NEGOTIATIONS TO SETTLE LIBERIAN WAR END IN FAILURE

2785 LIBERIANS IN U.S. CRITICAL OF ADMINISTRATION POLICY

2784 LIBERIANS IN U.S. CRITICAL OF ADMINISTRATION POLICY

2783 LIBERIAN REBEL LEADER CHARLES TAYLOR HURT EN ROUTE TO CEASE-FIRE

2782 LIBERIA LEADER, REJECTING TRUCE OFFER, WON’T QUIT

1801 FIVE WEST AFRICAN NATIONS MOVING TROOPS TOWARD LIBERIA

1685 FACES OF DEATH IN LIBERIA

1684 FACES OF DEATH IN LIBERIA

248 OUSTER OF LIBERIAN PRESIDENT NOW SEEMS INEVITABLE

Figure 5: Titles of articles in topic 1 from Figure 4

327

ACM SIGIR Forum 157 Vol. 51 No. 2, July 2017



B Group Average Clustering

Here we present a quadratic time greedy global agglom-

erative clustering algorithm which has given good results

in our implementation. This is similar to the algorithm

presented in [3].

Let r be a document group. The average similarity

between any two documents in 17 is defined to be

Let G be a set of disjoint document groups. The basic

iteration of group average agglomerative clustering finds

the two different clusters I“ and A’ which maximize S(r U

A) over all choices from G.

A new, smaller, partition G’ is then constructed by

merging I“ with A’.

G’ = (G – {I”, A’}) u {r’ u A’}.

Initially, G is simply a set of singleton groups, one for each

individual to be clustered. The iteration terminates when

IG’I = k. Note that the output from this procedure is

the final flat partition G’, rather than a nested hierarchy

of partitions, although the latter could be computed by

recording each pairwise join as one level in a dendrogram.

If we employ the cosine similarity measure, the in-

ner maximization can be significantly accelerated. Recall

that P( 17) is the unnormalized sum profile associated with

r. Then the average pairwise similarity, S(I’), is simply

related to the inner product, (@(I’], ~(1’)). That is, since

~~rp~r

= lrl(\rl -

= lrl(lrl -

s(r) = (~(r) ii(r)) - Irl
Irl(lr- I) “

l)s(r) + ~(P(cY), P(cY))
Clcr

l)s(r) + Irl,

Similarly, for the union of two disjoint groups, A = I’ U A

(IXA), IXA)) - (Irl + IAI)
‘(A) = (Irl+ lAl)((lrl+ IAI)- 1)

where

(@( A), P(A)) = {pfrh~(r)} +

2(j(r), j(A)) + (j(A), fI(A))

Therefore, if for every 1? c G, S(I’) and fi(r) are known,

the pairwise merge that will produce the least decrease

in average similarity can be cheaply updated each time

a merge is performed. Further, suppose for every 17 E G

the A were known such that

s(r n A) = ~j~s(r n A),

then finding the best pair would simply involve scanning

the IGI candidates. Updating these quantities with each

iteration is straightforward, since only those involving I“

and A’ need be recomputed.

Using techniques such as these, it can be seen that the

average time complexity for truncated group average ag-

glomerative clustering is 0(n2) where n is equal to the

number of individuals to be clustered.

32’8

ACM SIGIR Forum 158 Vol. 51 No. 2, July 2017



References [14] P. Willett. A fast procedure for the calculation

of similarity coefficients in automatic classification.
[1] Chris Buckley and Alan F. Lewit. Optimizations Information Processing ~ Management, 17:53-60,

of inverted vector searches. In l%oceedings of the 1981.
Eighth Annual International ACM SIGIR Confer-

ence on Research and Development in Info?’matzon [15] P. Willett. Recent trends in hierarchical document

RetTieval, pages 97-11O, 1985. clustering: A critical review. Info~matzon l+ocessmg

a Management, 24(5):577-597, 1988.
[2] W.B. Croft. Clustering large files of documents us-

ing the single-link method. Journal of the Ame?’zcan

Soczety for Info?’matzon Science, 28:341-344, 1977.

[3] A. E1-Hamdouchi and P. Willett. Hierarchical doc-

ument clustering using Ward’s method. In Proceed-

ings of the Ninth International Conference on Re-

seamh and Development in Information RetTzeval,

pages 149-156, 1986.

[4] A. Griffiths, H.C. Luckhurst, and P. Willett. Using

inter-document similarity information in document

retrieval systems. Jou?’nal of the AmeTican Society

foT Information Sczence, 37:3-11, 1986.

[5] Anil K. Jain and Richard C. Dubes. A~goTithms fo~

CiusteTing Data. Pretice Hall, Engelwood Cliffs, N.J.

07632, 1988.

[6] N. Jardine and C.J. van Rijsbergen. The use of hi-

erarchical clustering in information retrieval. Infor-

mation Storage and RetTzeval, 7:217–240, 1971.

[7] J. O. Pedersen, D. R. Cutting, and J. W. Tukey.

Snippet search: a single phrase approach to text

access. In Proceedings of the 1991 Joznt Statistic-

al Meetings. American Statistical Association, 1991.

Also available as Xerox PARC technical report SSL-

91-08.

[8] G. Salton. The SMART Retmecal System. Prentice-

Hall, Englewood Cliffs, N. J., 1971.

[9] G. Salton and M. J. McGill. ~ntToduciion to Modern

Information Retrieval. McGraw-Hill, 1983.

[10] R. Sibson. SLINK: an optimally efficient algorithm

for the single link cluster method. ComputeT Journal,

16:30-34, 1973.

[11] C.J. van Rijsbergen. Information Retrzeval. Butter-

worths, London, second edition, 1979.

[12] C.J. van Rijsbergen and W.B. Croft, Document clus-

tering: An evaluation of some experiments with the

Cranfield 1400 collection. Information Processing &

Management, 11:171–182, 1975.

[13] P. Willett. Document clustering using an inverted

file approach. Journal of Information Sczence, 2:223-

231, 1980.

329

ACM SIGIR Forum 159 Vol. 51 No. 2, July 2017


