6 Desaigmn armd admplemermntataion

6.1 Introduction

This chapter describes the retrieval devices to be
evaluated in this project. These are:

stemming and spelling standardisation

the use of a Lookup table of cross references and "go*
phrases

a method of suggesting corrections for words which may
be misspelt

The cevices were used in two catalogues referred to as EXP

and CTL. EXP incorporates all the devices, including two-
Level stemming. CTL has "weak" stemming, but none of the

other devices. The catalogues appear identical in casual

use.

The catalogue systems are described here from the point of
view of structure and implementation rather appearance.
The appearance and presentation of the catalogues 1is
descraibed in Chapter 7. Some may prefer to read this
chapter and Chapter 7 in parallel.

This chapter also describes the method of term combimnation
which we used. This i1s combimatorial rather than boolean.
Most post-coordinate retrieval systems either use explicit
boolean AND and OR or, more frequently in onlimne cata-
Llogues, an implicit boolean AND. Okapi systems, Like CITE
(2.9) and the "keyword" subject enguiry in the SWALCAF
LIBERTAS system, retrieve all records which comntain enough
of the words imn the user’s search, outputting the "most
similar" records first.

6.2 Stemming and spelling standardisation
6.2.1 Background

Automatic stemming has been investigated many times for
reference retrieval systems but i1s only used in a tfew
online catalogues (see Chapter 3 for a survey). 1n refer-
ence retrieval systems most researchers have concluded that
it is bemneficial. It appears to increase recall without
unduly decreasing precision, and its performance is said to
be comparable with that of manual trumcation by inter-
mediaries. When stemming has been used in online cata-
Logues these have usually been catalogues which access

.y



6 Design and implementation

specialised collections. The prime example is the National
Library of Medicime's CITE [1]. We do not know of any
online catalogue which uses stemming in accessing a general
collection for germeral users.

It seems Likely that ome of the reasons for the apparent
success of automatic stemming imn reference retrieval
systems 1s that the searcher is generally trying to
retrieve one or more sets of records for printing offline.
These output sets are usually produced by boolean com-
bination of a number of intermediate sets. It is perhaps
not too much of a gemeralisation to say that the searcher
(intermediary) seeks to construct a camonical formulation
of a search. It may not matter if some of the intermediate
sets or single term searches contain a8 substantial pro-
portion of false drops attributable to stemming.

The use of general online catalogues is very different.
There i1s mo need, and rarely any attempt, to find a
‘definitive"® search statement. Most search statements
consist of only one or two words (see, for instamce, Table
8.3, which shows that the most frequent number of terms 1is
two, with a mean of about 2.2; Okapi users are quite
typical in this respect). R session at the catalogue often
consists of a sequence of related searches, any of which
may contribute to the user’s satisfaction or Lack of at.

When automatic stemming i1s used on searches comsisting of
only orme or two words even the most comnservative procedure
often gives false drops which would have been ANDed out 1in
a longer search. Evern conflating singular and plural forms
can Lead to a good deal of noise: examples drawn almost at
random from Ukapi '84 tramsaction logs are right, raights;
age, ages; lord, [house of] lords; mass, masses; art, arts;
account, accounts; communication, communications. The
removal of "ing" and ‘'ed" endings can also be detrimental:
age, aging, aged; account, accounting; market, marketing;
train, training. An examination of anmy word Llist drawn
from a collection of noun phrases shows that other suffixes
such as "er", "tion", "ence", "ism"*, "ist", "..ity" often
affect the meaning very markedly, and that their removal
can be expected to lead to a significant proportion of
false drops. Most stemming evaluation has been dore on
searches of databases in the "hard® sciences.

We Looked at 6700 consecutive subject searches (after
removal of immediate repetitions of a search) from the lLogs
of an Okapi '84 terminal to try to get amn idea how of ten
stemming would be detrimental and how often beneficial.

The types of word Looked at were regular English plurals,
'ed" endings, "ing" and "ings"' endings, and "tion" and
*sion" endings and their plurals. The results are sum-
marised in Table 6.1.

Hfter removal of very common functiomn words and stop words,

-58-



6 Design and implementation

these search statements contain 3585 distinct words (types)

and 14,584 occurrences of the words (tokens),
(For all tokens,

words per search.

search statement 1s about 2.6.)

Table 6.1
'84)

a mean of 2.2
the mean number per

Types of word used in subject searches (Okapi

Types Tokens Searches
regular plurals 715 (19.91) 2201 (15.1%)
'ed" endings 56 (1.5%) 125 (0.9%)
'ing(s)" endings 177 (4.9%) 638 (4.4%)
'tion(s)" and "sion(s)"' endings 255 (7.1%) 1107 (7.6%)
nonce-words (excluding numbers) 1833 (51.1%) 1833 (12.6%)
misspellings and rubbish 565 (15.8%) 650 (4.5%)
Total 3685 14584 5632

The table shows that plurals are far Less frequent than
singulars, that "ed" endings are probably rare enough to be
disregarded, but that some other suffixes occur qguite

of ten.

Ay stemming procedure has to be applied both to the index
Language and the search language. The above breakdown
could be usefully compared with a corresponding table com-
piled from the Language of bibliographic records, with
title words and controlled subject headings treated
separately. Unfortunately we have not had time to do this.
We would expect to find that the distribution of suffixes
in search statements is quite similar to that in titles,
but markedly different from their distribution in subject
headings.

Because subject headings are for description and recog-
nition rather than for searching, they have their own "sub-
grammar' 0One feature of this i1s an extemnsive use of
plurals where searchers and authors would use singulars.
(For an enlightening and depressing discussion of Library
of Congress subject heading practice see Mischo [2].

-59-



6 Design and implementation

Schabas [3] found that the performance of PRECIS was
similar to LCSH when used for keyword searching.)

6.2.2 Functional design considerations

Mitev and Walker [4] asserted that the first records shown
should be those (1f any) containing the exact phrase
entered by the user. The search system should then, if
necessary, Look for records which partially match or bear
some resemblance to the search statement. They hold that a
search should be automatically broadened when appropriate
(user 1s not satisfied, no records found, only a few
records found) by any or all of the following means:

1 stemming

2 relaxing the word order constraint
3 wusing word fragments
4 Looking for records which contaimn only some of the words

of the search.

In this research we were not concerrmned with word order,
except i1n so far as one of the catalogue systems (EXP)
uses a small dictionmary of phrases. The Okapi indexes do
not contain adjacency information, and Okapi suffers from
the usual "false coordination' effects. (Try LIBRARY
SCIENCE or WAR AND PERCE on any catalogue which does an
implicit AND on title and subject words.) Nor do we use
word fragments. See Chapter 4 for a discussion of the use
of m-grams for finding classes of morphologically similar
words.

The fourth heading - being prepared to display records
which may nmot contain all the words of the search statement
- 15 a feature of CITE, Okapi and of the SWALCAP LIBERTAS
system. HRgain, it 1s one which has been investigated in
reference retrieval systems with gernerally favourable
results. It is mot the subject of this project, al though
there 1s a strong conmection between the way we used stem-
ming and the way in which terms are combimed or "merged".

This merge procedure is described in B.5.
6.2.3 Strong and weak stemming

Ideally the system should first Look for records which
match the actual words of a search, without any stemming.
This would be followed by "weak" stemming (conflation of
pluralt, singular and *ing"), and this in turn by "strong*
stemming. The degree of stemming, if any, to be applied
initially might be made to depend om the number of words in
the search and possibly on their frequency in the index.
For example the search SUCCESS AT INTERVIEWS finds no

-B60-



6 Design and implementation

matches in the PCL file when records containing "success”
and "interviews' are sought, and still fails when plurals
and singulars are conflated. But when stronger stemming

removes the suffix from "successful® i1t finds a book with
the titlLe

*How to succeed at an interview : .. a guide to successful
preparation for job applications .. °*

(JOB APPLICATIONS is a better way of expressing this

search. It finds 11 books, all but one of which are lLikely
to be relevant. Having found the above entry to the file a
user might decide to try this reformulation of the search.)

Another example is TERMINAL ILLNESS which finds no records
without stemming, but the file contains four relevant
records indexed under "terminally® and "ill".

Any catalogue which does nmot find these records in response
to these search statements is, to put it mildly, in-
adequate. Few users would try rephrasing the Last example
as THE TERMINALLY ILL.

6.2.4 Spelling standardisation

Many common words have altermative acceptable spellings.
Most of these represent differences between British and
American English. Even within British English there are
judgment/ judgement, connexion/connection and many others.

A Large proportion of the differences can be given in the
form of rules rather than tables, although most of the
rules ought to have exceptions. Replacing every 1z by 1s
makes a few words such as "size" Look rather odd. This 1is
one of the reasons why we decided mot to show the user how
the system represented search words. We had to design the
interaction so that Links are maintaimned between what the
user types and what the system 1s processing.

Rare variations ("ium" = "um" at end 1f word 1is "alu-
minium”) are handled by lLookup tables (6.3).

Since the spelling standardisation was to be rule-based we
decided to incorporate it in the stemming procedure. The
rules were concocted after a study of past searches on
Okapi, and of Lists such as that given by Paice [5, p86].

6.2.5 Two levels of stemming

There are obvious examples (right, rights etc) which show
that it is not always safe to apply any stemming at all,
but for reasons of simplicity, ecomomy and ease of evalu-
ation we chose to apply a "weak" tranmsformation, which
included the spelling standardisation, to all searches. We
hoped that few searches would be seriouslLy affected by the

-61-



6 Design end implementetion

uncondi tional conflatien of plural/singuler snd °ing®
forms .

Ve then hed te deecide how te seguence the spplicetien of
the twe levels = should the secend level enly be epplied if
reguested, ar if the first did met lead te sany retrievels
conteaining all the stems in the seareh?

The method used in Okepi ‘66 is extremely simple, but could
net bz epplied in & system whieh (Like mest current enline
catelogues) does an implied beelesn ENU en the werds ef the
searel.

Both weaek and strong stems are generated and lecked up im
the spprepriate indexes. Each strong stem is merked &s
being “synermvmous”® with its corresponding weak stem. Each
stem is assigned @ weight based en the inverse ef Lts
freguency, s commen words ore worth less (“lighter®d them
rere enes. JIn partieculer, & strong stem generally has &
lower weight then its corresponding weak stem. The postimg
Lists for all the stems are then merged, @ech poesting in
the output Llist being given & weight which is the sum ef
the weights ef the cemntributing stems, except thet the
weight of & strong stem is mot added if the eorresponding
weak stem has contributed. This aveids giving fealsely high
weights te records which centain, Tor exemple, both
‘success” and “suvceesstul®. (See 6.5 fer a fuller
deseription of the merge precedure. The precedure
deseribed abeve is enly used in the experimental C(EXP)
system = the control CCTL) system only uses weak stems.)d

Rdditienally, postings are net eccepted fer the sutput Llist
unless their weight resches & eertein threshold based en
the weight of a hypothetical recerd containing all the weak
stems in the search. This ersures thaet recerds bearing
Little resemblance to the sesareh ere mot retrieved.

B.2.6 Interection design

How sheuld the stemming be presented to the user? Should
the system explain what it is deing? If se, how?

Meny users de rnet krew thet & keyword cateleogue leoks for
‘words”® rether then °ideas® or °“concepts®. (Some of theose
whe do realise roughly whet is geing on regerd it (rightlyd
as ‘unintelligent®.d The cetelegue sheuld give some intro-
duetory explanatien of how it works, but this must be very
brief and pithy. It is undesirable to present (eExcept em
request) mere then en sbscolute minimum of Ren-essentisl
text since it is impossible to meke peeple resd the screen.
Twe lines of expleanation is asbout the meximum.

=B2<



6 Design and implementation

Examples:

This catalogue Looks for items contairing the words you type in
and other words simalar to them

The computer will Look for books whose TITLES and SUBJECT HERDINGS contain
as many as possible of the words you type

Both examples are intended to suggest that the computer

Looks for words rather than phrases. The first is about as
far as one can go in casually introducing the idea of
stemming. The second can be used for "best match" systems

such as Okapi which do mot do an implicit AND. We have not
been able to think of any message which is short enough and
introduces both features.

One function of explamatiomn is to try to avoid users being
put off when a search fails or retrieves unexpected items
(*That isn’t what I asked for!"). When a search fails (to
find anything) the system should be able to give some sort
of explanation at that point, but i1t camnmot - by defimition
- know when 1t has displayed false drops. It is not so
much to excuse the system but to reassure the unsuccessful
user. It is important that a catalogue should mot often
make a fool of i1tself, but 1t is more important that the
catalogue should mnot make a fool of the user.

Amother function of explamation is to help users improve
their search techrniques. The fact that the system ais
searching for words rather tham concepts i1s more lLikely to
be appreciated if i1t displays each word as i1t is searching
for 1t. Further, if the search should fail, some users may
have nmoticed which words are Likely to be useful and which
are not: this may help them i1f they have to rephrase their
search.

Presentation during searching must depend partly on the
output from the stemming and spelling standardisation. If
we had used a procedure which performed "mormalisation® on
the stems i1t produced, so that they are always "real®
words, it would be possible to display the stemmed words to
the user. For example, if "computing® weak stems to
*compute” and *computer® and "computation® strong stem to
*compute® the system could display

Looking up ‘compute..®

—~~



6 Design and implementation

or even
Looking up "compute"

followed by
Found 2317 books under "compute® and similar words

but one carmnot display "comput', "censu® or "filosofi",
which are forms produced by our stemming and spelling
standardisation. (We also tried using plus signs to
indicate truncation. The only concise and tranmsparent ways
of suggesting that a word or phrase has been truncated, or
that some of it is "missing", seem to be two or more dots
or the word "etc".)

6.2.7 Choice of stemming procedure

We used a version of Martin Porter’s suffix removal algo-
rithm (6] because 1t 1s short (easy to code and does not
need much memory), tends to "under-stem" and has been shown
to perform well in reference retrieval searching (7, 81].

This algorithm removes apparent *s" plurals followed by
'ed" and "ing" from words of any length, and then succes-
sively removes other suffixes if the remaining stem would
be Long emnough (the measure of Length i1s a gquasi-syllabic
measure based on the number of vowel-consomnant trans-
1tions). Most fimnal double consonants are reduced to
single, so that "travel"' and "travelling" etc are properly
conflated.

We adapted Porter’s procedure, making 1t a two stage
process and adding spelling standardisation in Stage 1.

The Stage 1 process i1s intended to be nmon-contentious -
that is, its application should rarely affect the meaning
of a8 search. It i1s essentially Step 1 of the Porter algo-
rithm with spelling standardisations. We refer to this as
‘weak stemming". The second stage involves carrying out
Steps 2-5 of the original Porter algorithm; this we call
"strong stemming".

Thus any word has both a weak and a strong stem: the weak
stem i1s considered "closer" to the origimal word.

6.2.8 Stage one - weak stemming and spelling
standardisation

This stage removes regular English plurals and "ed" and
*ing" endings, then reduces most double comsonant endings
to single. No endings are removed from words under four
Letters Long or from "words" which contain digits or other
non-alphabetic characters (hyphens have already been
squashed and/or replaced by blanks).

-R4 -



6 Design and implementation

There 1s an gxception table containing one entry: the word
sunited® (United States, United Kingdom etc.). Conflating
sunited® with "unit"® leads to false drops.

For other words, Step 1 of the original Porter algorithm 1is
done, followed by these spelling standardisations - an
example follows each. In many cases they cope with dif-
ferences between Americamn and British spellings of words;
in some cases they trap common spelling errors.

1 iz --> 1s
(organize --> organise)

2 ae --> e except at the end of a word
(orthopaedic --> orthopedic)

3 ph --»> f
(sulphur --> sulfur)

4 oe --> e
(foetus --> fetus)

S our --> or 1if word length greater than five
(behaviour --> behavior)

6 exion --> ection at the end of a word
(conmnexion --> conmnection)

7 nse --> nce at the end of a word
(defense --> defence)

8 amme --> am at the end of a word
(programme --> program)

3 gue --> g at end

(catalogue --> catalog)
10 ism --> 1st at end

(feminism --> feminist)
11 ant --> ent at end

(dependant --> dependent)

12 tre --> ter at end
(centre --> center)

13 ancx --> encx at end if Llength > 6 (¥ denotes one
Letter or Nno Letters) '
(dependance --> dependence)

For many of the changes it doesn’t really matter which way
round they are done: for example we could equally well do
*ent" --> "ant" at the end of a word. It i1s more a case of
making words equivalent.

R



6 Design end implementetion

6.2.9 Stege twe - streng stemming

This is the seme as the original algorithm Steps 2 = S,
with ene or two minor chenges mede necessary by the eltered
Stage 1, meinly thet °iz° is always °is” and “ism® at the
end ef @ word is alweys °ist®.

This remeves, if the word is leng eneugh, endings such &s
’ssien®, °tion®, °erce’, ‘ous?, °ress®, °ate?, °er?, “ie”,
"gble” and °“ible®, %ive’, °d=ze’, %ism® &nd “ist®. (For @
complete description see [(6J.)D

6.2.70 Discussion and examples

We dintroduced the idea of twe-stege stemming because
drestic stemming epplied te searches conteaining enly ene er
we words often lesds te false dreps. B good exemple is
‘communism® and ‘communicetiens® whieh beth strong stem to
‘commun®. Rrother exemple is "orgenisation”® &nd “ergenic’.
Whern searching fer words we search for beth wesek and streng
stems, but the week stems ere given & higher weight then
the strong ones.

We have tried te teke sccount ef commen spelling veri-
atiens, meinly differences between British and CBmerican
spellings. We alse try to cepe with words with more then
one sceepteble spelling, ®.g. ercheeelegy, ercheolegy ;
foetus, fetus; medieevel , medievel . The changing of
endings “@nt® and “ancek® te "ent” and "erek’® respectively
is because users often meke mistekes with sueh =ndings, and
where either ending can be coerrect the words are similar
enough in meening te Justify tresting them the same.
(Examples are independence, independence; correspondent,
correspondent . )

Weords of ten Look reather strenge when wesk er strong
stemmed. Okepi uses stemming in its index and then again
en the user’s search statement, but these stems are never
ectually displayed to the user, so their eppearance does
net matter. For exemple, we get °fotogrefi® frem “photo-
grephy®, but the former only serves as Okepi’s internal
representation ef the term: @8 Tar @s the user is concerned
the ceomputer is searching for “photogreghy® .

Spelling steanderdisation of ten scts on words in uRintended
ways. Bgein, in mest situstiens this doesn’t metter. The
word ‘ugheevel® stems to “ufeavel? - but es long @s mo
other word stems te “ufeaval?® it will cause Po problems.
Some other unintended slterations are:

Lenses lenece
FE@SOUrce® resore
seroplane eroplane
wphll wfall

-BB-=



6 Design and implementation

dizzy diszi
advance advence

In practice, rnomne of these (nor many others) matter, but
there are a few which should be treated as exceptions, Like
'united" (see Some oddities below).

We decided that record retrieval would be improved by
treating "ism" and "ist" at the end of a word as equi-
valent. Examples include socialism, socialist; Marxism,
Marxist; structuralism, structuralist; racism, racist;
fascism, fascist.

6.2.11 Some oddities

Inevitably some odd things happen with stemming. Some of
these happened with the originmal algorithm but others are a
direct comnsequence of our adaptations. These are a few of
the tranmsformations which may decrease precision or even
recall:

herring her
organism organist
poetry petri
poet(s) pet
shoes she
schism schist

And place nmames do not always Lend themselves readily to
stemming:

Woking woke
Dungeness dung

w7 =



6 Design and implementation

6.3 Phrases and the go/see List

The Okapi go/see list contaims classes of terms which we
treat as equivalent, and phrases which we treat as single
terms. It was compiled after study of a Large number of
transaction Logs of the use of Okapi ’'84 in Riding House
Street Library, i.e. the emphasis is on the words and
phrases that are most Likely to be searched for in Okapi.

An "equivalence class" of terms is a List of words (or
phrases) which we treat as having the same meaning at
search time. For example, "France, French' may comprise
one class, and "VDU, Visual Display Unit, VDT, Visual
Display Terminal® another. R special case is when the Llist
has only one item, which will be a phrase we want to treat
as a complete phrase rather thamn as individual words.
Examples of this are "industrial revolution® or ®soap
opera".

In the index, any member of a given equivalence class will
point to the same set of postings, which will be the set of
all postings which contaim at Least ome of the class terms.
Thus a search for "Framce" may retrieve records which
contain the word "French", and vice versa.

6.3.1 Categories of equivalence classes

The classes in the go/see List may be roughly categorised
into the following eight groups, although some classes
belong to more than one group.

1 RAbbreviations

"BBC, British Broadcasting Corporation®
"CND, Campaign for Nuclear Disarmament*
"TV, Television"

"VAT, Value added tax"

N

Noun/adjective pairs - mainly for proper names

*Switzerland, Swiss"'
"Wales, Welsh"
*Florence, Florentine"
'Freud, Freudian"' etc.

3 Alternative terminology
'Russia, USSR, Soviet Union, Russian ... (etc.)*
"movies, moving pictures’
*Holland, Netherlands, Dutch"*

"Conservative Party, Tory Party"

Included here are terms which may be ome word or two
words

-68-


file:///yersa

6 Design and implementation

*micro computers, microcomputers"®
*ultra violet, ultraviolet®
*infra red, infrared*

*Serbo Croat, Serbocroat®

4 RAlternative spellings

*gaol, jailL"

*csar, czar, tsar, tzar®
*aluminium, aluminum®
*aeroplane, airplane"

S Common irregular plurals

*man, men"

*woman, women"
*phenomernon, phenomena*
*wife, wives"

6 Related terms

*child, children, childhood, childish"

"tax, taxation, taxability, taxable'

*Third World, underdeveloped countries, developing
countries, .

7 Numbers

6, six, sixth, vai"
(and similarly for other numbers up to 20)

8 Phrases
"Pirate Radio"
"*Labour Party"
*Of ficial Secrets Act®
*Nottimg HilLL"
*General Strike"

6.3.2 Phrases

The use of phrases poses some problems, mnot Least of which

is the question of what to include. The main use of
phrases is in keeping together words which would Lead to
false coordination if separated. However, care must be

taken in selecting phrases for the List because the in-
clusion of a phrase in the go/see List can sometimes Lead
to a reduction in the number of relevant books found.

The classic example of a "good" phrase to have on the List
is "soap opera', because books on "soap" alone or ‘opera”
alone would nmot be relevant in such a search. In practice,
a search for just "soap opera" would retrieve relevant
books even without the phrase List, but as soon as any

-B6Y-



6 Design end implementstien

other terms are included in the seserch there is & denger of
werds beceming separated. For exemple, ® search for °The
preduction of socsp eperas’ could eguslly well retrieve
books on "sesp preoductien”® or “production of operas®,
reither of which, we essume, would help the user much.

Similarly, in most other cases, there is little to be
geined frem using the phrase list if the phrase is the enly
thing in the search. But when other terms ere added the
presence of phrases in the index Relps te prevent Ffalse
Coardinatiom .

WHICH PHRESES?

B phrase wose constituent woerds heve meeEnings very
different from thet of the whole phrease is an ideal
candidate for imclusien in eur list. However, mest cases
are net o@s clear-cut a@s °scep epera’. In MaRy iNsteances
some or all of the component words ere relsated in some way
to the phrese meaning. For exemple, consider the phrese
‘pirate redie’® - books en “readio® slone might be relevent,
whereas beeks on °piretes”® almost eerteinly would met.

Phrases which contein very germersl words should be ineluded
because they previde ample eppertunities fer false co-
ordinetion. °Welfare State?, "middle elass®, °Genersl
Strike® and °social seience® would ceme into this category.
B seerch for “Middle class education® could retrieve beoks
on "educetion in Middle scheels® or “@ducatien in mixed
ability eclasses®. Similerly a user regquesting °"Women snd
the Welfare State® might be effered & boock on the welfere
ef women im New Yerk State. If we can trep krewn phrases
such ®&s the sbove, we will reduce the probesbility of these
felse drops.

We included some political parties (°Labour Party®,
"Liberal Party®, ete.) because °"Party”® can easily attech
itself te the wreng woerd. B sesrch for DECLINE OF THE
LEBOUR PARTY retrieved °The declime of the Liberal Party
1810-1831° .

Some phreses should ret be included in the gol/see list:
they are phrases whieh can be (and ere likely to be) ex-=
pressed in alternstive ways in the recerds. For exemple,
"Freneh Revelution® might be considered suitable for im-
clusion in the list. Certainly this would leed to all
beeks en the Frernch Revelutien being retrieved if this
topic was searched for. However, what would not be foumd
are all the eguelly relevent bosks with titles or subject
hesdings sueh as “Revelutien in France®, °The French and
Russian Revolutiens®, er °France during the revelution®,
ete.

With sll phreses there is seme denger of the above
situatien erising. For exemple, if we include the phrase

=70-=



6 Design and implementation

*“World War I1* themn we would miss books om "World Wars I
and II". However, in such a case the advantages of in-
cluding the phrase probably outweigh the disadvantages.
With any phrase, the decision whether or mot to include 1t
must be a fairly subjective orne, and we must rely on ana-
Lysis of users’ subject searches to measure the usefulness
or otherwise of our various choices.

6.3.3 Problems in searching for phrases

At search time, we always scan the index for the Longest
match possible with the user’s search string, thus picking
up phrases where they occur. A "term" in the search may
therefore be either a single word or a phrase. When the
postings are merged, inverse frequency weights are assigned
to the terms. Rt the moment we have mo special way of
assigning weights to go/see List terms, and their weights
may therefore be a Little artificial.

There 1s a danger, for example, of terms being given arti-
ficially low weights because they belong to am equivalence
class and are thus highly posted. Because the List of
postings for "Spain® also includes all postings for
“Spanish", "Hispanic" and “Espana‘, the weight assigned to
"Spain" i1n a search will be Lower tham 1t would be if
*Spain" were not on the go/see List. In most cases this
will probably not have disasirous comsequences but 1t is
something which should be borme imn mind, perhaps when
compiling the go/see List.

For the above reason, there seems to be a case for simply
adding 1 to the weight of any go/see List term. In the
case of phrases, a suitable way to assign & weight might be
to calculate the weights of the compoment words, sum them,
and them add 1. It might also be a good idea to actually
add the individual words to the merge, because the
weighting system just described would ensure that postings
contaiming the actual phrase would have a8 higher weight
than those only comtaiming the individual woirds, with the
added advantage that phrases Like "French Revolution* and
*World War I1" would work better (see discussion above).

A disadvantage of applying techniques such as the above 1is
that 1t makes the (already complex) search strimg analysis
even more complicated, and involves more index searching
which takes a relatively Long time.

6.3.4 Other go/see list categories
We don’t include abbreviations which are in themselves
words, such as WHO or RIDS, since this could Lead to some

very strange retrievals.

Other equivalences are particularly useful for rare terms
because relevant books will oftem be found which would not

-71-



6 Design and implementation

otherwise have been. For example, there are very few books
on Tibet, and all contain only orne of the terms *Tibet* and
*Tibetan". Thus by making these two terms equivalent we can
retrieve all the books on Tibet rather thanm just those
containing the word "Tibet". R search for *Tibetan
religions” wall find "Politics and Religion in Taibet*.

6.3.5 A note on stemming and indexing

The index contains both "weak®' and *strong" stems of words
(6.2.3). Oraiginally, we intended that i1f a phrase was on
the go/see List, only the strong stems of its component
words i1n the index. However, there turned out to be
serious problems with this approach and so mow all words go
in the index as both weak and strong stems regardless of
whether they also form part of a phrase.

The reason for the problems with the former method is that
when a phrase’s compoment words are relevant in themselves,
they get *lost" i1if searched for on their own. For example,
the phrase 'Communist Party" 1s omn the go/see Llist.
Origimnally, this meant that although any books containing
*communist party' would be posted under this phrase, they
would only be posted under the strong stem of "communist®.
Thus they would only receive a Low weight in a search such
gs "Communist politics" where they would be very relevant.

o



6 Design and implementation

6.4 Spelling correction

To undertake spelling correction interactively (word-by-
word) on Limited hardware it 1s essential to use a two-
stage process (Chapter 5).

The first requisite 1s a fairly large dictiomary - Large
enough to contain the majority of words which users may
misspell. Some systems store several categories of words:
there may be a special dictionary of very common mis-
spellings lLinmked to their correct forms (e.g. RDON --> RND,
NECCESARY (etc) --»> NECESSARY). This is the only practical
way of correcting short words. Sometimes the dictiomary 1is
coupled to a set of rules for "expanding® entries by adding
plausible affixes (EXRGGERRTEDNESS might mot be in the
dictionmary, but could nmevertheless be accepted as an allow-
able word). The dictionary may also be partitiomed into
specialised sectiomns to be used i1n different contexts.

The second reguisite i1is a fast lLookup procedure for selec-
ting dictionary entries which are mear emnough to the user’s

word to be considered as possible corrections. The LlLookup
shiould returmn a List which balances the requairements of
recall and precision. It should include all or almost all

candidate replacements, but must be of manageable size
because each word inm the list 1s going to have to be
matched agasinst the user’s word to produce either a8 single
word for automatic correctiomn or a short List for the user
to select from.

Finmally, there 1s a matchaing algorithm which measures in
some realistic way the likelihood of a given candidate word
being & proper correction for the user’s word.

6.4.1 Dictionary

The obvious source for the dictiomary 1s the bibliographic
file 1tself.

We first tried extracting all words from the subject-rich
fields of the bibliographic source file. Since 1t 1s
dangerous to try to correct short apparent misspellings, we
selected only words of five lLetters or more, and excluded
all numbers and "words" contaiming digits. There was a
considerable proportion of non-English words. Experiments
showed that such a system would sometimes suggest cor-
rection to a foreign word. Since our users only very
rarely enter nmom-English words (other than proper names) we
tried to eliminate as many as possible by not extracting
title words from records whose MRRC 008 field contained
anything other than "eng". There were 12,350 *non-eng”
records (13% of the file). Excluding these reduced the size
of the dictiomary from 47,040 to 30,810.



6 Design and implementation

6.4.2 Selection of candidate replacements

Examination of Okapi '84 searches had shown that around
two-thirds of misspellings retained the approximate con-
sonant structure, and i1t 1s well documented that initial
letters are rarely wrong [3, 10].

We decided to use a soundex-type procedure in which the
first Letter of each word is Left unchanged, vowels and a
few consonants (*h" and "w") are ignored, doubled con-
sonants made single and the remaining consonants divided
into approximate phometic groups. If adjacent consonants
are in the same group only a single code is output. Some
information is retaimed from the vowel structure: 1f two
consonants are in the same phornetic group but are separated
by omne or more vowels (or "h"' etc) the code for that con-
sonant group is output twice. ARlso, a vowel other tham *
at the end of a word i1s represented by a "vowel code".

e

The algorithm is given in Appendix 1.

We also tried a similar procedure which retained more of
the vowel structure by representing any vowel or sequence
of vowels by a "vowel code'. This gave shorter candidate
replacement Llists, but sometimes missed easy corrections
(e.g. HOIRZONS --> HORIZONS).

Examples:

economics )
economic ) --)> ecmmc (repeated 'm' because of intervening
*ecomonic ) vowel )

“econmic --) ecmc

rabbit )
rabid )
rapid ) --> rbd
repeat )
(and many others)

sociology )
*socialogy ) --> scley
“sociolgy )

The access keys for the dictiomary are Soundex codes. Each
Soundex code has a pointer to the list of words which give
rise to it. That i1s, it is constructed as an inversion of
the examples above - the arrows point the other way:

-74-



b Design and implementation

ecmmc --> (ecomomic, economics, .. )
rbd --> (rabbit, rabid, rapid, repeat, .. )
sclcy --> (sociology, .. )

6.4.3 Finding the nearest match

When a word 1n a user'’'s search statement does not stem to
anything in the index, the word i1s encoded using the same
algorithm (given above) which was used to comnstruct the
dictionary. The code 1s Looked up in the dictiomary. 1f
it 1s nmot found, the procedure terminates. If it i1s found,
the code’'s associated word List is scanmed sequentially.
Each word i1mn the List i1s compared with the user’s original
word, and a "matching score" calculated. If there 1is any
word with a high emnough score, the ome with the best score
1s offered to the user. 1If there 1s more tham omne with the
same score, the first 1s oftered (effectively arbitrary).

CAN'T FIND 'sogciolgy' - closest match found 1s 'sociology’

GREEN KEY to use 'sociology' instead B
BLUE KEY to type a different word

Ay word 1n the candidate List has the same imitial Lletter
as the user’s word and a similar consonant structure, so we
guessed that 1t might be unnmecessary to take any further
account of the order of the letters. We use a simple
"anagram" techrnigue and a word-lLemgth criterion. The
minimum acceplable score is relatively higher for rather
short words tham 1t 1s for Longer ones.

The matching algorithm i1s given in Appendix 2.
Example:

User’'s word *“RPLIANCE encodes to RBLMC

Lookup of RABLMC returns a list consisting of

RFFLUENCE which scores 4 (4 letters apart from the first
letter in common with user’s word)

APPEALING which scores 6

APPLIANCE which scores 7

RAPPLYING which scores 4

RPPLIANCE has the highest score and length within one letter of
the user’'s word, so this i1s suggested as a replacement.

(Note that RPPERLING would have been offered i1f HPPLIANCE
had mot beemn in the dictionary. This 1llustrates the
importance of having a dictiomary of adequate size.)



6 Design and implementation

6.4.4 Discussion of the spelling correction technique
USER INTERACTION
See Chapter 7, Figs 7.8 and 7.6 for the screen Layouts.

Words whose stems are mot found in the catalogue’s i1index
fall i1nto (at Least) three categories. They may be correct
or incorrect, and, if incorregct, the corrected word may or
may not be i1n the catalogue.

Hernce the procedure i1s not offered to the user as spelling
correction, but rather as the meutral 'CAN'T FIND *<word>"*
- closest match found i1is "<(suggestiom>"’'. It would some-
times be presumptuocus to say ‘CAN'T FIND *<word>"' - do you
mean "<(suggestiom*’ and out of the question (with our
methods) ever to make an automatic substitution.

One of our objects was to avoid having to process searches
which contain any words which are not found. Ignoring the
word can result in the retrieval of rubbish. Implaicait HND
systems will simply return a failed search. In ranked
output systems such as ours 1t 1is impossible to kmnow what
importance to attach to a "missaing" word. Anyway, a
majority of such words are misspellings or miskeyings. It
1s essential that the user should kmnow that a word 1s not
found. Hence the system forces the user either to replace
& missing word or to tell the computer to ignore 1t.

Why mot offer more tham one waord?

If more tham ome word from the candidate List scores highly
in the matching procedure it would seem desirable that they
should all be offered. In an earlier version of Ukapi we
experimented with a similar procedure for personal names
(which 1is what the original Soundex scheme was intended
for). That version would offer up to nmine possible matches
arrayed neatly on the screen for selection by keying &
single digit. However, we assume that whereas a user may
genuinely not know how j{o spell a personal nmame, a lLarge
proportion of erromneous words are due to miskeyings rather
than misconceptions about the spelling. Indeed, UOkapi '84
Logs show that persomnal names are more Likely to be right
than other words. R small sample of erroneous words from
subject searches suggests that about 80% Look Like mis-
keyings rather than misspellings.

Simplicity (for the user) outweighed other considerations,
so we decided only to offer at most ome suggestion for
replacement. Where more than ome dictionary entry gives a
high matching score, i1t would be sensible to offer the most
frequent (as being a priori more lLikely to be searched
for), but we did not have time to implement thas.

-76-~



6 Design and implementation

Further, there 1s usually a single clear winner, and it is
nasty computerese to offer a "choice" from a set of size
one. The altermnative (selection by digits if more than
one, our exxzsting layout if only ome) is worth trying, but
might easily “throw" a user who has become used to using
the green key to select the computer’s suggestion and 1is
now faced for the first time with the multiple choice
screen.

We carefully monitored all occurrences of the automatic
correction during the first week of Llive use, before data
collection had started. 1n an appreciable proportion of
occurrences a user sat for a Long time staring at the
screen and/or pressed the red or black keys to abort the
search even though the suggested correction was good. This
reinforced our feeling that 1t would be unwise to offer a
choice of corrections.

6.5 Search processing and term combination

Between the user’s entry of a search and the system’s
display of the result, the following steps are carried out:

1 User’s 1nput 1s preprocessed. System displays
Your search 'electrical safety standards'
Looking up these words

2 Lookup of weak and strong stems imn the index, referriaing
back to user 1f any mnot tound. System displays each
word with the number of books (a1f any) indexed under the
word’'s weak stem. Several other messages are possible,
the most frequent being CRAN'T FIND '<word)"

When everything has been Looked up, including strong
stems 1f this 1s the EXP catalogue, the system decides
which of the i1tems are going to be used in the merge
(below).

3 Hssigrnment of weights to terms.

4 (Calculation of *"good"' and "acceptable" weights for
record retrieval.

5 *Merging' of the posting lists for the terms to find
records which reach an acceptable weight.

6.5.1 Preprocessing and index lookup

The user'’'s search statememnt i1s disassembled into words,
each word is weak-stemmed, and the statement reassembled.
Each component i1s lLooked up ain the weak stem index unless
1t is in the stop list. What comnstitutes a component 1is
actually determined by the imdex Lookup - ain the EXFP system



& Design and implementation

this may be a word stem or a phrase from the go/see list;
in CTL 1t 1s always a stem; imn OSTEM a1t is always a "raw’
word. Any component which is mot found, or which is found
but has no postings (the lLatter case camn only occur in EXP
with the few go/see terms which do mot occur in the source
file) 1s mnegotiated with the user, who must replace 1t,
tell the computer to igrnore it, or terminate the search.

In the EXP system each weak stem which is not im the go/see
List 1s also strong-stemmed, and the strong stem is Looked
up 1n the index. Each strong stem i1s marked as being
semantically equivalent to its corresponding weak stem.

At this stage the system has a List of components with a
(non-zero) number of postings for each compoment. It knows
whether an item is a strong or a weak stem, and, i1f 1t 1s a
strong stem, which if any of the weak stems it is equi-
valent to. No compomnent i1s imcluded more than omce, and no
account is taken of word order - except in the case of
phrases i1in the go/see Laist.

Example:
ELECTRICAL SRFETY STANDARDS FOR ELECTRIC FIRES
produces the weak stems

ELECTRICAL (573 postings)
SAFETI (262 postings)
STANDARD¢* (565 postings)
ELECTRIC (421 postings)
FIRE (141 postings)

OLrWUN -

and the strong stems

6 ELECTR (888 postings) equivalent to 1 and 4
7 SAFETI (262 postings) equivalent to 2
8 STRANDRRD‘*? (579 postings) equivalent to 3
S FIRE (141 postings) equivalent to S

(1) The weak stem STANDARD arises from STANDARD and STANDARDS, but the strong stem
also includes STANDARDISATION.

The purpose of the equivalences is to prevent a concept
contributing twice to the weight of a retrieved record. We
don’t want the search in the example to retrieve a record
MARINE SRFETY STHANDARDS AND STANDARDIZATION, as i1t probably
would 1f both the strong and weak stems *STRNDRARD* con-
tributed to its weight. On the other hand, if the user has
entered two morphologically similar words (ELECTRICAHL and
ELECTRIC on the example) we do nmot count these as equi-
valent although they have the same strong (but not weak)
stems. We did give some consideration to marking any two

- 7K~



& Design and implementation

terms with the same strong stem as equivalent, but decided
that this would introduce too much fuzzimess: in the search
COMMUNICRATION IN COMMUNIST SOCIETIES, COMMUNICATION and
COMMUNISM would be treated as equivalent because their
strong stems are the same. Items indexed under all three
terms would not be ramked any higher than i1tems indexed
under only two.

6.5.2 Assignment of term weights

Each component i1s given a weight which 1s the largest
integer nmot greater than Log(N/n), where n is the number of
postings for the compoment. N 1s a comnstant which 1is
related to the number of records in the bibliographic file.
It must be at Least as great as the number of postings for
the commonest term in the index. The logarithm 1is taken to
base 2 (theoretically it doesn’'t matter what base 1s used,
provided the weights are stored with emough precisiomn, but
since we store them as one-byte imtegers, base 2 gives a
reasonable spread of weights with mimimal arithmetic).

Example:

For the systems used in this project with the current PCL
catalogue the weight constant N 1s set to 32768 (this
being comfortably more than the number of postings for the
commonest term 1in the index). Since 2'% = 32768,
Log(32768) 1is 15, and the weight of a term with n postings
is 15 - log(n) (rounded down if necessary).

Thus the weights are

term pstgs weight
1 ELECTRICARL 573 15 -9 =6
2 OSRAFETI 262 15 -8=7
3 STANDARD 565 B
4 ELECTRIC 421 7
5 FIRE 141 8

and for the strong stems

6 ELECTR aa8 6
7 SRFETI 262 7
8 STRANDARD 578 6
3 FIRE 141 8

For a theoretical basis for this weighting scheme, see
(11]. It is said to give the best probabilaistic approach
to ranked output in the absence of anmy relevance infor-
mation (or in the absence of any knowledge about the rela-
tive importance of the terms). A term which occurred in
every record would be useless for discraiminating between
relevant and non-relevant records, so this should have zero

-79-



6 Design and implementation

or very low weight. Our weight function satisfies this
criterion (1f N 1is set to the number of records in the
fite). It i1s not always true that rare terms are more
important than common omes, but at least if records con-
taining rare terms are presented first 1t doesn’t take too
Long to Look at them and get them out of the way.

An example of a type of search where the rarest term 1s by
no means the most important is LEAST SQUARRES ESTIMATORS.
*Estimators® has only two postings in the PCL file, al-
though its strong stem has several hundred. The problem
with this search 1s that i1t comprises a single concept, and
so should be treated as a phrase, but the same concept
could be, and is, expressed in relevant records as LERST
SQUARES METHOD or Jjust LERST SQUARES.

6.5.3 Calculation of "good® and "acceptable® weights for
record retrieval

During the merge (see below), the weight of a record 1is
determined by the weights of the terms which 1t has 1in
common with the search.

The minimum acceptable weight (MAW) 1s the threshold weight
for & record, below which 1t will not be retrieved (al-
though 1t must be indexed under at lLeast one of the terms
of the search, otherwise 1t would mnot be considered at
all).

The minimum good weight (MGW) 1s the Least weight at which
a record will be comnsidered as a reasonable match with the
user's search.

MRAW and MOW are calculated using the maximum possible
weight (MPW). MPW 1s the weight which a record would have
1f 1t contaimed all the terms of the search. It 1s the sum
of the weights of all the weak stems in the search. In the
example above these add up to 33.

The method used to calculate MAW and MLGW depends on the

number of terms 1n the search. Searches are treated dif-
ferently depending on whether they contain ome term, two
terms or more tham two terms. When there are only one or

two terms the actual function used for the weighting 1is
almost irrelevant, provided that strong stems have Lower
weight tham weak stems.

SINGLE TERM SERRCHES

For CTL, MAW = MGW = MPW = the weight of the (single) weak
stem. For EXP, MGW as (CTL; MAW = weight of the strong
stem. R large proportion of single term searches are for
proper names, where the strong and weak stems are generally
identical .

-RAN-



6 Design and implementation

Example:

INTEGRALS (EXP system) retrieves 46 books under
INTEGRAL(S), followed, if the user wishes, by another 230
under INTEGRATION, INTEGRATING, INTEGRRTED and other words
which give the strong stem INTEGR.

TWO-TERM SERRCHES

This 1s the most fregquent number of terms imn a search. In
the absence of semantic knowledge, i1t i1s only the motions
*common" and "rare', together with the ability to differ-

entiate between strong and weak stems, which are needed to
rank the records for output.

TWO COMMON TERMS

Only records containing both terms (or their strong stems)
will be retrieved.

MRW = sum of the weights of the strong stems. MGW = sum of
the weights of the weak stems. (In the CTL, MGW = MAW.)

Example:
INDUSTRIAL SOCIETY
ONE COMMON TERM, ONE RRRE

RLL records containing (the strong stem of) the rare term
are retrieved.

MAW = weight of strong stem. (EXP) or weak stem (CTL) of the
rare term. MGW = sum of weights of strong stems (EXP) or

weak stems (CTL)D. RLL records which contain the rare term
are retraieved.

Example:
HISTORY OF SWORDS
TWO RARE TERMS

ALL records contaimang (the strong stem of) either term are
retrieved.

MAW = weight of strong (resp weak) stem of commoner term.
MGW = sum of weights of strong (resp weak) stems.
Example:

YRCHTING AND BORTING

-R1-



6 Design and implementation

MORE THAN TWO TERMS

Records will usually be retrieved if they contain (stems
of) about two-thirds of the terms in the search.

MAW = half the maximum possible weight, MGW = two-thirds of
the maximum possible weight.

Example:
SOCIAL STRATIFICATION AND OCCUPATIONS

The frequencies and weights (strong stem weights not given)
are

term - pstgs weight
1 SOCIAL 6257 5 - 12 = 3
2 STRATIFICATION 46 15 - 5=10
3 OCCUPATIONS 100 - 6= 8
MPW =3+ 10 + 89 = 22
MAW = 11 (half of 22)
MGW = 14 (two-thirds of 22)

Thus all records containing any two of the three terms will
be retrieved. The strong stem weights are not given here,
but i1in this example the retrieved set would probably in-
clude records indexed under any two of the strong stems
alone.

In the PCL file there are two records indexed under all three
words, 41 more under SOCIRL and STRATIFICRTION, and a further
13 under SOCIAL and OCCUPARTIONS. (Both the records under
STRATIFICATION and OCCUPATIONS also contain SOCIAL.)

Whern the merge (see below) 1s complete the user will see

2 books match your search exactly
(S6 books found altogether)

6.5.4 Merging the posting lists

The postings Llists in the index are ordered. They can be
thought of as being in document number order. In the
present implementation "document numbers" are really disk
addresses. Whatever they are they must be ordered, other-
wise the merge would be too imefficient, and they must be
able to tell the system where to fetch the records from for
display to the user.

Up to 16 postings lists are merged into a single output
List. A List represents a single weak or string stem. The
lists are numbered 1 to 16. Each List has a weight at-
tached to 1t, and possibly a lLlist of the numbers of other

-82-



6 Design and implementation

lists to whaich 1t 1s semantically equivalent.

While there 1s some List which 1s mnot finished, the merge
fainds the "smallest" posting not yet comsidered. It sums
the weights of each Llist 1im which this posting occurs,
omittang weights for those Lists which are marked as equi-
valent to another List which contains this posting. If the
total weight for the posting 1s at Least MAW (minimum
acceptable weight), the posting 1s copied to the output
list. Thus the merge ends with & list containing the
addresses of all the records which contain enough of the
components of the search to reach MAW.

In our implementation the output Llist 1s restricted to 512
postings, but all postings in the inmput Llists are con-
sidered: if the output list becomes full new postings
replace postings already in the output list if their weight
exceeds that of the posting with lLowest weight in the
existing output list. This makes the process more com-
plicated than i1t need be, but we were working with
computers with a very limited amount of core memory. It 1is
not a constraint to the user: 512 records 1s comfortably
above what most users wish to see, and the list 1is guaran-
teed to contain the 'best' records.

As soon as the merge is fimished, the output list 1s sorted
by weight so that the records with the highest weight will
appear first.

6.6 The bibliographic file

Thais 1s very similar to the ome used for Okapai '84, which
1is fully descraibed in (Chapter 4 and Appendixes 1 to 4 of
the first Okapi report [12].

To try to add a bit more subject information the present
file i1ncludes additionally MRRC B51, and subfields $x
(subject or form subdivision) and $z (place subdivision) of
B50 and B51. We also intended to use 505 (contents notes),
which had only been used for records with analytical
entries in the previous file, but this i1s so rarely used in
the PCL file that it was not worth the overhead of an empty
field i1n nmearly every record.

Nevertheless, by British standards the PCL records are
comparatively rich in subject content as a large proportion
of them contain verbal feature headings (MARC 083), PRECIS
headings and LCSH. Inevitably, there 1s & good deal of
duplication of headings, but most records look reasonable
when displayed.

The extra subject information increased the average record
Length considerably. To compensate for this we no Longer
store copy numbers, but only a count of the number of
copies at each site.

-873-



6 Design and implementation

There are about 88,000 records ain the file.
6.7 The subject index

lndex structure and storage are very similar to that
described in 5.7 of [12]. Since there are only tour data
types i1in the index (weak stems, strong stems, entaire and
truncated Dewey numbers) the structure has been simplified
a LattlLe.

6.7.1 Indexing and the go/see list
The go/see List 1s used during indexing. When index terms

are being extracted from bibliographic records the field
being indexed 1s matched against the List before the normal

process of word extraction is performed. If it contains a
phrase or word from the List a token representing this
go/see entry is output. For example, "United States*
produces the same token as "USA*. When the finmal i1ndex ais

being produced the actual entries (e.g. "United States")
are read in at the right place in the alphabetic sequence,
and pointed at the Llist of postings for the appropriate
token. The end result 1s that searches for "United States*
and for "USH" return the same posting List. Thus the
go/see List 1s mo lLonger explicitly used after the file has
been indexed; it 1s, im effect, imncorporated in the index.
(The system does not "know" at search time which terms are
included 1in an equivalence class. But i1t does know when 1t
has found something which 1s i1m the go/see Laist. It can
only inform the user that "UNITED STRTESY includes "USA*
unless both these terms occur in the same search (7.4.2).

6.7.2 Source fields -
The i1ndex 1s generated from
all title-like fields
subject headimngs and verbal feature headings
corporate and conference names (both author and subject)
the go/see List.
6.7.3 Index contents and size

The index used by EXP and CTL contains weak and strong
stems of every word in the source fields.

Hyphenated words contribute both "concatenated pairs*
and their separate constituents (*mon-proliferation”
gives rise to "mon" and "proliferation" and
"monproliferation”", as well as their strong stems
*prolaf" and "nonprolaf*).

-84-



6 Design and implementation

*Initialisms” are processed so that they become words
("USR* = *U.S.H." = "U S AH").

Every entry from the go/see list, weak stemmed, is in the
index (6.7.1).

The i1ndex also contains Dewey numbers and truncated Dewey
numbers, but these were not used in the experiments
described in this report.

Without Dewey numbers, the mean number of index terms per
bibliographic record is about 24. There are about 61,500
distinct stems. For the majority of words, the strong stem
1s the same as the weak stem. When this i1s the case they
are not stored separately, but merely flagged as being both
strong and weak stems.

6.8 Storage requirements
Bibliographic file: 20 megabytes

Stem 1index (used by EXP and CTL): 5.7 megabytes (excluding
Dewey numbers, which occupy about another megabyte)

Word index (used by 0STEM): 4.4 megabytes
Spelling dictionary and i1ts soundex code index: 0.6 megabytes

6.8 The Okapi '86 programs

It 15 often true that the more simple a system appears to
the user, the more complex 1t meeds to be "behind the
screen". We would not have been able to undertake thas
research if we had mot had the Okapi '84 system to build
ori. Several person-years of design and programming work
had gone into this. This meant that, for this project, we
did nmot have to spend much time on tile structure and index
Llookup, or on record displays. The programs which deal with
the formatting and sequencing of record displays consist of
some 2000 Limes of code; this 1s largely unchanged from the
way BGill Vernner wrote 1t three years ago. However, a very
considerable amount of mew design and programming had to be
done.

Like previous Okapi systems most of the programs are
written in Z80 assembly language. The programs for reading
MARC tapes and for selecting and strippaing the records are
written 1n COBOL and DEC assembly language.

There seems to be a temndency for the complexity of programs
to vary inversely with the outward simplicity and open-
ness of the system. Why this 15 so 1s i1llustrated by the
trivial example of a program which allows a user to enter
dates im free formats, such as 1/3/8/, 1st March 188/,

-85-



6 Design and implementation

1.1112.87. Such a program is about am order of magnitude
more complicated tham ome which rejects a date if 1t 1s not
entered 1n some “standard" form Like 01-03-13987. Until the
advent of computing for the gemeral public i1t was not
usually worth while to write programs Llike this.

It would be out of place here to give a detailed desription
of the intermal workings of Okapi '86, but i1t does suffer
from the type of interactional complexity illustrated above.

Rn example 1s the program which takes control while the
user’'s search 1s being parsed and 1ts terms lLooked up.
This program has to hanmdle the various combinations of
messages which can appear on the "searching" screen (Fig
7.5 etc) while 1t is working, and maintains Links between
what the user typed and the stems which are being lLooked
up. It appears very simple, yet 1t contains about 1700
Lines of code at the top Level (and several times as much
again at lLower levels which deal with index Lookup etc).
1t 1s controlled by three decision tables, the largest of
which has to check five conditions (1s this a phrase or a
word, did i1t come from the go/see List, has 1t any
postings, have we had i1t before i1n this search, and, 1f 1t
has occurred before, did 1t araise from the same word or
words 1n the user'’'s search statement?); depending on which
of the conditioms are true 1s has to perform various com-
binations of seven actions (store the result of this term-
search, display "N books under ...", display "... included
under ... ", perform strong stemming etc). For each term
in the search there are, at the top level, about 40 daif-
terent paths which the program can follow. Even with this
degree of complexity there are "loose ends' (surprisingly,
we have mnot come across any actual mistakes); a few rare
combimations of conditions are not properly dealt with.

References

1 ULMSCHNEIDER J E and DOSZKOCS 1 E. R practical stemmning
algorithm for online search assistance. Unline Review /
(4), August 1883, 301-315.

2 MISCHO W. Library of Congress Subject Headings: a review
of the problems, and prospects for improved subject
access. (ataloging & Classification Quarterly 1 (2/3),
1882, 105-124.

3 SCHABAS R H. Postcoordinate retrieval : a comparison of
two i1ndexing languages. Journal of the American Society
for Information Science 33 (1), 1882, 32-37.

-86-



10

11

6 Design and implementation

MITEV N N and WALKER S. Intelligent retrieval aids in an
online public access catalogue : automatic intellagent
search sequencing. In: Informatics 8: Advances 1in
intelligent retrieval. Proceedings of an Aslib/BCS
conference. Oxford, 16-17 Hpril 1385. London : Aslib,
18985.

FPRICE C D. 1Information Retrieval and the Computer.
London : MacDonald and Jane's, 1877.

PORTER M F. An algorithm for suffix stripping. Program
14 (3>, 1880, 130-137.

LENNON M. and others. An evaluation of some conflation
algorithms for Information Retrieval. Journal of
Information Science 3, 1881, 177-183.

FRAKES W B. Term conflation for information retrieval.
In: Research and development 1in Information Retrieval
proceedings of the third joint BCS and ACM symposium
King’s (ollege, Cambradge, 2-6 July 1984. Edited by C J
van Kijsbergen. Cambridge University Press on behalf of
the Bratish Computer Society, 1985, 383-383.

TAGLIRCOZZO R, KOCHEN M and ROSENBERG L. Orthographic
error pattermns of author names in catalog searches.
Journal ot Library Rutomation 3 (2), Jume 18970, 93-101.

POLLOCK J J and ZAMORA K. Collection and character-
1zation of spelling errors in scaientific and scholarly
text. Journasl of the American Socaety for Information
Science 34 (1), January 1883, 51-58.

CROFT W B and HRARPER D J. Using probabialistic models: of
document retrieval without relevance information.
Journal of Documentation 35 (4), Dec 189739, 285-295.

MITEV N N, VENNER G M and WALKER S. Designing an online
public access catalogue : Ukspi, a catalogue on a locsl
area network. (Library and Information Research Report
33). Londom : Bratash Laibrary, 1985.

-87-





