3 Stemmainmng armnd trumncatiom

3.1 ;ntroduction

One way of broadening searches in information retrieval is
to use systematic abbreviation of words so as to bring
together words which are morphologically related, in the
hope that they will also be semantically related. This can
be dome manually or automatically.

Information retrieval intermediaries use manual truncation
to conflate words which are both morphologically and
semantically related. Intermediaries use their lLinguistic
krnowledge to avoid drawing in words which might seriously
decrease the precision of the search. Truncatiomn i1s often
combined with boolean OR to bring imn other symonyms. For
example, the concept "communism" might be submitted to anm
IR system as "communisx OR marxisx" rather than as *communx
OR marxx" which would Lead to the retrieval of records
indexed under "communication' etc.

Manual truncation i1s mot a particularly easy or natural
skill to acquire, and camnot be considered for casual

catalogue users. It i1s a facility which can be provided
for those, such as Library staff, who wish to Learn how to
use 1t. Many of the "keyword" type onlime catalogue sys-

tems do allow for manual truncation [1].

The discussion here i1s Limited to processes of automatic
abbreviation or truncatiomn which aim to conflate related
words by reducing them to their stems. The word-segments
to be removed are referred to as affixes. AN affix can be
a suffix (Like "ation") or a prefix (lLike "pre"). Many
prefixes camnot safely be removed except im narrowly de-
fined subject areas (such as chemical terminology), because
they tend to have a more drastic effect on the meaning of a
word thamn do suffixes, which are often inflexional.

The nmext three sections form a fairly condensed survey of
some of the stemming techniques which have been published.
They are of a rather technical mature. Readers who are
primarily interested in online catalogues might prefer to
skip to Section 3.5.

3.2 Methods and techniques in algorithm construction

Many algorithms have been reported. Some of the ways in
which they differ are outlinmed in the following sections.

-21-



3 Stemming end truncetion

3.2.7 Aterative or longest motech?

Bn algerithm cen be iterative in methed, it can use &
‘lengest mateh® methed er @ mixture of beth.

The iterative methed removes suffixes one by ene frem the
stem (sometimes single letters or greups ef Lletters are
removed rether then true suffixes, but the same principsl
of greadual reductieon still =ppliesl). Fer exemple, Perter’s
iterative algerithm (2] processes the word °conformebility’
in three iterations: @t the first pass, °“y° would be re-
pleced by °i°; at the second steretien, °BLLiti® would
become °ble’; Finally “eble’® would be removed, leaving the
stem “cenferm® .

The longzst meatech m2theod removes the longest meatching
affix in one itersetion. In the sbeve exemple, the Llongest
suffix C(Pability®)d) would be removed iR o sStEp.

3.2.2 Conditional rules

These include rules which prevent the remeval ef & given
affix or class of affixes if & given conditien is ROt
satisfied. They commenly invelve & minimum lerngth ean-
dition: °remove terminal ‘s’ unless the result would be
less them four charecters leng® is en exemple. Some stem-
ming precedures heve werd-speeific rules likes “remove ‘@d’
unless woerd is ‘united’®.

3.2.38 Stem moedifsicotion

Particulerly im iterative precedures, better confletieon can
be schieved by rewriting some stems. [For example, terminal
‘v’ mey be repleeed by “i° to conflate word forms ending im
v with other related words: this rule would @pply to the
words “poeny? (te retrieve °ponies® whea the °@s° suffix is
remeved) or °happy® (to retrieve "heppiness® whem the
‘mess’® suffix is remeved). Brnether exemple is the changing
of "pt® to °b° te conflete word forms ending im °bB° with
gremmatically related woerds which chenge the °b° te “pt°:
this rule weuld spply te the werd °sbserptien® (to retrieve
‘gbserb® and “ebserbent®d.

3.2.4 Cempiletien of the suffix List

The differences sbove correspond to differernces in the
strueture ef the algerithm. QLI slgerithms, whether iter-
ative er longest mateh, need @ list er dictionary ef suf-
fixes. Dictieonsries cen be constructed menuslly, or they
can be generated autemetically or semi-autemetically From
bodies of text. Their size and scope will strongly influ-
ence the behevieur ef the algerithm.

Lemmon and his colleagues [3] suggest that while menuasl
evelueation of Llists of possible suffixes gives results of

.



3 Stemming and truncation

a very high quality, the Length of time taken often makes
this method impractical. In their evaluation, they test a
method (using the frequermcy of word endings) for the auto-
matic generation of possible suffixes. They concluded that
*fully automated methods perform as well as procedures
which i1nvolve a Large degree of manual involvement in their
development® (183).

3.2.5 Users’ needs

The main function of conflationm algorithms must be to
improve recall; there will always be some searches where

there 1s a Loss of precision. The balance between recall
and precision must be chosen to suit different classes of
users. An industrial user of a retrieval system who needs

a comprehensive search might be prepared to examine a
substantial proportion of irrelevant material (caused by
overstemming). For general Library catalogue use, on the
other hand, under-stemming is to be preferred to over-
stemming.

3.3 Conflation algorithms: a review
3.3.1 INTREX

One of the first conflation algorithms to be developed and
tested was part of the Project INTREX (see Overhage and
Reint jes [4] for a gereral review). Lovins [5], who par-
ticipated in this project, produced a List of suffixes by
first examining a preliminary List germerated from the
endings of words from the Project INTREX catalogue. The
list was used to see when the use of a given ending from
the word in the dictiomary would result in a mismatch, or
in the omission of a stem which ought to match. This
manual assessment allowed the author to refime the List of
endings and to compile word specificationm and recoding
rules. The fimal List contained around 260 suffixes. It
was used in conjunction with both comtext rules and re-
coding rules.

3.3.2 RADCOL

Lowe and others [B] tested two algorithms as part of the
RADCOL project. The first used two passes through a List
of 95 suffixes; the second used a single pass Longest match
algorithm with a Longer List of 570 suffixes. HRfter tests,
the second algorithm was adopted. Lowe and his colleagues
obtained this List by a multi-stage process. First the
characters of the most frequent words in the index were
reversed, and the reversed words were sorted in alpha-
betical order. Then a minimum string lLength was estab-
Lished. The Llist was scarmned for repeated character
strings, on the assumption that strings which occurred with
more tham a certain fregquemncy might be possible suffixes.
Fimally, these character strings were examined manually and

-23-



3 Stemming and truncation

suffixes were selected from them. The comprehensiveness of
this suffix List meant that the rnumber of context and
recoding rules could be reduced, increasing the simplicity
of the algorithm.

3.3.3 Generation of suffix Llists

Lennon and his colleagues, in the course of their eval-
uvation of conflation algorithms [3], extended the method
used in the RADCOL Project and in the INSPEC project (dis-
cussed below). A List of reversed words was used to pro-
duce a List of word endings which occurred with more tham a
certain frequency. These can be assumed to be suffixes
although i1f this algorithm is to be used automatically, no
recoding is possible. This is a simple but unwieldy ap-
proach. Since it operates as a Longest match algorithm,
the inclusion of a string "iveness® in a suffix dictionary
also nmecessitates the inclusion of the substrimgs "veness",
‘eness”, "mess" and so on. The proportion of strings which
have a real utility i1is therefore reduced.

This method was also used by Tarry [7] to generate several
sets of equifrequent character strings from the ends of
words. The method involves selecting from a body of text
character strings of variable Length occurring with
approximately equal frequencies and with Low sequential
dependence. This suffix generation procedure can be used
for automatically determining subject-specific or Llanguage-
specific Lists of suffixes. The incentive for using this
technique for suffix gemeration was the supposition that
character strings representing suffixes would occur more
frequently than other termimnal character strings. Rs well
as this, it has been observed that Letter dependency within
words decreases at the boundaries of word units such as
affixes. Tarry’s algorithm works on the Longest match
principle and has mo restriction on suffix removal other
than that the remaining stem should be of a mimimum Length.
Since there is mo restriction on removal the algorithm is
context-free and uses meither recoding rnor partial
matching. Tarry justifies this approach by the desir-
ability of eliminmating "the Large amount of manual pre-
processing required, both in the construction of the suffix
lists, and in the formulation of the suffix removal rules*
(7, p21). This algorithm was compared with the INSPEC
algorithm; retrieval tests with the Cranfield 1400 test
collection were made and i1t was found that the algorithm
performed at Least as well as the traditiomal algorithm (7,
p/81].

3.3.4 INSPEC

A conflation algorithm was designed by Field [8] at INSPEC
with British Library funding. The List of suffixes was
compiled manually after consulting a Key Letter In Context
(KLIC) index. This algorithm uses a mixture of Longest



3 Stemming and truncation

match and iterative suffix removal and incorporates several
features which were designed to improve its effectiveness:
minimum stem length, recoding rules and three stage con-
flation. This lLast application is particularly inter-
esting. The word to be conflated is first dealt with by
ALgorithm 0 which removes stop words and common endings
such as plural forms (this stage is partially iterative).
Words which are not stopped are then treated by RAlgorithm 1
which removes all other suffixes which are present in a
Longest match routine. In a fimal stage, Algorithm 2 makes
adjustments to the stem, usually on the basis of stem
Length. Field claims that this use of a three stage pro-
cess i1ncreases the overall efficiency.

3.3.5 Stemming in SMART and FIRST

The IR systems used in the SMART projects incorporated
stemming. The SMART system bases all dictionaries on word
stems rather thamn original words. The suffixes which
generate the word stems are Listed in a suffix dictionary,
and each ome carries omne or more syntactic codes. These
must be matched with complementing codes attached to the
word stems imn order to determime which suffixes match which
stems [3, p32].

Dattola [10] bhas described FIRST - the Flexible Information
Retrieval System for Text - which is based on the methods
developed during the SMART project. The most important
part of this procedure i1s a stem dictionary; this is the
basis of the conflatiom procedure. Words are added to the
stem dictionary if they fail to match an existing stem and
are more tham three characters Long. This method uses a
stem dictiomary of whole words rather than actual stems;
new words are not added to the stem dictiomnary if they are
suffix variations of existing stem entries.

3.3.6 MORPHS

Bell and Jones have described the retrieval system MORPHS
in a number of articles including [11]. This system (the
name means "Minicomputer Operated Retrieval (Partially
Heuristic) System') is used at the Malaysian Rubber Pro-
ducers’ Research Association. It incorporates automatic
stemming. Bell and Jomes [12] discussed the use of roles
and stemming in an earlier version of the system as a means
of improving recall and also incorporating some syntactic
knowledge. They believed that the two technigques could be
combined by replacing the suffixes by a Limited number of

role indicators. In this system stemming was performed
marnually by the searcher who could either, as in their
example, search for MIX; or MIX (role R) - to include

MIXING; or MIX (role D) - to include MIXED. RN extensive
suffix List is used; its size i1s increased by 1ts treatment
of exceptions (the stems "cation" and "station® are in-
cluded and are used in preference to the stem "ion") and by



3 Stemming end truncetien

the inclusien of chemical suffixes. The system attempts to
guerd asgeinst the removal of spperent affix strings (“pre°
in "pressure’ fer exemple) by checking that the stem is
present in the stem Ffile before the affix is remeved. a
minimum stem length alse helps to proteet sgeimst the
removal of epparent affixes. Bell and Jones recount Rew
they were puzzled by the gerneretion of the stem "im° wnmtil
they discevered that the prefix °@n® and the suffix “al’
had ‘been stripped frem the werd "enimal®. Beth longest
mateh and iterative metheds are used in the removal of
suffixes and the creation ef stem dictiensrie@s.

3.3.7 Cercone and linguistic analysis

Some slgorithms heve been develeped end tested fer natural
language epplications. The morgholegical algoerithm ef
Cercorne [13) aims to determine the reet of & term by re-
meving suffixes and prefixes. BAffixes are removed iter-
atively by censul ting amn affix dictienary. This process
uses @ system of erder clesses, sssuming thet affixes are
added toe the stem in & certain order (this perticularly
epplies toe suffixes). By using these erder elasses & word
whiech is to be stemmed can be examined Ter the presence of
effixes belenging to ezch celass in turm. The remeval of
some affixes is follewed by receding of the reet. After
recoding, the root dictienery is searched and, if @ meateh
is mede, the reet and the affixes are eutput. If there is
e match the next erder class of affixes is scarnned and the
precess centinues until & reet is Found. Cercone’s algo-
rithm was designed Ffor use in textual enalysis and relies
en the menual censtruction of lists and rules. It is
discussed by Cercene [14)] as an celement of merphelegical
analysis and lexicon design for metural leanguage proces-
8iMAg

3.3.8 MARS

Q different =pproasch has been taken by resesrch workers at
Siemens whe have developed & system called MARS [1SJ.

This system uses ® morpheme lexicon to decompose words
rather then & affix-stripping algerithm. This meakes it
pessible te incerperate linguistic analysis rather than
morghological matehing slene. The authers feel thet °re-
trievel eperatiens like left trunecatien, right truncetion,
and mesking are noticesbly inedequate &s regerds their
ability te filter eut incpprepriste terms @nd expand uzon
moere useful enes® [(18). In their discussien the authors
compare their sppresch exclusively with truncetien saying
that truncatien is iAsufficiently powerful in recall and
precisien. lIThey de rot include cenflation technigues im
their review. O the review sbove hes demonstrated, the
incorperatian of recoding rules into & conflation algorithm
can substantially impreve precision. The operation of MERS
is described below; it should be borne im mind thet amy
potentisl improvement in preeision and recall should be

=26<



3 Stemming and truncation

balanced against the operational costs and computer storage
required.

MARS has morpheme dictionaries and grammar rules for each
Language. They are used to split words into prefix, stem,
derivational and inflectional elements. The extracted word
stems are collected in a stem-file in which pointers back
to the textwords containing the particular stem can be
followed, enabling retrieval of these words. The morpheme
dictionary contains affixes, inflectiomal endings and fil-
Lers. Each entry is stored with a 32-bit string indicating
special morpheme characteristics and certain compositional
properties. The morphemes in the dictionary are the
Longest possible strings obtainable from all of the pos-
sible derivations ("traditionality" for example would be
viewed as a derivation of "tradition" and not *"trad(e)").
This morpheme dictionary is supplemented by two smaller
lists. Orne includes "irregular® stems Like Latin and Greek
plurals and irregular verb forms. The other List contains
strings which regularly undergo graphemic change (Like *y*
to "i1e"); these transformations are processed auto-
matically. R pre-processor checks to see if string trans-
formations are necessary. RAfter this, the three Lists are
used by a decomposition grammar which deals with each word.
After having reached a certain stage in a word (a prefix
for example) certain conditions have to be fulfilled if the
word 1s to be passed to the next stage. These conditions
are Listed in the morpheme grammar for the Language.

MARS was tested by a retrieval expert who carried out
twelve real searches, once with and once without MARS.
Recall was increased by 68% when MARS was used. Moreover,
this was achieved without a significant decrease in pre-
cision (this did decrease but only by 7% from 68% to 61%).
There were difficulties with compound words and phrases and
with verbs; these were caused by Limitations within the
structure of MARS and can be offset by modificatioms to the
search strategy used.

3.3.9 Porter

An iterative algoritbhm was developed by Martin Porter [2]
at the University of Cambridge Computer Laboratory. He
uses a concept which he calls the "measure’ of a word.
This is the rnumber of vowel-consonant tramsitionms in the
word. It is used in some of the conditiomnal rules: for
example "remove terminal ’'ance’ i1if the measure i1s greater
than one'. The algorithm is a five-step, partially iter-
ative procedure using a dictionary of around 60 suffixes.
Porter notes that a point is reached in the development of
a conflation algorithm when the inclusion of additional
rules to improve performance in ome area leads to a cor-
responding decrease in performance in another area. He
warns that unless this tendemncy is guarded against 1t 1is
very easy for the algorithm to become more complicated than

-27-



3 Stemming end truncetion

need be. There is @ temptetion to try to deal with
erd-ferms which sppeer to be impertant but whieh are rare

0

g 2
@ &

in most eppliestiens. He cites the exemples “deeceive/
deception?®, "resume/resumpticn® which eceur very im-

reguently in ¢Ae veesbulery ef most indexes. Simece there
will ealweays be some error reate, Porter argues thet it is
met werthwhile trying te cepe with these cases.

Perter’s elgorithm is simple. It has few rules and @ smell
diectienery, @and so is economicel of cemauting time amd ef
sterege. LIt was tested and feune te echieve @ cempareble
(actually slightly better) level of effeectiveness than the
algerithm C16) used previeusly at the Cembridge Cemputer
Laberatory (sze belew for discussion).

Perter’s slgerithm is the one used by Frakes [17] im the
CBTELAOG retricval system. This incorporates & defeult
neive wser mode which is besed on the Peperchase system
(2.4.3). BOn experienced user cen override the defeults and
use an alternative czemmend mode. Moreover, whereas Paper-
ehese enly ineluded trumcation, COTELOG incerporates amn
eutomatic conflation elgerithm. B user can do menuval trun-
cetion, but the default is to search for related terms
autemetically. Related terms are presented te the user,
with the rumber ef ceecurreRcees. The user cen seleect from
this list er indicete thet all terms sre te be used.

Frakes has written that the CRTEALOG retriecval system hes
been shown to be “feasible® [17] but this cornclusien is Mot
besed an am extensive test of Perter’s slgorithm imn a@ real
eAvirerment .

4

S.8.17

©

) e =
Hewsom

Dewsen’s algorithm [16], referred te above, was based am
that develeped by Lovims [5J), but extends Levims’ initisl
list of sbout 250 suffixes sixfold te sbeut 1,200. It was
enticipeated that the size sf this suffix List might ereate
problems of storege and processing time. Dewson coped with
this large suffix Llist by reversing the suffixes (and word
specifiec suffix removal coemnditiens) and indexing them by
length and by fimel Lletter. This slgorithm used @ Lengest
mateh methed. Unlike moest of the algorithms, Dewsen dees
net use receding; imrstead, there are classes of stem
ending, and if two stems mateh up te & certein Aumber of
charecters and the remeining cherecters of csch stem belong
to the seme stem ending elass, then the twe stems are
conflated te the seme form. Dewsen includes Fifty of these
stem ending cleasses. En example ef this might be with the
stems “=bserb® and “abserpt”; by ireluding °-rpt® and °=rb®
in the seme stem ending claess these two stems can be con-
flated te the same stem.



3 Stemming and truncation

3.4 Evaluating conflation algorithms

The effectiveness of stemming algorithms can be evaluated
by assessing the degree to which “‘erms are overstemmed and
understemmed. One measure is the proportionate decrease in
the number of distinct terms after stemming.

Lennon and others tested five conflation algorithms (3] as
part of an evaluative study. They confirmed a previous
suggestion by Landauer and Mah 1880 (18] that the the
RADCOL algorithm tended to overstem (reducing *posed”,
*positively" and "positioning® to "pos®). The Porter algo-
rithm tended to understem (reducing "accuracy® to "accurac’
but *accurate" and "accurately' to "accur").

These conclusions are supported by the compression results
which were achieved by Lennon and his colleagues. With the
Brown Corpus, Porter achieved the Least compression (38.8%)
and RADCOL achieved the greatest (49.1%). The other algo-
rithms tested achieved 45.5% (Lovins) and 47.5% (INSPEC).
Several test databases were used and while the percentage
compression achieved did vary significantly according to
database, the relative compression achieved by different
algorithms was similar. Retrieval tests demonstrated that
algorithms which tended to stem gemerously did not neces-
sarily increase retrieval effectiverness; the Porter algo-
rithm tended to understem, but it performed better in the
test tham the RADCOL algorithm which tended to overstem.
The INSPEC algorithm, on the other hand, is also a strong
algorithm, but this gave the best precision orientated
search. Lenmnon and his colleagues also performed a test
for recall effectiveness. In this test, a similarity
measure using trigrams performed well; but the Porter algo-
rithm performed as effectively. They conclude that *
there 1s mo relationship between the strength of am algo-
rithm and the consequent retrieval effectiveness arising
from i1ts use".

RAlLtering the emphasis slightly, significance tests showed
that none of the conflation algorithms tested was sig-
nificantly worse, and several were significantly better,
than use of unstemmed words.

3.5 Stemming in online catalogues

As mentioned in 2.4.1, we do not know of any catalogue
accessing a general collection which uses automatic
stemming.

Among specialised or experimental catalogues, there 1is
CITE, which uses a stemming procedure designed for medical
terminology [(19]. For the intermediate version of Okapi we
used a slightly modified version of Porter’s algorithm [(2].
This system was not put out for Llive use, but experiments
involving the repetition of real searches from tramsaction



3 Stemming end truncetion

logs showed that even this allegedly “understemming®
precedure could cause seriocus less of precisien. The

of ten-cited example of “communism® &nd °communicetion®
becoming confleted is @ geed ereugh ressen for rejecting
the unconditional use of even @ comparatively wealk
erecedure . '

The .dengers ef unirRibited stemming in enline catalogues
seem te arise from two cavses - the general coverege of the
typical =zcademic orF public librery detebase, and the Llack
of speeifiecity of meny ef the searches. Further, many
users do REt went en exhaustive search. They went te find
ene er twe relevant items, and ore Ret prepered te Leok 2t
dozens of irrelevent records before they Find them.

OF the semple seerches in Table 2.1, strong stemming would
adversely affect ot lesst two: redie (redielegy =tel and
modernism (medernd. 0On the other hend, seme degree of
stemming would benefit at leest six of these searches
(imreluding medernism/medernist) .

3.5.7 Choice of stemming precedure Ffor online cotelogues

Choice will be determined by the need to epply varying
degrees of stemming, and by Llibreries’ generelly limited
computational rEesSOUreces .

OFf the methods described in this chepter, MRS (3.3.8)
logks the most ambitieus. It slse leeks difficult te
implement and cemputationally demending.

Bn iterative procedure is attractive because it should need
® smaller dictionary (leng suffixes ere treated as @
seguence ef sherter enes te be suceessively removed). Xt
would usually be possible to partition boeth iterstive and
longest meteh preeedures inte two or more stages-.

(Xt is woerth meting thet the degree of compression which
stemming produees is irrelevant. Evem if stemming reduces
the rumber of entries in an index by half the total sterage
reguirement i3 almest unaffected. Nesrly all ef the word
ireex te @ lerge file is mede up of postings, OF pointers
te the recerds wnich are indexed by the werds.d

We chese Perter’s algoerithm for the intermediate Oksgpi
beesuse it is shoert, simole, @asy to pregream and readily
available. It mekes sbout Tour kilebytes of cede and data
in Z80 sssembly languege. We saw me reasen te aliter our
cheice for this preject, and merely split the precedure
inte two steges, the first perferming °weak® stemming =nd
the twe combined performing “strong stemming®. We incor-
perated some “spelling stenderdisation® inte the °“weak®
stege. This is deseribed imn Chepter 6.

=M=



3 Stemming and truncation

References

1

10

11

12

MATTHEWS J R. Public Access to Online Catalogs : a
planning guide for managers. 2nd ed. Online Inc, 1986.

PORTER M F. An algorithm for suffix stripping. Program
14 (3), 1880, 130-137.

LENNON M and others. RAn evaluation of some conflation
algorithms for Informatiomn Retrieval. Journal of
Information Science 3, 1881, 177-183.

OVERHAGE C F J and REINTJES J F. Project Intrex : a
czneral review. Information Storage and Retrieval 10
(5/8), May/June 1974, 157-188.

LOVINS J B. Development of a stemming algorithm.
Mechanical Translation and Computational Linguistics 117,
1868, 22-31.

LOWE T C, ROBERTS D C and KURTZ P. Additional Text
Processing for On-lLine Retrieval (The RADCOL System).
(Techmnical report RADC-TR-73-337). 1973.

TARRY B D. Automatic Suffix Generation and Word
Segmentation for Information Retrieval. M.Sc. thesis,
University of Sheffield, 1978.

FIELD B J. Semi-automatic Development of Thesauri using
Free-language Vocabulary Analysis (Part 1 only). (Report
no. R75/24). Inspec, 1975.

SALTON G. Automatic Information Organization and
Retrieval. McGraw-HilLl, 1368.

DARTTOLA R T. FIRST : Flexible Information Retrieval
System for Text. Journal of the American Society for

Information Science 30 (1), January 1873, S-14.

JONES K P and BELL C L M. The automatic extraction of
words from texts especially for input into information
retrieval systems based om inverted files. In: Research
and Development in Information Retrieval : proceedings
of the third joint BCS and ACM symposium King's College,
Cambridge, 2-6 July 1984. Edited by C J van Rijsbergen.
Cambridge University Press on behalf of the British
Computer Society, 1985, 403-4183.

BELL C L M and JONES K P. A mimnicomputer retrieval

system with automatic root fimnding and roling
facilities. Program 10 (1), Janm 1976, 14-27.

-31-



13

14

15

16

17

18

18

3 Stemming and truncation

CERCONE N. R heuristic morphological analyser for
natural Llanguage understanding programs. The I1EE
Computer Society'’s First International Computer Sof tware
and Applications Conference, Chicago, Illinois, 8-11
November 1377. New York : IEEE, 1977, 676-682.

CERCONE N. Morphological analysis and Lexicon design for
natural -language processing. Computers and the
Humanities 11, 1978, 235-258.

NIEDERMAIR G Th, THURMARIR G and BUTTEL I. MARS : a
retrieval tool on the basis of morphological analysis.
In: Research and Development in Information Retrieval.
Proceedings of the third joint BCS and ACM symposium
King's College, Cambridge, 2-6 July 1984. Edited by C J
van Rijsbergen. Cambridge University Press on behalf of
the British Computer Society, 13985.

DAWSON J L. Suffix removal and word conflation. ALLC
Bulletin, Michaelmas 13974, 33-46.

FRAKES W B. Term conflation for information retrieval.
In: Research and Development in Information Retrieval.
Proceedings of the third joint BCS and ACM symposium

‘King's College, Cambridge, 2-6 July 13984. Edited by C J

van Rijsbergen. Cambridge Umiversity Press on behalf of
the British Computer Society, 1985, 383-389.

LANDRUER C and MAH C. Message extraction through
estimation of relevance. Research and Development in
Information Retrieval. Proceedings of the ACM-BCS
Symposium, Cambridge, 23-26 June 13980. Cambridge
University Press, 1380.

ULMSCHNEIDER J E and DOSZKOCS T E. A practical stemming

algorithm for online search assistance. Online Review 7
(4), Rugust 1983, 301-315.

-32-





