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2. Logistic Models 

2.1 General description 

The object of a probabilistic retrieval model is to provide 

some method of estimating the probability that a particular document 

is relevant. The information which is to be used to obtain this 

estimate is essentially the specific combination of index terms 

assigned to (or present in) the particular document. 

Thus from the point of view of the probabilistic model, any 

two documents with exactly the same set of index term assignments are 

indistinguishable. The index terms in effect serve to allocate 

documents to exclusive classes or cells, each all being defined by 

a particular combination of terms. The probability of relevance 

is the probability Pj that a randomly selected document in cell 

j will be relevant. 

A "pure" probabilistic approach would require past evidence 

about the relevance of documents from any particular cell, in order 

to make statements about new documents in that cell. But since most 

cells are empty and most of the rest contain only one or two documents, 

this is not in general possible in information retrieval. So the 

usual procedure has been to devise a model on the basis of some 

assumptions of independence between index terms, which imply 

relationships between the various probabilities pj . Assuming 

such a model means that the estimate of p • for cell j may be 

based on evidence about the relevance of documents from other cells. 

For example, in the Robertson/Sparck Jones model, strong independence 

assumptions are made; as a consequence, the estimate of pj uses 

evidence from all previously-judged documents containing any one 

of the terms that define cell j. 

The model or class of models proposed here actually reverses 

part of this process. Instead of making independence assumptions and 

deriving relationships between the pn-fs, it makes direct assumpumptions 
d 

about these relationships. 
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Tb© relationships are expressed in terms of the logistic 

transform of the probabilities, so the class of models might generally 

be described as "logistic". One particular model in the class, the 

"independent logistic" model, is roughly equivalent to the Robertson/ 

Spark Jones model. Dependencies between terms can also be introduced. 

Further, the framework includes a natural range of estimation methods, 

as will be seen. 

2.2 Mathematical Description 

2 , 2 # 1 Notation and likelihood function 

We assume that there are d distinguishable classes (or cells) 

of documents. We also assume that in unit time, the number of documents 

in class j, nj, has a Poisson distribution with mean cj, and that 

the nfj are independent. It will be seen below that the particular 

assumption about the ni is not important. We also assume that the 

probability of a document being relevant given that it is in class j 

is Pj . The number of relevant documents in cell j in unit time is 

called kj. It is not hard to see that, conditional on rtj, kj 

will have a binomial distribution with parameters pj and rij. 

Using vector notation n_ is the d-dimensional column vector 

with entries nj, similarly p_t c_, k_ etc. We can write down the likeli­

hood function for £ and c_ given k and n_ 

d 

L(-gj oj k, n) = 

i = i 

k . (n .-k J 
((l-p.)c.) ° J -c 

e 
•3 J J J 

kj ! (n .-k .) ! 
J 3 
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and the log-likelihood 

d 

ftfe, £» K n) = ) [_klog V. + (n^.-kJlog(l-p_.) + n. log a. 

3 = 1 
- Cj ~ log k.\ - log (rij-kj) ! j 

The logistic models are models of the form (log —— ) e 
i-p. 

where mis a vector subspace of K . For brevity we will just talk 

about the model If we reparametrize by writing 

P. 
ir • = log — — for 1 < j < d 

J 1-P. 
3 

then the log-likelihood becomes 

d 

l(l> £» h n) = ) \_kfj ~ njl°g(1+enJ) + nlog a.- Oj 

3 = 1 -> 
- log k.\ - log (n.-k.)\ J 

2.2.2 Estimation 

If we consier the maximum likelihood estimates (m.l.e.) of 

ir and c (assuming IT e ) we see that the m.l.e. of c is n 

and does not depend on YY\. . The m.l.e. of TT if it exists is denoted 

T̂  and is that p c iTL which maximises 
—m — e v 

d 

c.n^j = 7 L VV " njl°9(1+eP^J f(p) = f(ktn9p) = / { &„*.. - n.log(l+evj) ) (1) 

J = ̂  

(The existence of the m.l.e. is discussed below.) 
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We may easily Introduce Bayesian ideas into this model. In 

general, we multiply the likelihood function by some factor which 

describes the prior distribution, thus obtaining the posterior 

distribution. Then instead of a maximum likelihood estimate, we 

may consider a maximum posterior estimate (or posterior mode).. 

This will introduce an additive factor into the function f(g) 

which must be maximised - an example is given below. 

There are several possible ways of finding a maximum, i.e. 

of deriving the maximum likelihood or maximum posterior distribution 

estimates. It is necessary, however, to use an iterative procedure. 

2.2.3 Existence of estimates 

Considering the maximum likelihood estimates, it is very 

convenient to define # to be the diagonal matrix where diagonal 

elements are the n.. Now suppose there is a vector a e 

such that N_ £ = 0. Then clearly f(p_+v) = f(pj f o r a 1 1 £.• H e n c e 

a necessary condition for the existence of an m.l.e. for jr_ is 

that there is no non-zero £ e Tfl s.t. N_ £ = £. Imposing 

this condition on N and will ensure that f(p) is strictly 

concave and hence has at most one finite maximum and that any 

stationary value of p e is a maximum but it is not sufficient 

to ensure / has a maximum in 

It is unlikely that there is any easily verified condition 
o n HL> K a n d W* which is equivalent to the existence of an m.l.e. 

(although some results can be proved). Further, it is likely that 

in many practical situations, for some models which one might want 

to use, the m.l.e. does not exist. The Bayesian prior, however, 

may be used as a mechanism to ensure the existence of an estimate 

(now a maximum posterior estimate). 

2.2.4 Discussion 

The above descibes a general class of models for the 

probabilities p .. The particular model is expressed as a linear 
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subspace of the space generated by the logistic transforms IT . 
J 

An appropriate way to obtain estimates of the parameters of any 

model from data would be the maximum likelihood method. However, 

this method will not necessarily possess solutions at all, 

particularly where there is little data. We may further introduce 

prior information into the model by standard Bayesian methods, and 

maximise the posterior distribution rather than the likelihood. 

This procedure may be used to force the existence of a solution. 

Also, the more restricted the model (i.e. the smaller the dimension 

of YH >, the more likely it is that the maximum likelihood method 

will give a solution. 

In section 2.3 this formalism is used to set up an "independence" 

model roughly equivalent to the Robertson-Sparck Jones model. We 

then discuss the possible theoretical advantages and disadvantages 

of the class of models defined here. 

Given the form of the class of models, the question 

naturally arises : under what conditions should one try to relax 

or restrict the model (i.e. increase or reduce its dimension)? 

In section 4 we return to this question in theoretical terms. 

2.3 Example : the Independent Logistic Model 

We now consider a specific model which corresponds, in some 

sense, to the Robertson/Sparck Jones model. 

Our basic assumption is that probability of relevance 

will be modelled by a simple sum-of-weights, each weight being 

associated with one of the matching terms. That is, we will assume 

that 

7T . = I W, + W 

J to 

where w and ( W > are the quantities to be estimated, and the sum 

is over all query terms t whose presence defines the particular 

cell j . This model can be simply expressed as a vector subspace 

of *d , as required. 
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To formulate this model more precisely, we define Q as the 

set of query terms, and T c Q as a set of terms defining a 

particular cell, i.e. those documents containing all the terms T 

and none of the terms Q*T. (In fact each "cell" may be subdivided 

by the presence or absence of terms other than query terms; however, 

give this model, such subdivision makes no difference to the 

maximum likelihood estimates derived from (1).) In order to deal 

with the W weight in the formula for TT ., we may define a 

dummy term t which occurs in all documents, and which is 

automatically included in T. Then is defined as follows : 

So, from ( 1 ) , 

f(w)~ \ 

*T= / 

t e T 

L t e T 

w t 

(2 ) 

log (1 + exp( > w )) 

t e T 
^ > ~ Wt 

TsQ 

t e Q 

w, 

T:teT 
TcQ 

n^ log (1 + exp( x-, t e T 

k^ is the total number of relevant documents assigned to 

T:teT 
term t . The Ws which maximize f(W) give the maximum likelihood 

estimates of the IT'S. 

We may add a Bayesian prior : suppose for example that the W 

are assumed to be independent, normally distributed with means y, 
2 r 

and common variance a (the means may, for example, be derived 
from the traditional collection frequency weights). Then the 

function to be maximised is : 

teQ T:tzT TcQ 

w, 

log(l+e teT ) -
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2.4 Comparison of present models with previous approaches 

We first describe how the Independent Logistic model might be 

applied in a practical situation, and then discuss its apparent 

advantages and disadvantages, in comparison with the Robertson/ 

Sparck Jones model. We also discuss its possible extension to deal 

with term dependence. 

It should be pointed out that the comparison between the present 

and previous approaches is not intended to provide a simple decision 

between the two. Rather we hope to shed some light on the whole 

problem, by looking at it from different points of view. 

2.4.1 Possible application of the independent logistic model 

We assume a relevance feedback situation : that is, we assume 

an initial search which has revealed some relevant documents. We 

want to use this information to estimate the w's (by maximising 

expression (3) or (4)), so as to derive an improved ranking of the 

documents on the next run. The next run may be on the same collection 

(as in retrospective searching) or a new one (as in SDI). 

The result of the initial search is a small number (typically) 

of documents known to be relevant, also a small number (perhaps zero) 

of documents known to be non-relevant, and the large bulk of the 

collection of unknown relevance status. Perhaps the obvious way to 

use this data in a probablistic model would be to use only the 

documents of known relevance status in each cell in the derivation 

of estimates. However, it has been common in earlier systems to 

use the known relevant as such and all the remainder (known-non-

relevant and unknown) as "non-relevant". This is known as the 

"complement" procedure (Harper and Van Rijsbergen, 1978). The 

justification for this procedure is that almost all the unknown 

are certainly non-relevant; the resulting increase in precision 

of the estimates is likely to far outweigh the slight bias resulting. 

(Some experiments by Harper and Van Rijsbergen, using another formula, 

support this view). 
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We assume, then, that the complement procedure is adopted 

for the Independent logistic model; this has consequences which are 

discussed below. 

In that case, the quantities we need in order to maximise 

expression (3) or (4) are : 

2 (a) > kT i.e. the total number of known relevant 

T:teT 

documents assigned to each term t. 

(b) rirpt i.e. the total number of documents, known or 

unknown, in each individual cell T. 

As indicated above, the estimates of the w's would be obtained by 

means of an iterative maximisation algorithm. The particular 

procedure used in our experiments is described in section 3.3. 

2.4.2 Main points of comparison 

We may indicate the main differences betweeen the independent 

logistic model and the Robertson/Sparck Jones model : 

(a) The new model requires a litte more data, namely 

the individual 

for each term) 

the individual ft™ values (as opposed to the total 

(b) The new model uses an iterative algorithm for obtaining 

the estimates, rather than a simple formula. The effect 

of this will depend very much on the number of query terms 

|| Q I , since the procedure requires manipulation of a 

Q || x Q \ matrix. This it may affect computation 

time insignificantly for a 4-term query, but require a 

totally unrealistic amount of time for a 40-term SDI 

profile. The methods used and the resources required 

in the present experiments are discussed in section 3. 
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The independence assumptions of the new model are 

considerably weaker than those of the Robertson/Sparck 

Jones model. The definition of TfL given by expression 

(2) is equivalent to assuming, in some sense, that the 

degree of dependence of any set of terms is the same in 

the non-relevant set as it is in the relevant set (Robertson/ 

Sparck Jones assume no dependence in either set). 

One major advantage claimed for the logistic models in 

the medical context is that the estimation process does 

not involve assuming that the sample on which the estimates 

are based is random : it is only necessary to assume that 

the items in the sample from a given cell are a random 

sample of items in that cell. This property should 

confer a considerable advantage on the logistic models, 

since the estimation sample is drawn on the basis of 

cell membership. However, it appears that this advantage 

is nullified by the use of the Complement method for non-

relevant documents (for which there is no equivalent 

in the medical application). 

The major reason for the choice of the maximum likelihood 

method of estimating parameters is its mathematical 

tractability. Maximum likelihood estimates do have a 

number of desirable properties, but these properties tend 

to be asymptotic : that is they only hold absolutely for 

large samples. The estimation method used in the Robertson/ 

Sparck Jones model (i.e. the "#.5" formula, expression (1) 

in section 1.2) was chosen on the basis of a specific 

property of unbiasedness; this is also an asymptotic 

property, but the small-sample error is not too great, 
-2 -1 

since it varies with n rather than n for sample 
size n. 

The Bayesian prior is a very much more flexible device 

than the equivalent in the Robertson/Sparck Jones method, 
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namely the "+ 0.5" in the formula for calculating 

weights. Different choices of the means vu reflect 

different assumptions about possible prior indications 
2 

of term value; different choices of the variance a 

reflect different assumptions about the reliance to be 

placed on these prior indications. Some experiments 

with different values are discussed in section 3. 

(g) Finally, the model itself is more flexible. Thus we 

can consider the addition of a new term, or of a 

term-pair (to allow for term-dependence not conforming 

to the independence assumptions) by simply adding an 

appropriate dimension to j7[ . (Adding a term-pair 

as a new component of m does not conflict with the 

independence assumptions discussed in (c) above, since 

A & B—>-4 applies to both the relevant and the non-

relevant set) . 

Thus we see that the logistic model, or class of models, 

differs from previous approaches in a number of interacting 

theoretical and practical ways. Section 3 is devoted to a series 

of experiments with various versions of the logistic model on 

two test collections. 


