
CHAPTER 6 

An algorithm for suffix stripping 

Many strategies for suffix stripping have been reported in the literature 
(see for example [1] to [6]). The nature of the task will vary considerably 
depending on whether a stem dictionary is being used, whether a suffix list 
is being used, and of course on the purpose for which the suffix stripping 
is being done. Assuming that one is not making use of a stem dictionary, and 
that the purpose of the task is to improve IR performance, the suffix 
stripping program will usually be given an explicit list of suffixes, and, 
with each suffix, the criterion under which it may be removed from a word to 
leave a valid stem. This is the approach adopted here. The main merits of 
the present program are that it is small (less than 400 lines of BCPL), fast 
(it will proces a vocabulary of 10,000 different words in about 8.1 seconds 
on the IBM 370/165 at Cambridge University), and reasonably simple. At any 
rate, it is simple enough to be described in full as an algorithm in this 
paper. Given the speed of the program, it would be quite realistic to apply 
it to every word in a large file of continuous text, although for historical 
reasons we have found it convenient to apply it only to relatively small 
vocabulary lists derived from continuous text files. 

In any suffix stripping program for IR work, two points must be borne in 
mind. Firstly, the suffixes are being removed simply to improve IR 
performance, and not as a linguistic exercise. This means that it would not 
be at all obvious under what circumstances a suffix should be removed, even 
if we could exactly determine the suffixes of the words by automatic means. 
Perhaps the best criterion for removing suffixes from two words W^ and 
W2 to produce a single stem S, is to say that we do so if there appears to 
be no difference between the two statements fa document is about W^ ' and 
fa document is about W 2

f. So if W1 = 'CONNECTION
1 and W2 = 

'CONNECTIONS' it seems very reasonable to conflate them to a single stem. 
But if W1 = 'RELATE

1 and W2 = 'RELATIVITY' it seems perhaps 
unreasonable, especially if the document collection is concerned with 
theoretical physics. (It should perhaps be added that RELATE and RELATIVITY 
are conflated together in the algorithm described here.) Between these two 
extremes there is a continuum of different cases, and given two terms W^ 
and W2, there will be some variation in opinion as to whether they should 
be conflated, just as there is with deciding the relevance of some document 
to a query. The evaluation of the worth of a suffix stripping system is 
correspondingly difficult. 

The second point is that with the approach adopted here, i.e. the use of a 
suffix list with various rules, the success rate for the suffix stripping 
will be significantly less than 100%, irrespective of how the process is 

-98-



evaluated. For example, if SAND and SANDER get conflated, so most probably 
will WAND and WANDER. The error here is that the -ER of WANDER has been 
treated as a suffix when in fact it is part of the stem. Equally a suffix 
may completely alter the meaning of a word, in which case its removal is 
unhelpful. PROBE and PROBATE for example, have quite distinct meanings in 
modern English. (In fact these would not be conflated in our present 
algorithm.) There comes a stage in the development of a suffix stripping 
program where the addition of more rules to increase the performance in one 
area of the vocabulary causes an equal degradation of performance elsewhere. 
Unless this phenomenon is noticed in time, it is very easy for the program 
to become much more complex than is really necessary. It is also easy to 
give undue emphasis to cases which appear to be important, but which turn 
out in practice to be rather rare. For example, cases in which the spelling 
of the root of the word changes with the addition of a suffix, as in 
DECEIVE/DECEPTION, RESUME/RESUMPTION, INDEX/INDICES, occur much more rarely 
in real vocabularies than one might at first suppose. In view of the error 
rate that must in any case be expected, it did not seem worthwhile to try 
and cope with these cases. 

It is not obvious that the simplicity of the present program is any demerit. 
In a test on the well known Cranfield 200 collection [7] it gave an 
improvement in retrieval performance when compared with a very much more 
elaborate program which has been in use in IR research at Cambridge since 
1971 (described in [2] and [6]). The test was done as follows: the words of 
the titles and abstracts in the documents were passed through the earlier 
suffix stripping system, and the resulting stems were used to index the 
documents. The words of the queries were reduced to stems in the same way, 
and the documents were ranked for each query using term coordination 
matching of query against document. From these rankings, recall and 
precision values were obtained using the standard recall cutoff method. The 
entire process was then repeated using the suffix stripping system described 
in this paper, and the results were as follows: 

earlier system present system 

sion 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

recall 
57.24 
56.85 
52.85 
42.61 
40.20 
39.06 
32.86 
31.64 
27.15 
24.59 
24.59 

precision 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

recall 
58.60 
58.13 
53.92 
43.51 
39.39 
38.85 
33.18 
31.19 
27.52 
25.85 
25.85 

Clearly the performance is not very different. The important point is that 
the earlier, more elaborate system certainly performs no better than the 

-99-



present, simple system. 

(This test was done by Prof. C.J. van Rijsbergen.) 

The algorithm 

To present the suffix stripping algorithm in its entirety we will need a few 
definitions. 

A consonant in a word is a letter other than A, E, I, 0 and U, and other 
than Y preceded by a consonant. (The fact that the term 'consonant1 is 
defined to some extent in terms of itself does not make it ambiguous.) So in 
TOY the consonants are T and Y, in SYZYGY they are S, Z and G. If a letter 
is not a consonant it is a vowel. 

A consonant will be denoted by c, a vowel by v. A list ccc... of length 
greater than 0 will be denoted by C, and a list vvv... of length greater 
than 0 will be denoted by V. Any word, or part of a word, therefore has one 
of the four forms: 

CVCV ... C 
CVCV ... V 
VCVC ... C 
VCVC ... V 

These may all be represented by the single form 

[C3VCVC ... [V] 

where the square brackets denote arbitrary presence of their contents. 
Using (VC)m to denote VC repeated m times, this may again be written as 

[C](VC)m[V]. 

m will be called the measure of any word or word part when represented in 
this form. The case m = 0 covers the null word. Here are some examples: 

m=0 TR, EE, TREE, Y, BY. 
m=1 TROUBLE, OATS, TREES, IVY. 
m=2 TROUBLES, PRIVATE, OATEN, ORRERY. 

The rules for removing a suffix will be given in the form 

(condition) S1 -> S2 

This means that if a word ends with the suffix S1, and the stem before S1 
satisfies the given condition, S1 is replaced by S2. The condition is 
usually given in terms of m, e.g. 

-100-



(m>1) EMENT -> 

Here S1 is ?EMENT1 and S2 is null. This would map REPLACEMENT to REPLAC, 
since REPLAC is word part for which m = 2. 

The 'condition' part may also contain the following: 

*S - the stem ends with S (and similarly for the other letters). 

*v* - the stem contains a vowel. 

*d - the stem ends with a double consonant (e.g. -TT, -SS). 

*o - the stem ends cvc, where the second c is not W, X or Y (e.g. 
-WIL, -HOP). 

And the condition part may also contain expressions with and, or and not, so 
that 

(m>1 and (*S or *T)) 

tests for a stem with m>1 ending in S or T, while 

(*d and not (*L or *S or *Z)) 

tests for a stem ending with a double consonant other than L, S or Z. 
Elaborate conditions like this are required only very rarely. 

In a set of rules written beneath each other, only one is obeyed, and this 
will be the one with the longest matching S1 for the given word. For 
example, with 

SSES 
IES 
SS 
S 

- > 
- > 
- > 
- > 

SS 
I 
SS 

(here the conditions are all null) CARESSES maps to CARESS since SSES is the 
longest match for S1. Equally CARESS maps to CARESS (S1=fSS?) and CARES to 
CARE (S1r'Sf). 

In the rules below, examples of their application, successful or otherwise, 
are given on the right in lower case. The algorithm now follows: 

Step 1a 

SSES -> SS 
IES -> I 

caresses -> caress 
ponies -> poni 

-101-



ss -> ss 
s -> 

ties 
caress 
cats 

-> 
-> 
-> 

ti 
caress 
cat 

Step 1b 

(m>0) EED -> EE 

(*v*) ED -> 

(*v*) ING -> 

feed -> 
agreed -> 
plastered -> 
bled -> 
motoring -> 
sing -> 

feed 
agree 
plaster 
bled 
motor 
sing 

If the second or third of the rules in Step 1b is successful, the 
following is done: 

AT -> ATE 
BL -> BLE 
IZ -> IZE 
(*d and not (*L or *S or *Z)) 

-> single letter 

conflat(ed) 
troubK ing) 
siz(ed) 

hopp(ing) 
tann(ed) 
fall(ing) 
hiss(ing) 
fizz(ed) 
fail(ing) 
fil(ing) 

-> 
-> 
-> 

-> 
-> 
-> 
-> 
-> 
-> 
-> 

conflate 
trouble 
size 

hop 
tan 
fall 
hiss 
fizz 
fail 
file 

(m=1 and *o) -> E 

The rule to map to a single letter causes the removal of one of the 
double letter pair. The -E is put back on -AT, -BL and -IZ, so that 
the suffixes -ATE, -BLE and -IZE can be recognised later. This E 
may be removed in step 4. 

Step 1c 

(*v*) Y -> I happy 
sky 

-> happi 
-> sky 

Step 1 deals with plurals and past participles. The subsequent steps 
are much more straightforward. 

Step 2 

(m>0) 
(m>0) 

(m>0) 
(m>0) 
(m>0) 

ATIONAL 
TIONAL 

ENCI 
ANCI 
IZER 

-> ATE 
-> TION 

-> ENCE 
-> ANCE 
-> IZE 

relational 
conditional 
rational 
valenci 
hesitanci 
digitizer 

--> 
-> 
-> 
-> 
-> 
-> 

relate 
condition 
rational 
valence 
hesitance 
digitize 

-102-



(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0); 
(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0) 

ABLI 
ALLI 
ENTLI 
ELI 
OUSLI 
IZATION 
ATION 
ATOR 
ALISM 
IVENESS 
FULNESS 
OUSNESS 
ALITI 
IVITI 
BILITI 

-> ABLE 
-> AL 
-> 

-> 
ENT 
E 

-> OUS 
-> 

-> 
IZE 
ATE 

-> ATE 
-> AL 
-> IVE 
-> FUL 
-> OUS 

AL 
IVE 
BLE 

-> 

-> 

-> 

conformabli 
radicalli 
differentli 
vileli 
analogousli 
vietnarnization 
predication 
operator 
feudalism 
decisiveness 
hopefulness 
callousness 
formaliti 
sensitiviti 
sensibiliti 

-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 

conformable 
radical 

different 
vile 
analogous 
vietnamize 
predicate 
operate 
feudal 
decisive 
hopeful 
callous 
formal 
sensitive 
sensible 

The test for the string S1 can be made fast by doing a program switch 
on the penultimate letter of the word being tested. This gives a 
fairly even breakdown of the possible values of the string S1. It 
will be seen in fact that the S1-strings in step 2 are presented 
here in the alphabetical order of their penultimate letter. 
Similar techniques may be applied in the other steps. 

Step 3 

(m>0 
(m>0) 
(m>0) 
(m>0) 
(m>0) 
(m>0) 

ICATE 
ATIVE 
ALIZE 
ICITI 
ICAL 
FUL 

(m>0) NESS 

-> 

-> 

-> 

-> 

-> 

-> 

-> 

IC 

AL 
IC 
IC 

Step 4 

(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 
(m>1 

AL -> 
ANCE -> 
ENCE -> 
ER -> 
IC -> 
ABLE -> 
IBLE -> 
ANT -> 
EMENT -> 
MENT -> 
ENT -> 

and (*S or *T)) ION -> 
OU -> 
ISM -> 

triplicate 
formative 
formalize 
electriciti 
electrical 
hopeful 
goodness 

--> 
-> 
-> 
-> 
-> 
-> 
-> 

triplic 
form 
formal 
electric 
electric 
hope 
good 

revival 
allowance 
inference 
airliner 
gyroscopic 
adjustable 
defensible 
irritant 
replacement 
adjustment 
dependent 
adoption 
homologou 
communism 

> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 

reviv 
allow 
infer 
airlin 
gyroscop 
adjust 
defens 
irrit 
replac 
adjust 
depend 
adopt 
homolog 
commun 

-103-



(m>1) 
(m>1) 
(m>1) 
(m>1) 
(m>1) 

ATE 
ITI 
OUS 
IVE 
IZE 

-> 
-> 
-> 
-> 
-> 

activate 
angulariti 
homologous 
effective 
bowdlerize 

-> 
-> 
-> 
-> 
-> 

activ 
angular 
homolog 
effect 
bowdler 

The suffixes are now removed. All that remains is a little tidying up. 

Step 5a 

(m>1) E -> 

(m=1 and not *o) E -> 

Step 5b 

probate 
rate 
cease 

-> 
-> 
-> 

probat 
rate 
ceas 

(m>1 and *d and *L) -> single letter 
controll 
roll 

-> control 
-> roll 

The algorithm is careful not to remove a suffix when the stem is too short, 
the length of the stem being given by its measure, m. There is no linguistic 
basis for this approach, it was merely observed that m could be used quite 
effectively to help decide whether or not it was wise to take off a suffix. 
For example, in the following two lists: 

list A 

RELATE 
PROBATE 
CONFLATE 
PIRATE 
PRELATE 

list B 

DERIVATE 
ACTIVATE 
DEMOSTRATE 
NECESSITATE 
RENOVATE 

-ATE is removed from the list B words, but not from the list A words. This 
means that the pairs DERIVATE/DERIVE, ACTIVATE/ACTIVE, DEMONSTRATE/DEMONS­
TRABLE, NECESSITATE/NECESSITOUS, will conflate together. The fact that no 
attempt is made to identify prefixes can make the results look rather 
inconsistent. Thus PRELATE does not lose the -ATE, but ARCHPRELATE becomes 
ARCHPREL. In practice this does not matter too much, because the presence of 
the prefix decreases the probability of an erroneous conflation. 

Complex suffixes are removed bit by bit in the different steps. Thus 
GENERALIZATIONS is stripped to GENERALIZATION (Step 1), then to GENERALIZE 
(Step 2), then to GENERAL (Step 3), and then to GENER (Step 4). OSCILLATORS 
is stripped to OSCILLATOR (Step 1), then to OSCILLATE (Step 2), then to 
OSCILL (Step 4), and then to OSCIL (Step 5). In a vocabulary of 10,000 
words, the reduction in size of the stem was distributed among the steps as 
follows: 

-104-



Suffix stripping of a vocabulary of 10,000 words 

Number of words reduced in step 1 

Number of words not reduced: 

1: 

CM
 

3: 
4: 
5: 

3597 
766 
327 

2424 

1373 
3650 

The resulting vocabulary of stems contained 6370 distinct entries. Thus the 
suffix stripping process reduced the size of the vocabulary by about one 
third. 

-105-



REFERENCES 

1. LOVINS, J.B. Development of a Stemming Algorithm. Mecanical Translation 
and Computational Linguistics. 11 (1) March 1968 pp 22-31. 

2. ANDREWS, K. The Development of a Fast Conflation Algorithm for English. 
Dissertation for the Diploma in Computer Science, Computer Laboratory, 
University of Cambridge, 1971. 

3. PETRARCA, A.E. and LAY W.M. Use of an automatically generated authority 
list to eliminate scattering caused by some singular and plural main 
index terms. Procedings of the American Society for Information 
Science,6 1969 pp 277-282. 

4. DATTOLA, Robert T. FIRST: Flexible Information Retrieval System for 
Text. Xerox Corporation, Webster N.Y. 12 Dec 1975. 

5. COLOMBO, D.S. and NIEHOFF R.T. Final Report on Improved Access to 
Scientific and Technical Information through automated vocabulary 
switching. NSF Grant No. SIS75-12924 to the National Science Foundation. 

6. DAWSON, J.L. Suffix Removal and Word Conflation. ALLC Bulletin, 
Michaelmas 1974 pp 33-46. 

7. CLEVERDON, C.W., MILLS J. and KEEN M. Factors Determining the 
Performance of Indexing Systems 2 vols. College of Aeronautics, 
Cranfield 1966. 

-106-


