
CHAPTER 2 

The selection of good search terms 

Introduction 

This paper tackles the problem of how one might select further search terms, 
using relevance feedback, given the search terms in the query. The approach 
taken is based on an earlier paper by one of the authors [1] in which a 
theoretical model for the exploitation of statistical dependence between 
index terms was described. This model was evaluated in a later paper [2] 
showing the extent to which the use of statistical dependence information 
derived from co-occurring index terms would lead to an improvement in 
retrieval effectiveness. The experimental methodology used in the latter 
paper will also be adopted here, that is, the methods of evaluation and 
estimation will be the same except for minor variations which will be 
pointed out when appropriate. 

The general experimental set-up within which the ideas for the selection of 
search terms were worked out can be simply described. There are a number of 
test collections consisting of documents, and queries with associated 
relevance assessments. For each query the relevant documents are therefore 
known, so that a user's response to any output from a retrieval strategy may 
be simulated. (Sometimes the relevance assessments are not exhaustive. This 
happens when only a portion of the entire collection assumed to contain most 
of the relevant documents is scanned in determining the documents relevant 
to a query. Unassessed documents are then assumed to be non-relevant.) The 
basic relevance feedback strategy is one in which a simple strategy such as 
co-ordination level matching is used to retrieve an initial small set of 
(say 10 or 20) documents. The known relevant documents in this small set are 
then used to estimate certain parameters, which in turn are used to build up 
a new search function. This new search function will incorporate new search 
terms, not already occurring in the query, which are derived from a tree 
relating all the index terms in the entire collection. The tree structure is 
in the nature of a thesaurus although the links are statistically derived. 
It is this tree structure called the maximum spanning tree (or MST briefly) 
- see appendix - which is the main aid used for finding further search 
terms. The way in which the spanning tree is actually used during a 
retrieval run is not very different from earlier uses of term clustering to 
expand queries. The relationship between an MST and a commonly used 
clustering method, single-link, is explained in [4]. Thus it is not too 
difficult to interpret the MST for index terms as a term clustering. But it 
should be stressed that the tree structure does not imply a hierarchical 
relationship between the terms. In fact each of the connected terms are 
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informative about each other. 

The MST lies at the centre of the research described in this paper. It is 
this structure which captures the important dependencies between index 
terms. In the original model [1] for the use of statistical dependence 
between index terms, two such trees were envisaged, one for the terms in the 
relevant documents and one for the terms in the non-relevant documents. 
Subsequently this was approximated by assuming the same tree structure for 
both sets. In this paper we go one step further and, for the time being, 
abandon the attempt to construct probability distributions on both the 
relevant and non-relevant sets, until we can resolve the difficulties 
inherent in making an explicit assumption on both relevant and non-relevant 
sets of documents. Instead we simply try to expand queries by appropriate 
index terms in the MST, which itself is based on the distribution of co
occurrences in the entire collection. Preliminary experiments with this way 
of expanding queries were reported in our earlier paper [2]. To avoid 
confusion between the way the MST has been used in earlier work and the way 
it is used here we shall now briefly discuss the relationship between the 
MST and the underlying probability model. 

When faced with the problem of modelling the probability of relevance 
through distributional information about individual index terms one can make 
various assumptions about the independence or dependence of the index terms. 
A common one has been to assume that the index terms are independent on both 
the relevant and non-relevant sets of documents [3 3. In [1] a limited form 
of dependence on both these sets was assumed. To capture the important 
dependencies a spanning tree is constructed for each set. However, attempts 
to use this form of dependence model run into estimation and computational 
problems which remain to be solved. Instead we have sought a compromise 
solution, one which would enable us to use the dependence information and 
yet not have to estimate this from ridiculously small samples. In this paper 
we attempt to make use of the statistical dependence between index terms 
over the entire collection. Assuming dependence on the entire collection is 
consistent with assuming independence on both the relevant and non-relevant 
sets [4]. In [4] it was shown how this particular form of conditional 
independence can lead to sensible heuristics for expanding queries by index 
terms connected into an MST based on co-occurrence data derived from the 
entire collection. 

Our main concern in this paper is with the use of the MST connecting all 
index terms derived from distributional information about index terms in the 
entire collection. We use the spanning tree to expand the initial query. The 
effectiveness of this expansion is compared with that of the unexpanded 
query. The question naturally arises as to what is the !bestf spanning tree 
to use in this process. In [1] it was shown how the spanning tree might be 
constructed in an optimal way so that it produced the best approximation for 
the relevant probability functions. In that paper it was also conjectured 
that reasonable approximations to the optimal tree, although suboptimal, may 
yet give comparable performance in terms of retrieval effectiveness. That 
this is in fact so is demonstrated for several test collections. 
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The experimental results about the effectiveness of relevance feedback based 
on differently generated spanning trees are presented in the sequel. The 
feedback strategy evaluated is relatively simple, but constitutes a starting 
point for further research into more elaborate ways of using the spanning 
tree. The essential idea is to use a term contained in the query to lead us 
to further search terms. One can formulate the idea in terms of the 
Association Hypothesis [4]: 

If an index term is good at discriminating relevant from non-relevant 
documents then any closely associated index term is also likely to be 
good at this. 

When used without further qualification in expanding queries, one must 
obviously make the implicit assumption that query terms are good at 
discriminating relevant from non-relevant documents. Now although this is 
not always the case it is not unreasonable to assume it on the average. 
Thus we expand each query term by the terms that are closely associated with 
it, and those are to be found by looking at the adjacent terms in the MST, 
those which are connected to a query term. The union of the query and the 
sets of adjacent terms, one set for each query term, we called the expanded 
query in our previous paper [2]. 

Expanding the query terms by all the adjacent terms in the spanning tree is 
clearly not the only way of proceeding. One would like to be able to select 
in order of preference further search terms. This general theoretical 
problem of how one might choose search terms in order of decreasing 
discrimination power remains to be investigated. 

Before we can discuss our experimental results we must briefly describe the 
theoretical framework which has led to this work. Much of it may be found in 
Chapter 6 of Van Rijsbergen [4], 

Basic Symbols 

The theoretical background to this work in IR derives from a straightforward 
application of Probability Theory including some simple use of statistical 
decision theory. To explain it we shall need to define a few symbols. 

represents a document, where n is the number of index terms in the 
vocabulary and x^=0 when the ith term is absent and x^=1 when the ith 
term is present. We consider only two relevance categories, 

w*| : relevant 
v*2 i non-relevant 

The important probabilities we need to define are, 

-10-



POO 
is the probability of observing a document description _x within the 
document collection irrespective of whether it is relevant or not. 

POcjw^ 
is the probability of observing ^ given that it represents a relevant 
(i=1) or non-relevant (i=2) document. 

P(wi!jc) 
is the probability that a document is relevant (i=1) or non-relevant 
(i=2) given its description £. 

P(wt) 
is the prior probability of observing a relevant (i=1) or non-relevant 
(i=2) document. 

Obviously 

P(x) = P(jc|w1)P(w1) + P(_x!w2)P(w2) 

Optimality 

The fundamental assumption made in all this work is that the distribution of 
descriptions on the relevant documents is different from the distribution of 
descriptions on the non-relevant documents and that the difference can be 
estimated and used to find relevant documents. The main quantity estimated 
for finding the relevant documents is P(w-j |_x) i.e. the probability of 
relevance for every document. The higher the probability the more likely we 
are to want to retrieve that document. (From now on documents will be 
identified with their descriptions unless the difference is important.) The 
simplest retrieval rule using these probabilities is given by the following, 

P(w-| |_x) > P(w2!_x) -> _x is relevant, x. is non-relevant D1 

This is a good rule for the following reason: it minimises the expected 
probability of misclassification (sometimes called the error rate). The 
probability of misclassification is given by 

P(error|_x) = P(w^!_x) if we decide w2 

P(w2!^() if we decide w<| 

So if for every document x. we choose that w^ corresponding to the larger 
of P(w-| Ijc) and P(w2!_x) then the choice will minimise P(error|_x) for each 
x. In doing so we will also minimise 
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\ 
P(error) = /_ P(error ijOPCjc) 

which is the expected probability of misclassification. 

In C4] it is shown that this approach can be generalised to incorporate 
different costs associated with different errors. That is, we can associate 
a different cost with retrieving a non-relevant document from missing a 
relevant document. The retrieval rule will then be expressed in terms of 
expected cost, and will specify the choice leading to minimum expected cost. 
However, this generality is not required here: interested readers should 
consult [4], 

In practice the retrieval rule D1 is evaluated using Bayes1 Theorem: 

PUiwi)P(wi) 
P(wi!_x) = Th1 

POO 

To evaluate D1, P(w^|_x) is replaced by the R.H.S. of the equality in Th1. 
Furthermore, rather than estimate PCw^ when evaluating the arguments of 
D1, we prefer to rank the documents by P(w-j |_x) thus obviating the need to 
set a cut-off. One can say more about the ranking than one would suspect at 
first sight. In fact there is an optimality principal now commonly known as 
the Probability Ranking Principle which states that ranking by P(w^ !_x) is 
optimal in the sense that at any fixed recall level the precision will be 
maximised [5]. A simple proof of this can be found in Harter [6]. 

Independence 

Let us look a little more closely at the retrieval rules that will result. 
Either way, whether we rank or use D1, we must estimate P(w-j !_x) by the 
R.H.S. of Th1. The usual assumption made is that the index terms are 
statistically independent. To say this just like that is actually ambiguous 
without precisely specifying the sets on which the independence holds,. So 
let us assume independence on both the relevant and non-relevant documents. 
Then we may write 
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POciw.,) = P(x1 iw-,) ... P(xniw.,) 
P(_x|w2) = P(x.,!w2) ... P(xnlw2) 

Using these expressions we can derive the usual weighting functions [1] [2] 
[3], but let us first note that ranking w.r.t. P(w-| \x) is the same as 
ranking w.r.t. 

P(_x!w1)P(w1) 
log 

POciw2)P(w2) 

This l a s t function i s gene ra l l y used to wr i t e down e x p l i c i t l y the weighting 
funct ion as fo l lows . Define 

p i = P ( x i = 1 iw.|) 
qi = PCx^ l !w2) 

then 

P U ! W 1 ) = ! i P i
X i ( l - P i ) " X i 

i=1 

POcjw2) = ! ! q i
X i ( 1 - q i ) " X i 

i=1 

Now substituting in the log function above we get 

n P i
 1n-qi)

 x 

g(jc) = log ! ! 
1=1 X, 1-X, 

P(w^ 
+ log 

P(w2) 
n 
\ 

= /_ c-x- + Const 
i = 1 

where 
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-i = log 
PiO-Qi) 

ql(1-pi) 

This g(j<) is the linear weighting function and c^ are the weights that are 
estimated from the relevance information contained in a small set of 
documents retrieved by a simple strategy such as co-ordination level 
matching. For example if the set of documents retrieved is N and we display 
the relevance information in the usual contingency table, 

Relevant Non-relevant 

xi = 1 

x^O R-i-i 

ni~ri 

N - n ^ R * ^ 

N-R 

ni 

N-nj 

N 

we can derive the form of c^ used in [3], by using maximum likelihood 
estimates for pi and q.̂  (i.e. pi = r^/R and qi = (ni-ri)/(N-R)) we 
get, 

>i = log 
r^CR-r^ 

(nĵ -rĵ J/CN-n̂ -̂R+rĵ ) 

Although this form of c^ has proved successful, it causes difficulties 
when one or more of the interior cell values of the contingency table goes 
to zero, for then the log function is undefined. Robertson and Sparck Jones 
[3] sought to get around it by a well known statistical technique of adding 
.5fs to the interior cells and adjusting the marginals accordingly. 
Unfortunately it does not solve the problem, for it grossly overestimates 
the probabilities involved. 

Of particular interest is the case when a term is not assigned to any 
relevant documents (r^=0). In the table below values for 100c^ are 
tabulated for a typical document collection: set N=1400, R=2, and the n^ 
and r^ values as shown in the table; adding .5!s to the interior cells and 
adjusting the marginals of the contingency table will result in the table as 
shown. 
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IOOCJ 

n i 

25 
50 
75 
100 
125 
150 

ri=0 

238 
168 
125 
95 
71 
51 

ri=1 

403 
331 
288 
257 
233 
212 

ri=2 

568 
494 
450 
419 
394 

In the absence of any confirming information of a term's ability to 
descriminate relevant from non-relevant documents, some large weights are 
computed. Compare the entries for (r^O, n^=25) and (ri = 1f ni = 125). 
The reason for the large weight when r^=0 can be traced to overestimating 
the parameter p^. The f .5 technique1 is equivalent to estimating p^ with 
(r^+.5)/(R+1). To illustrate the extent of this overestimation we now also 
tabulate some pi values computed in this way when ri=0 and R ranges from 
1 to 5. 

R 

1 
2 
3 
4 
5 

.33 

.20 

.14 

.11 

.09 

467 
280 
200 
155 
127 

The final column headed nt shows values below which any value of n.̂  will 
lead to a positive value for the corresponding weight c^. These tables 
were in fact tabulated for the Cranfield 1400 collection for which the 
average n^ per query term is only 169. Therefore, frequently (sometimes 
large) positive values of c^ will be computed when a term is not assigned 
to any relevant documents. Hence the f.5 technique1 must be considered 
inadequate. For this reason we feel justified in proposing a different form 
of ci# 

In our previous paper [2] we suggested and evaluated a different form of 
c^ which we now realise will get ar 
The weight we suggested in [2] was 
ci which we now realise will get around some of the estimation problems 
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J iq 

\ P (x i f w q ) 
d i q P (x i f w q ) log -

Xi,wq P(x i )P(w q ) 

(The subsc r ip t q has been introduced to emphasise the fac t t ha t our 
c a l c u l a t i o n s are always with r e spec t to one query q.) 

where 

x^=0 for absence 
x^=1 for presence 

and w=Wi for relevant 
w =w2 for non-relevant 

and d^ is given conveniently by the following table: 

Rewriting E^ as 

\ 
Giq = /- diqDiqPiq 

xi'wq 

then Diq=P(xi,w )
 i s t h e , d e g r e e °f involvement1 of cell (xi?w ) 

and P̂  equal to the log part is called the 'probabilistic contri Lbution1 

It is easy to show that with Di =1 the weight Giq simplifies back to 
c^. But with D^q equal to the joint probability one does not need to 
'adjust1 the cell values of the contingency table by .5fs, since whenever an 
interior cell is zero we simply set 01og0=0 - which makes mathematical 
sense. We have no theoretical justification for this weight, but contrary to 
expectation, it outperforms the so-called independence weight c^. 
Obviously, since c^ is optimal under the independence assumptions, this 
superiority must be related to the difficulties associated with estimating 
c^ from small samples. It may well be that, in the light of G.̂  f s 
robustness and effectiveness, some theoretical justification will be found. 
It is this weight G^ which is used in the experiments reported in this 
paper. 
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Dependence and the role of the MST 

In deriving the linear weighting function g(_x) we made the assumptions of 
statistical independence on both w<| and W2. We could go on to say that 
these assumptions are unrealistic and therefore we would need to estimate 
the dependence between index terms to improve retrieval effectiveness. This 
is in fact what we set out to do in [1] and [2]. As we pointed out earlier, 
certain technical problems, mainly to do with estimation, prevented us from 
developing this approach further. However, a heuristic approach to using 
the maximum spanning tree has proved an interesting alternative to the 
strict term dependence model. For this we assume only that the terms are 
statistically dependent on the entire collection, and use the dependence to 
lead us from the query terms to further search terms. 

The maximum spanning tree capturing the important dependencies is generated 
in a similar way to that described in [1] [2] [4], Choosing an association 
measure from Table 1 we represent the pairwise association between index 
terms as a graph: the links measuring the association between any two terms 
represented by nodes. From this graph we can derive a maximum spanning tree, 
that is, a tree which spans the nodes in such a way as to have a maximum sum 
of links. So for each measure of association we will arrive at a different 
MST. Of these MST!s one based on the expected mutual information measure 
(EMIM) is special. It is the basis for estimating in an optimal way the 
probability functions involved in our retrieval rule. The estimate is 
optimal in the sense that if we condition our variables in the way shown by 
the MST based on EMIM then we find a closer approximation to the underlying 
probability function than if we used any of the differently derived MSTfs. 
Although this result is not of immediate concern, it provides the motivation 
for (a) selecting an MST in the first place as a useful object, and (b) 
preferring certain MSTfs over others. In [1] it was conjectured that despite 
this optimality result, it may well be that a different, suboptimal but more 
efficiently generated, MST could give comparable retrieval performance to 
one generated from EMIM. In this paper we show this to be so. 

The optimality of the MST based on EMIM deserves some further comment. We 
are assuming that if one models the underlying probability functions as 
closely as possible then one will get the best possible retrieval. The 
Probability Ranking Principle guarantees this for the strict dependence 
model [1]; its optimality is a matter of statistical fit. As soon as one 
breaks away from the strict dependence model, the role of the MST changes 
and the optimality of the EMIM-based MST is no longer guaranteed. One can 
only conjecture whether or not the MST based on EMIM is still the best 
possible. 
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A different approach 

In this section we shall be more specific about the strategy used to expand 
queries with the aid of the MST and about its evaluation within a relevance 
feedback context. The general form of the weighting function is linear in 
the same way as the one derived from the independence assumption, but it is 
different in that the weights c^ are replaced by G^ . The basic feedback 
strategy is to retrieve a small set of documents, 10 or 20, by choosing the 
10 or 20 documents best co-ordinated with the query. This set is then used 
to estimate the G^ weights for the query terms and the adjacent terms in 
the MST. The estimates required are for probabilities conditioned on either 
the relevant or non-relevant documents. In [2] we showed that the best way 
of doing this is to estimate PCIw-j) from the relevant documents in the 
feedback set and P(.iw2) from the entire set of documents minus the 
relevant documents in the feedback set. This is particularly important when 
estimating the probabilities for the probabilistic contribution in G| . 
The degree of involvement may be estimated in the same way although 
restricting the estimates to just the feedback set appears to be 
satisfactory [2]. Notice that whereas in [2] we felt obliged to adjust all 
our estimates by .5's here we have omitted to do this since we now realise 
that it is unsatisfactory and unnecessary. This will lead to minor 
discrepancies between precision and recall figures in this paper and 
corresponding ones in [2]. 

Three test collections, Cranfield 1400, UKCIS I and UKCIS II are used to 
measure the retrieval effectiveness of the feedback strategy under different 
conditions. The details of these test collections are summarised in Table 2. 
The method of evaluation, in terms of precision and recall, is the same as 
that in the earlier paper [2]. It is necessary to remind the reader that in 
evaluating feedback strategies we have adopted a method of residual ranking. 
Briefly, the feedback documents (seen by the user) are removed from the 
collection and precision recall figures calculated for the search on the 
remaining documents. 

Experimental results 

Our benchmark for the experiments is COORD(N) where N can be either 10 or 
20, indicating the size of the feedback set. (The mnemonic fnamef(N) is 
used only in the text. In the tables columns will be headed by 'name1, and 
the value of N will be given at the start of the table as (cutoff=N).) 
COORD(N) simply continues the co-ordination level match on the remainder of 
the document after the feedback documents have been removed. So there is no 
expansion and no feedback. All strategies employing feedback are shown to be 
superior to this benchmark. 

Our first minor result is to establish the adequacy of the Gi weight. 
For this we compare its performance on all three test collections with the 
independence weight c^ under the same condition: using both feedback and 
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expansion. The expansion is done using the standard MST generated using 
EMIM. To see the difference the reader should consult Table 3 and compare 
the precision recall figures for EMIM(N) with those for IND(N). This 
clearly shows the superiority of using the GjL weights on all three test 
collections. The result is the more remarkable for the fact that if the 
terms in the query and those added through expansion are assumed to be 
independent on both the relevant and non-relevant sets then theoretically 
the reverse should be the case i.e. IND(N) should be superior to EMIM(N). 

The major result is a comparison of the feedback strategies, using linear 
weighting, expansion and the G. weight, where the expansion is done with 
MSTfs derived from the associated measures listed in Table 1. With each MST 
is associated a mnemonic identifying the appropriate association measure. 
This mnemonic is also used to identify the precision recall figures 
associated with the corresponding feedback experiment. These figures have 
been collected in Tables 4, 5 and 6, one for each test collection. For 
example Table 5 shows a column headed Maron in the first half of the table, 
and these figures pertain to a feedback strategy on UKCIS I with 10 
documents in the feedback set and the MST based on the association measure 
labelled Maron in Table 1. No attempt has been made to graph the precision 
recall figures since we are only attempting to establish a no-difference 
effect. The figures bear out this claim: spanning trees generated from 
reasonable association measures do not give appreciably different retrieval 
results. It is interesting to note however that the MST derived from the 
EMIM measure on the whole gives slightly better retrieval effectiveness than 
all others, with one notable exception. This is particularly pleasing, since 
within the context of the strict dependence model [1] this is predicted. The 
exception is for the Maron function on the Cranfield 1400. There does not 
appear to be an explanation for this exceptional result. 

To appreciate these experimental results more exactly we have done an 
analysis of the feedback sets involved and the number of queries actually 
entering the evaluation. Tables 7, 8 and 9 show the details. For example in 
Table 7 for the Cranfield 1400 collection when the cut-off is 10, only 158 
queries out of 225 enter the residual ranking evaluation because for the 
initial co-ordination level search 49 queries do not have any relevant 
documents in the feedback set and 18 queries have all their relevant 
documents in the feedback set. What to do about the queries left out of the 
evaluation is a difficult question to which we do not have an easy answer. 
The distribution of relevant documents in the feedback sets is also 
interesting, it shows that feedback is mostly based on only a few relevant 
documents. 

The alternative evaluation in Tables 10, 11 and 12, comparing a typical 
feedback experiment EMIMO0) with C00RDO0), is to emphasise the shortcoming 
of the data, or perhaps the low level of effectiveness of any strategy. This 
is particularly important in the case of UKCIS. The tables show the number 
of relevant documents retrieved at different cut-off levels in the residual 
ranking (not to be confused with the cut-off for the feedback set), and the 
number of queries not retrieving any relevant documents at the same levels. 
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For example in the case of UKCIS I (Table 11), co-ordination level matching 
on the remaining documents, after removing the feedback set of 10 documents, 
the 62 queries entering the evaluation (see Table 8) in total retrieve only 
120 relevant documents when the residual ranking is cut-off at 20. Also, at 
the same cut-off, 24 of these 62 queries retrieved no relevant documents at 
all. Compare that with the feedback strategy EMIM(IO) shown in the adjoining 
column and one gets some idea of the dramatic improvement achieved by 
feedback: the number of relevant documents retrieved is doubled whereas the 
number of queries not retrieving any relevant documents is almost halved. 
However, most discouragingly, the figure at the bottom of the column shows 
that at a cut-off greater than 200 we still have 1807 (C00RDO0)) and 1710 
(EMIM(10)) relevant documents to retrieve. In other words a large number of 
relevant documents simply remain irretrievable whether one uses feedback or 
not. Probably the only way to capture these documents is through document 
clustering. 

Concluding Remarks 

We have shown how an MST derived from the distribution of co-occurrences of 
index terms in a document collection may be used to expand a query. The MST 
may be constructed using any of a number of reasonable measures of 
association. Within the simple feedback strategy described the different 
MSTfs lead to approximately the same retrieval effectiveness, although on 
the whole, the MST based on the expected mutual information measure performs 
marginally better than any of the others. 

The method of query expansion via the MST is admittedly only very crude, but 
it constitutes a first step in the direction of a more refined approach. 
Obviously a more selective mechanism for expanding queries is needed, but 
this can only be done by developing some appropriate theory for following 
different branches of the MST. In fact one could go further than this and 
attempt to construct a theory which would enable a decision to be made as to 
whether it is more profitable to look at a nearest neighbour of a relevant 
document from the feedback set, or whether it is more profitable to proceed 
to a new search term given by the MST. No doubt ultimately some structure 
will be discovered which will enable, at any stage of the search, the trade
off between retrieving a nearest neighbour and selecting a closely 
associated search term to be evaluated. 

We think that one of the major stumbling blocks to further developments in 
'probabilistic information retrieval1 is the lack of a comprehensive theory 
about the estimation, from small biased samples, of the probabilities 
involved. The statistical literature seems to offer little guidance on this 
point. We have made some ad hoc suggestions, which may well be justifiable 
in theoretical terms. Our experiments show that the G. weight is superior 
to the so-called independent weight c^. Unfortunately this result is not 
unequivocal. We have found that in some rare circumstances c^ gives better 
performance than G- and we do not understand the reason for this. We 
believe that some theoretical work on the estimation rules involved may 
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throw some light on this. 
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APPENDIX 

The MSTfs used in these experiments were generated by a BCPL program which 
follows the algorithm given by Whitney [7]f which in turn is an encoding in 
FORTRAN of the 'classic1 algorithm of Prim [8]. To connect N terms in an 
MSTf the Whitney/Prim algorithm requires 0(N ) term comparisons. Each term 
comparison involves the computation of the number of documents in which the 
terms co-occur, and (in the case of EMIM) the computation of four 
logarithms. Since N will usually be several thousand (typically between 5000 
and 10000) a crude encoding of the algorithm would lead to a program that 
was too slow to be of any utility. But by making use of a number of 
optimisation strategies, an MST program was devised which, although heavy on 
computing resources, is practicable. 

The most important optimisation strategy is worth describing. If t is a term 
in a document collection, we denote by D(t) the set of documents in which t 
occurs. If d is a document, we denote by T(d) the set of terms contained in 
d. The mapping d -> T(d) is given by the document file, and t -> D(t) by the 
inverted file. The set of those terms with which t co-occurs in at least one 
document, C(t), is given by 

C(t) = union ( T(d) i d in D(t) ) 

(i.e. the union of the sets T(d) for which d is in D(t)), which may be 
written 

C(t) = T(D(t)) 

If we make the assumption that links in the MST will not be between terms 
with zero co-occurrence, then we do not need to compare t with any terms 
outside the set C(t). The program therefore estimates the size of C(t) for 
each t, and if it is small compared with the total term size, computes C(t) 
and uses this as a list of terms for comparison with t. In the case of 
Cranfield 1400, for example, only 10 of a potential total number of 3597903 
comparisons are made to construct an MST. 

Two further points need to be made. The first is that C(t) is computed by 
mapping t -> D(t) -> T(D(t)), and this involves easy access to the document 
file and inverted document file. In fact these are both held in core in our 
implementation, and this imposes a strict upper limit to the size of the 
collections for which the MST can be generated. The second point is that for 
certain similarity measures (EMIM is one of them) terms with co-occurrence 
zero can in principle be linked in the MST. Consequently the MSTfs used in 
these experiments are not necessarily exact, although we believe that the 
disparity, if there is one, is very slight, and should not affect the 
experimental results. 
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Cosine P(xi=1f Xj=1) 

^/(P(Xi=1) P(xj=D) 

Dice 2 P(xi=1t Xj=1) 

P(xi=1)+P(xj=1) 

EMIM 
\ P(xifXj) 
/_ P(xi§Xj) log 
XifXj P(xi)P(Xj) 

Maron P(xi=1l Xj=1) - P(xi=1) P(Xj=1) 

Raj ski EMIM/Entropy 

T 
Entropy - /_ P(xifXj) log P(xifXj) 

X . X • 

Table 1 

The different association measures used to generate the MST's, 
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Cranfield 1400 UKCIS I UKCIS II 

no. of documents 

no. of terms 

no. of requests 

average no. of terms per document 

average number of relevant documents 
per request 

1400 11613 15748 

2683 12000 8882 

225 142 152 

29.9 6.8 6.4 

7.2 28.6 43.8 

Table 2 

Collection details. 
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Cranfield 1400 
Cutoff?10 
UKCIS I UKCIS II 

\ p 
R \ 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

EMIM 

45.77 
43.42 
38.26 
33.85 
29.76 
27.11 
21.53 
19.25 
16.90 
13.47 
13.25 

IND 

37.53 
35.59 
31.91 
28.42 
25.91 
23.93 
17.90 
15.07 
12.91 
10.90 
10.64 

EMIM 

50.52 
35.68 
27.43 
22.25 
18.14 
15.82 
13.35 
9.43 
8.94 
5.17 
3.77 

IND 

41.61 
23.89 
18.62 
15.73 
12.58 
11.04 
9.01 
6.16 
5.71 
2.81 
1.55 

EMIM 

57.21 
38.43 
26.79 
21.04 
14.68 
12.18 
8.53 
5.65 
3.81 
1.47 
1.37 

IND 

41.72 
29.65 
20.02 
15.44 
12.46 
9.10 
6.66 
5.25 
3.34 
1.69 
1.51 

Cutoff=20 
Cranfield 1400 UKCIS I UKCIS II 

\ p 
R \ 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

EMIM 

41.59 
38.48 
33.37 
28.14 
24.97 
23.28 
16.77 
13.85 
12.33 
10.66 
10.42 

IND 

33.27 
30.60 
27.75 
22.58 
20.93 
19.28 
13.25 
10.12 
8.88 
7.66 
7.38 

EMIM 

43.82 
31.55 
24.82 
20.94 
16.73 
14.76 
9.49 
7.39 
6.75 
5.19 
4.05 

IND 

36.38 
21.03 
16.06 
13.60 
11.32 
10.11 
6.12 
4.66 
4.27 
2.52 
1.36 

EMIM 

57.38 
38.32 
25.91 
19.95 
15.13 
10.29 
7.76 
5.60 
4.22 
1.46 
1.31 

IND 

36.79 
26.92 
17.53 
13.79 
10.81 
6.80 
5.06 
4.12 
2.94 
1.55 
1.40 

Table 3 

A comparison, in terms of precision and recall, of two relevance 
feedback strategies with query expansion via the MST based on the 
expected mutual information measure. EMIM uses the G- weight and IND 
uses the independent c.̂  weight. Cutoff indicates the size of the 
feedback set. 
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Cranfield 1400 (cutoff=10) 

\ p 
R \ 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

\ P 
R \ 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Cosine 

42.43 
40.21 
35.35 
30.45 
27.70 
24.95 
19.31 
15.13 
13.11 
11.10 
10.95 

Cosine 

38.94 
37.13 
31.79 
26.97 
24.11 
21.84 
15.20 
12.23 
11.41 
9.85 
9.61 

Dice 

43.96 
42.25 
37.86 
33.82 
29.53 
27.72 
21.28 
16.25 
14.37 
11.87 
11.64 

Cranfj 

Dice 

38.94 
36.64 
31.55 
26.02 
23.31 
22.03 
16.35 
11.99 
10.84 
9.32 
9.08 

EMIM 

45.77 
43.42 
38.26 
33.85 
29.76 
27.11 
21.53 
19.25 
16.90 
13.47 
13.25 

.eld 1400 

EMIM 

41.59 
38.48 
33.37 
28.14 
24.97 
23.28 
16.77 
13.85 
12.33 
10.66 
10.42 

Maron 

47.82 
45.58 
39.09 
34.83 
31.39 
29.27 
22.59 
19.43 
16.57 
13.29 
13.03 

Rajski 

44.61 
41.59 
38.26 
32.83 
28.67 
26.53 
20.73 
17.24 
15.34 
12.47 
12.29 

(cutoff=20) 

Maron 

42.99 
39.99 
34.65 
29.29 
25.68 
23.72 
17.25 
13.97 
12.14 
10.51 
10.21 

Raj ski 

38.53 
36.25 
32.64 
27.24 
22.95 
21.08 
16.38 
13.46 
11.92 
10.62 
10.37 

Co-ord 

28.30 
26.73 
24.86 
20.62 
17.15 
15.12 
10.92 
8.97 
7.36 
6.13 
6.00 

Co-ord 

17.90 
16.29 
15.58 
12.67 
10.58 
10.09 
7.70 
5.34 
4.94 
3.97 
3.89 

Table 4 

A comparison of the effectiveness, in terms of precision and recall, of 
different MST's based on a range of association measures. Each 
experiment uses relevance feedback and expansion. Cutoff indicates the 
size of the feedback set. 
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UKCIS I (cutoff=10) 

\ p 
R \ 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Cosine 

49.73 
33.09 
25.61 
22.67 
18.55 
15.93 
13.40 
8.71 
8.06 
5.87 
4.47 

Dice 

47.75 
32.61 
24.90 
21.94 
17.85 
15.18 
12.79 
8.60 
7.10 
4.97 
3.57 

EMIM 

50.52 
35.68 
27.43 
22.25 
18.14 
15.82 
13.35 
9.43 
8.94 
5.17 
3.77 

Maron 

48.80 
34.03 
25.67 
21.25 
17.69 
15.30 
13.22 
9.27 
8.84 
5.25 
3.78 

Raj ski 

48.63 
31.98 
24.34 
22.01 
18.19 
15.82 
13.37 
8.68 
8.06 
5.87 
4.48 

Co-ord 

30.77 
16.73 
11.86 
9.79 
7.20 

5.77 
4.92 
3.29 
1.87 
1.18 
0.59 

UKCIS I (cutoff=20) 

\ p 
R \ 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Cosine 

38.82 

29.13 
23.75 
20.67 
16.45 
14.18 
9.36 
7.34 
6.85 
5.19 
4.05 

Dice 

39.94 
27.86 
22.15 
18.91 
15.76 
13.25 
8.39 
6.33 
5.93 
4.27 
3.12 

EMIM 

43.82 
31.55 
24.82 
20.94 
16.73 
14.76 

9.49 
7.39 
6.75 
5.19 
4.05 

Maron 

43.37 
30.02 
23.94 
19.85 
16.28 
14.09 
9.58 
7.39 
6.79 
5.28 
4.05 

Rajski 

38.24 
28.68 
22.72 

19.99 
15.69 
13.94 
9.37 
7.36 
6.87 
5.19 
4.05 

Co-ord 

21.04 
11.52 
8.22 
6.48 
5.28 
4.60 
2.92 
2.45 
2.24 

1.57 
1.16 

Table 5 

As for Table 4 but with a different test collection. 
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UKCIS II (cutoff=10) 

\ p 
R \ 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Cosine 

50.60 
36.20 
27.11 
21.34 
14.77 
12.05 
8.14 

5.45 
3.66 
1.24 
1.12 

Dice 

51.66 
36.04 
27.89 
20.74 
14.51 
12.13 
8.17 
5.46 
3.71 
1.25 
1.12 

EMIM 

57.21 
38.43 
26.79 
21.04 
14.68 
12.18 
8.53 
5.65 
3.81 
1.47 
1.37 

Maron 

55.62 
35.85 
25.07 
19.73 
14.62 

11.79 
8.31 
5.14 
3.37 
1.15 
1.08 

Raj ski 

52.56 
35.69 
27.43 
20.40 
14.96 
12.20 
8.48 
5.43 
3.67 
1.24 
1.12 

Co-ord 

28.29 
17.53 
13.30 
11.14 

7.29 
5.62 
4.33 
3.74 
1.81 
0.80 
0.66 

UKCIS II (cutoff=20) 

\ p 
R \ 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Cosine 

51.45 
35.63 
25.02 
18.27 
13.65 
9.65 
7.13 
5.18 
4.06 
1.25 
1.10 

Dice 

53.59 
37.08 
25.70 
18.30 
13.88 
10.16 
7.38 
5.17 
4.14 
1.27 
1.12 

EMIM 

57.38 
38.32 
25.91 
19.95 
15.13 
10.29 
7.76 
5.60 
4.22 
1.46 
1.31 

Maron 

56.12 
36.81 
24.31 
18.93 
14.59 
9.97 
7.15 
4.83 
3.80 
1.16 
1.05 

Raj ski 

52.65 
36.83 
25.79 
17.95 
13.84 

9.89 
7.11 
5.16 
3.99 
1.25 
1.12 

Co-ord 

21.11 
13.26 
8.06 
6.39 
5.37 
3.67 
2.76 
2.35 
1.38 
0.80 
0.69 

Table 6 

As for Table 4 but with a different test collection. 

-29-



Feedback set for Cranfield 1400 (cutoff = 10) 

no. of queries = 225 
no. of queries in evaluation = 158 
no. of queries with no relevant documents = 49 
no. of queries with all relevant documents = 18 

D i s t r i b u t i o n 

no. o f r e l s : 1 
no. o f q u e r i e s : 51 

2 
35 

3 
37 

4 
17 

5 
14 

6 
1 

7 
1 

8 
1 

9 
1 ( t o t a l 158) 

Feedback set for Cranfield 1400 (cutoff = 20) 

no. of queries = 225 
no. of queries in evaluation = 164 
no. of queries with no relevant documents = 32 
no. of queries with all relevant documents = 29 

Distribution 

no. of r e l s : 1 2 3 4 5 6 7 8 9 10 11 
no. of queries: 39 34 31 21 15 11 3 5 1 1 3 (total 164) 

Table 7 

A breakdown of the feedback sets. The distribution shows the number of 
queries that have a different number of relevant documents in the 
feedback set. 
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Feedback s e t for UKCIS I (cutoff = 1 0 ) 

no. of queries = 142 
no. of queries in evaluation = 62 
no. of queries with no relevant documents = 77 
no. of queries with all relevant documents = 3 

Distribution 

no. of rels: 1 
no. of queries: 35 

2 
10 

3 
1 

1 
6 

5 
3 

6 

3 
8 
2 

9 
2 (total 62) 

Feedback set for UKCIS I (cutoff = 20) 

no. of queries = 142 
no. of queries in evaluation = 72 
no. of queries with no relevant documents = 66 
no. of queries with all relevant documents = 4 

Distribution 

no. of r e l s : 1 2 3 4 5 6 7 8 10 12 
no. of q u e r i e s : 30 12 9 4 4 2 3 3 2 2 

18 
1 (total 72) 

Table 8 

As for Table 7 but with a different test collection. 
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Feedback s e t for UKCIS I I (cutoff = 10) 

no. of queries = 152 
no. of queries in evaluation = 80 
no. of queries with no relevant documents = 70 
no. of queries with all relevant documents = 2 

Distribution 

no. of r e l s : 1 2 3 ^ 5 6 8 9 10 
no. of queries: 33 16 11 7 3 2 5 1 2 (total 80) 

Feedback set for UKCIS II (cutoff = 20) 

no. of queries = 152 
no. of queries in evaluation = 88 
no. of queries with no relevant documents = 62 
no. of queries with all relevant documents = 2 

Distribution 

no. of rels: 1 2 3 4 5 6 8 9 10 12 14 15 16 18 20 
no. of queries: 28 16 15 8 6 2 3 1 2 1 2 1 1 1 1 (total 88) 

Table 9 

As for Table 7 but with a different test collection. 
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Cranfield 1400 (cutoff = 10) 

Co-ord l EMIM 

Cutoff 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

200+ 

Rels Retr. 

148 
234 
303 
351 
393 
428 
462 
489 
512 
526 
543 
561 
578 
593 
603 
611 
627 
652 
663 
679 

249 

Retr. None 

74 
44 
30 
25 
24 
20 
18 
15 
14 
14 
13 
12 
11 
10 
10 
10 
10 
7 
6 
5 

Rels Retr. 

250 
337 
406 
460 
496 
533 
568 
598 
616 
635 
658 
671 
688 
703 
714 
720 
735 
746 
753 
758 

170 

Retr. 

41 
26 
18 
14 
12 
12 
11 
10 
10 
8 
7 
7 
6 
6 
6 
6 
6 
6 
6 
6 

Table 10 

The residual ranking is cut-off at different values 10(10)200f and at 
each one 'Rels Retr.1 indicates the number of relevant documents 
retrieved at that rank position. fRetr. None' indicates the number of 
queries that have retrieved no relevant documents at that rank position. 
The rank position 200+ shows the number of relevant documents that 
remain to be retrieved at rank 200. Cutoff indicates the size of the 
feedback set. 
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UKCIS I (cutoff =10) 

Co-ord EMIM 

Cutoff 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

200+ 

Rels Retr. 

74 
120 
170 
225 
265 
286 
297 
306 
321 
333 
347 
368 
387 
396 
402 
416 
437 
448 
466 
475 

1807 

Retr. None 

33 
24 
21 
19 
15 
12 
12 
12 
11 
10 
10 
10 
8 
8 
8 
8 
8 
8 
8 
8 

Rels Retr. 

156 
240 
313 
366 
391 
413 
439 
454 
466 
484 
494 
500 
508 
516 
520 
529 
541 
544 
558 
572 

1710 

Retr. 

18 
15 
13 
13 
13 
13 
12 
12 
12 
12 
12 
12 
11 
11 
11 
10 
10 
10 
9 
9 

Table 11 

As for Table 10 but with a different test collection. 
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UKCIS II (cutoff = 10) 

Co-ord EMIM 

Cutoff 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

200+ 

Rels Retr. 

101 
173 
233 
282 
332 
369 
406 
446 
479 
506 
531 
548 
567 
586 
622 
639 
671 
695 
717 
732 

4538 

Retr. None 

46 
37 
29 
24 
23 
22 
21 
18 
17 
13 
12 
12 
12 
11 
9 
9 
8 
8 
7 
7 

Rels Retr. 

240 
386 
491 
577 
651 
707 
761 
802 
849 
906 
961 
1005 
1059 
1098 
1135 
1171 
1214 
1250 
1276 

1295 

3975 

Retr. 

20 
15 
13 
12 
11 
9 
9 
8 
8 
8 
8 
8 
8 
8 
8 
8 
7 
6 
6 
6 

Table 12 

As for Table 10 but with a different test collection. 
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