
CHAPTER 3 

Probabilistic models of indexing and searching 

1 Introduction 

There has been a considerable amount of work in recent years on the 
probabilistic theory of document retrieval. The main sources for the 
present paper are the work done in this country on the searching end of the 
information-storage-and-retrieval complex (e.g. Robertson and Sparck Jones, 
1976; van Rijsbergen, 1977; Harper and van Rijsbergen, 1978), and the work 
done in the United States on automatic indexing using within-document 
frequencies of terms (notably by Bookstein and Swanson, 1974, 1975; Harter, 
1975a, 1975b; Bookstein and Kraft, 1977). (There is a considerable body of 
related work by Salton, Yu and associates (e.g. Salton, Wong and Yu, 1976), 
but the starting-point for this is rather different, and it will therefore 
not be considered further here.) 

The present paper arises out of a project currently under way in Cambridge, 
involving the three authors. One of the main objects of the project is to 
bring together these two strands of work on indexing and searching. In 
particular, we hope to develop and test a model, within the framework of the 
probabilistic theory of document retrieval, which makes optimum use of 
within-document frequencies in searching. Progress towards this end, both 
theoretical and experimental, is described in this paper. 

As the work described here depends fairly heavily on previous work (by 
ourselves and others), we propose to spend a little time summarising the 
earlier theoretical and experimental results. 

2 Theoretical background 

2.1 Basic concepts 

A fundamental part of the probabilistic theory of retrieval, as it has 
developed over the last ten years or so, is the Probability Ranking 
Principle (Robertson, 1977), which states that for optimum performance on a 
given query, a document retrieval system should rank the documents in order 
of their probability of relevance (to the query or underlying need), 
according to the information available to the system. This principle can be 
proved to hold provided that certain assumptions are made; it will be 
assumed here. 
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The core of the theory lies in the use of probability theory, together with 
assumptions about the statistical properties of the variables involved, to 
construct various retrieval functions which can be used to rank the 
documents in the appropriate order. The first step in such a construction is 
usually to invert the conditional probabilities using Bayes' theorem, as 
follows. 

Assume that we have information about documents in the form of a variable X, 
and assume that each document is assigned a value x of X. X may be regarded 
as a random variable associated with the population of documents. (X may 
take values in a multi-dimensional vector space, for example, each dimension 
being associated with an index term, and x is then a single vector 
describing the assignment of index terms to a particular document.) We have 
another variable of interest, namely the relevance of a document to the 
query or underlying need. This variable is assumed in the present paper to 
be dichotomous; it is denoted by A, with values 0 (for non-relevant) or 1 
(for relevant). 

We desire to rank the documents in order of their probabilities of relevance 
given the information provided by X, i.e. in order of their values of 

P(A=1 i X=x) 

It can be shown by Bayesian (van Rijsbergen,1979) inversions that an 
identical ranking of the documents is produced by using the function 

fx(x i A=1) 
V(X=x) = log 

fx(x I A=0) 

where fx(x i A=a) is the density function of X in the population of 
relevant (or non-relevant) documents. If X is a discrete variable, then 

fx(x I A=a) = P(X=x i A=a) 

i.e. the probability of a relevant (or non-relevant) document having the 
value x of X. Since all the variables considered in this paper are discrete, 
the form 

P(X=x I A=1) 
V(X=x) = log 

P(X=x i A=0) 

will be used. 

One extremely useful property of these functions is that the are additive 
under independence. That is, if we have two variables X, Y, and wish to 
combine the information provided by them, then under assumptions about their 
independence in the relevance set and the non-relevance set respectively, we 
have 
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V((X,Y) = (x,y)) = V(X=x and Y=y) 
= V(X=x) + V(Y=y) 

In other wordsf the function V forms a suitable basis for a sum-of-weights 
matching procedure, whereby each variable has associated with it a weight, 
and the total score of a document (by which it is ranked) is the sum of the 
component weights. 

One final transformation is useful. It is often convenient, if a variable 
has a natural zero, to make sure that the weight associated with this value 
is zero. This can be done by constructing a retrieval function 

W(X=x) = V(X=x) - V(X=0) 

This function ranks the documents in the same order as V, and is also 
additive under independence. 

To summarise: If the variable X is multi-dimensional with axes X^f having 
vector values x with components x^, then optimum retrieval performance 
(under the assumptions of the probability ranking principle) is ensured by 
ranking the documents in order of their associated values (scores) of 

P(X=x I A=1) P(X=0 | A=0) 
W(X=x) = log (1) 

P(X=x I A=0) P(X=0 | A = 1) 

Further, if independence between components of X is assumed, then 

\ 
W(X=x) = /_ W(Xi=Xi) 

P(Xi=Xi i A=1) P(Xi=0 i A=0) 
where W(X.=Xi) = log (2) 

P(Xi=Xi i A=0) P(Xi=0 | A=1) 

Formula (2) will form the basis for most of the retrieval functions 
discussed in this paper. 

2.2 Binary independence weights 

We now concentrate on the case where each X^ corresponds to the assignment 
if index term i to a particular document, and where terms are either 
assigned or not, so that X^ has just two values. We define for a given 
query: 

-38-



p = P(t assigned i A=1) 
q = P(t assigned i A=0) 

Then, from (2) and making the independence assumption, each term can be 
given a weight 

p(1 - q) 
W(t assigned) = log (3) 

q(1 - p) 

This is the relevance weight used by Robertson and Sparck Jones (1976) and 
it will be referred to as the binary independence, or BI, weight. The 
question of how to obtain information about p and q, upon which any use of 
the formula must depend, is discussed in 3.1 - 3.3 below. 

2.3 Binary dependence weights 

In 1977 van Rijsbergen proposed a weighting scheme which replaced the 
assumption of independence between index terms by one of partial dependence. 
Instead of just considering the absence or presence of individual terms 
independently one selects certain pairs of terms and calculates a weight for 
them jointly. If one assumes that term i depends significantly on j then a 
document will receive a weight proportional to 

PCX. = x. | X1 s x1 f A = 1) 
log i i i (4) 

P(Xi = x± i Xj = Xj , A = 0) 

It is crucial to the calculation of such a weight that one establish 
beforehand what are the significant dependencies between pairs of index 
terms. The theoretical model described in van Rijsbergen (1977, 1979) 
assumes that the important dependencies can be selected by constructing a 
spanning tree connecting the entire index term vocabulary. The spanning tree 
is chosen from a class of possible spanning trees in such a way that it 
optimises an objective function. Such a function can be a sum of 
similarities, where each similarity measures the extent of the dependence of 
a pair of terms connected by a link. The optimal spanning tree is the 
spanning tree for which the sum of similarities is maximised. Once the 
spanning tree has been established, only those pairs of terms directly 
connected are assumed to be significantly connected. 

2.4 Harterfs model 

The discussion so far relates to recent work on probabilistic models with 
the emphasis on the searching process. The work on indexing on which we 
propose to draw was developed independently, by Bookstein and Swanson (1974, 
1975), Harter (1975a, 1975b), and Bookstein and Kraft (1977). There are, 
however, several points of contact. This discussion will be based chiefly on 
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Harterfs two papers. 

The simple version of Harterfs model states that any content bearing word 
will have within-document frequencies which fit a 2-Poisson distribution. 
That is, each word will have associated with it an "elite" set of documents 
(subset of the collection); the within-document frequencies will follow a 
Poisson distribution within this elite set, and will follow a second Poisson 
distribution in the non-elite set formed by the rest of the documents, so 
the observed distribution on the entire collection is a mixture of the two. 
The elite set is either identified with, or assumed to be correlated with, 
the set of documents which would be judged relevant by a requester whose 
query was just this single word. (Single term requests only are considered 
by Harter.) 

Harter then develops a method for estimating, for any given word, the 
parameters of the two Poisson distributions. (The method is discussed 
further in 5.4 below.) He then uses a decision theoretic argument to suggest 
criteria for deciding whether or not to assign any particular word as index 
term to any particular document. These criteria are based on a version of 
the probability ranking principle; this fact provides a point of departure 
for an attempt to unify the two lines of work. 

Following is a condensed mathematical description of those features of 
Harterfs model to which we will be referring: 

The variable K (with values k) is the number of occurrences of a given word 
in a document d. E represents the property of eliteness: E=1 means that the 
document belongs to the elite set, E=0 means it does not. The 2-Poisson 
model requires three parameters for each word: the means of the two Poisson 
distributions, 1 (elite set) and m (non-elite set), and a mixing parameter h 
defined by 

h = P(E=1) 

It is assumed that 

1 > m 

(in effect, this is the definition of the elite set). 

The 2-Poisson model says that 
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exp(-l)lk exp(-m)mk 

P(K=k) = h + (1-h) 
k! k! 

The indexing criteria depend on the parameter 

h exp(-l)lk 

P(E=1 i K=k) = 
h exp(-l) lk + (1-h) exp(-m)mk 

(5) 

There are various versions of the indexing criteria, but the final one 
suggested by Harter uses the following definitions: 

1 - m 

</(l + m) 

is a measure of the separation of the two distributions; 

P(E=1 I K=k) + z 

(6) 

(7) 

is a measure of the "indexability"f or the relative significance of the word 
in a document in which it occurs k times. The indexing criterion is then 

Index if and only if b > 0. 

The measure of indexability b (Harter1s beta) is arrived at by a somewhat ad 
hoc process, and in fact there is clearly a fault in the argument, since b 
is alway^ greater than zero (unless h=0, which is a pathological case). 
However, Harter also suggests that b might be used as a weight; as we shall 
see below, this is one of the experiments we have tried. 

3 Previous experimental results 

3.1 Upper bounds 

One use for a retrieval function such as the binary independence weight (3) 
which demands relevance information is to indicate an effective upper bound 
or optimum retrieval performance (Sparck Jones, 1975). This idea requires 
that we know in advance the relevant documents for each query (as is 
normally the case with test collections). 

Suppose then that for a given query, the entire collection of N documents 
contains R that are relevant; a particular term t is assigned to n 
documents, of which r are relevant. Then the obvious estimates for p and q 

are 
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r n - r 

R N - R 

From these and formula (3), we deduce that the binary independence weight 
associated with the term should be 

r (N - R - n + r) 
W(t assigned) = log 

(R - r) (n - r) 

For reasons associated with estimation (Robertson and Sparck Jones, 1976) we 
more usually use a modified version: 

(r + 0.5) ( N - R - n + r + 0.5) 
W(t assigned) = log (8) 

(R - r + 0.5) (n - r + 0.5) 

This solution to the estimation problem is not ideal (van Rijsbergen, Harper 
and Porter, in press) but will be used in this paper. 

Experiments with (8) applied to the query terms only have consistently given 
high optimum performance (Robertson and Sparck Jones, 1976; Sparck Jones 
1979a, 1979b, 1980). Higher performance still has been achieved with (4) 
applied to expanded queries (Harper and van Rijsbergen,1978). 

3.2 Relevance feedback 

Realistically, it may be possible to exploit partial relevance information, 
in the form of relevance feedback, to improve a search statement for a 
subsequent search. Considering again the binary independence weights as an 
example, suppose that R now represents the known relevant documents (at a 
particular stage of the search), of which r are assigned term t. Then again 
we may estimate p by 

r 

P = -
R 

The appropriate estimate of q is not so obvious - we may take just those 
known to be non-relevant, or all those not known to be relevant. There is 
some evidence to suggest that the latter is preferable in terms of retrieval 
performance (Harper and van Rijsbergen, 1978), so the estimate of q takes 
the same form as before: 

n - r 
q = 

N - R 

-42-



and the binary independence weight is exactly as before (8). 

Two kinds of experiment are possible to evaluate relevance feedback 
strategies. The first is to perform an initial search on the document 
collection, select the top ranking 10 or 20 documents to provide the 
feedback information, and then remove them from the collection for the 
subsequent search. This procedure is known as residual ranking (Ide, 1969; 
Harper and van Rijsbergen, 1978). The second is to divide the collection 
into two parts, obtain feedback information from one half, and do the 
subsequent search on the other. This is known as the half-collection method 
(Robertson and Sparck Jones, 1976). 

Experiments of both kinds with formula (8), again using query terms only, 
have once more consistently given good results. That is, it is possible to 
get substantial improvements in performance over non-feedback methods such 
as unweighted terms and collection frequency weighting, even given very 
little feedback information (Sparck Jones, 1979a, 1979b). 

3.3 No relevance information 

Croft and Harper (1979) have suggested using the binary independence weight 
without gny relevance information. One might, in the absence of such 
information, give p a constant value (say 0.5), and estimate q by the 
overall frequency of the term, i.e. 

These estimates, crude (and inconsistent) as they are, nevertheless do have 
some val^je. It turns out that when they are incorporated into formula (3), 
the resulting formula is closely related to the traditional collection 
frequency weighting method, which has long been known to give performance 
improvements over unweighted terms (Sparck Jones, 1972). 

In this paper, we shall regard collection frequency weighting by the formula 

W(t assigned) = log (N/n) 

as an approximation to the special case of (3) where no relevance 
information is available. 
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3.4 Query expansion 

The estimation problems encountered in implementing the independence weights 
become more severe for the dependence weights. If only 10 or 20 documents 
are used to provide the relevance feedback information it is difficult to 
obtain reliable estimates for the dependence weights (4). To overcome this 
difficulty a hybrid model was proposed by Harper and van Rijsbergen (1978) 
in which dependence information was used to expand the query by selecting 
additional search terms from the spanning tree on the index term vocabulary. 
Once a query has been expanded the weighting scheme can be that for the BI 
model (3). 

The feedback strategy for using dependence information between index terms 
is therefore now as follows. Construct a spanning tree on the term 
vocabulary using the distribution of co-occurrences throughout the entire 
document collection. For any given query, certain additional search terms 
are selected from the spanning tree by using the query terms as starting 
points. For example one could include in the query the nearest neighbour 
connected in the tree to each query term. After the query has been expanded 
in this way relevance weights can be calculated for each query term in the 
usual way. 

Experimental results reported with this strategy have been conflicting. For 
some test collections, notably Cranfield 1400, query expansion has worked 
reasonably well leading to significant improvements over non-expansion when 
performance is measured by residual ranking (Harper and van Rijsber­
gen, 1978). However, on the UKCIS data no significant improvement was 
observed (Harper, in preparation). This leaves the whole question of the 
effectiveness of query expansion unresolved. It was always clear that any 
additional terms obtained by expansion would only be as good as the initial 
query terms. As yet no good heuristics for selecting query terms as 
candidates for expansion have been designed. Nor has the problem of which 
additional search terms to include in the expanded query been investigated 
sufficiently. It would appear that a thorough investigation of both the 
selection of 'good1 query terms and further 'good1 search terms is needed. 

3.5 Harter's experiments 

No test of retrieval performance (like the experiments discussed above) has 
been done on the Harter indexing criteria. Instead, Harter compared the 
indexing generated by his criterion with indexing by a human indexer. Also, 
rather than use his criterion 

b > 0 

to def ine an index s e t for each document, he simply ranked the words for 
each document in order of t h e i r b va lues , and observed the pos i t i on of the 
human-assigned index terms in the ranked l i s t . Thus he used b as a weight 
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(or something of that nature). 

In the experiment, ranking by b value proved to be a reasonable prediction 
of whether the word had been assigned by the human indexer; in particular, 
it was a considerably better prediction than ranking words by k value, that 
is simply by number of occurrences. 

We do not propose to give a full account of Harter's experiment here, but 
some specific aspects should be mentioned. Although the theory deals with 
any kind 6f textual material, and therefore would have obvious application 
to collections of full texts of documents, Harter used a collection of 
abstracts only; we have done the same. Harter devised a method for 
estimating the parameters 1, m, h of his model, involving the moments of the 
observed distribution, and including rules for dealing with exceptional 
cases; we have used a similar method. 

Finally, Harter chose to do his analysis on words as they occur in texts, 
without any stemming or suffix stripping operation. At this point we have 
departed from Harter!s methods. The argument he gives is that different 
words fropi the same stem have different distributions. We dispute the 
argument on two grounds: first, whatever the distributions of the individual 
words, the stem itself might be supposed to have a 2-Poisson distribution 
and coulĉ  therefore reasonably form the basis for a Harter-type analysis; 
second, the only final argument would be in terms of retrieval 
effectiveness. Given the evidence (in a somewhat different context) that 
stemming improves performance, we have decided to perform a stemming 
operation before applying the Harter model; but we suggest that some direct 
comparison would be desirable. 

4 Main theoretical results 

4.1 Relevance and eliteness 

In tackling the problem of developing a Harter-type model for multi-term 
queries, we have to consider in some depth the status in the model of the 
property of relevance, and also of the Harter idea of eliteness. 

One possible approach would be to assume that there is some property 
equivalent to eliteness, but relating to the complete set of terms used in a 
query. One would then need to postulate distributions for the various terms 
within the elite set and outside it, and perform a complete analysis of the 
raw occurrence and co-occurrence data for any combination of terms that 
occurreq in a request. In general, this analysis would have to be performed 
at the time of the request, and would have to be repeated if the system or 
the userf were to expand the query. It seems, at least superficially, that 
this kirfd of process is unlikely to be a practical proposition. Nonetheless, 
an approach similar to this is taken by Bookstein and Kraft (1977): they 
suggest ways of selecting likely combinations of terms beforehand. 
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An alternative approach is to associate elite sets with the individual 
terms, and assume a more complex model relating the various elite sets to 
the one relevance set for the query. This enables the analysis to be 
performed as an indexing operation, prior to the processing of requests. 
This is the approach adopted here. 

4.2 Relations assumed in the model 

We assume, then, that each term has associated with it an elite set, and 
that the distributions of numbers of occurrences of the term in the two sets 
(elite and non-elite) are different (in particular, we assume that both are 
Poisson). We assume further that the elite sets for the query terms (and 
perhaps others) are correlated with relevance to the query, in a manner to 
be specified below. 

We wish to assume that some of the possible relationships between the 
variables of concern to us do not exist; that is, we wish to assume 
statistical independence in some cases. There are several different (but 
equivalent) ways of formulating an assumption of statistical independence, 
and it is worth indicating the differences and equivalences. Suppose a, b, c 
are three events; then the following statements are equivalent: 

P(a,b i c) = P(a I c) P(b i c) 
P(a ! b,c) = P(a I c) 
P(b ! a,c) = P(b ! c) 

All the statements say (in words) that a and b are independent, given c; or 
equivalently, that the only relation between a and b is that implied by c. 
Diagrammatically, one might represent the situation under such an assumption 
thus: 

a b 
\ / 
\ / 
c 

That is, there is assumed to be no direct relation between a and b. 

Returning to the 2-Poisson model, we can represent our independence 
assumptions thus: Suppose there is a query with relevance property A, with 
terms t-j, t2» t^ ... each with eliteness E^ and number of 
occurrences K-, then we assume: 
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' * 

i i ^ 
i 

E2 E3 

i / 

i 

A 

The various assumptions embedded in this model are: 

I 
The number of occurrences of a term depends only on the property of 
eliteness for that termf not on eliteness for any other term or on 
relevance. 

lis is pr* This is precisely equivalent to assumptions made by previous authors with 
this model]. 

II 
Eliteness for a given term depends only on relevance, not on eliteness 
for any other term. 

This is equivalent to the independence assumptions that were used in the 
derivation of equation (2). 

Like ̂ all independence assumptions, these must be regarded as simplifications 
which we make in order to render the mathematical model tractable, and to 
which it may be profitable to return with a view to reducing or eliminating 
the implied constraints. In fact, Bookstein and Kraft (1977) consider a 
rather more general model which (in the absence of variable A) assumes that 
E^ and Ej may be related. 

As mentioned above, these assumptions enable us to estimate the 2-Poisson 
parameters separately for each term, as an indexing operation, and then to 
use the results of this analysis in searching. 

^•3 2-Poisson independence weights 

As with the binary independence model, we need two parameters to describe 
the relation between eliteness for a term and relevance. These are as 
follows (for a given term) 

pf = P(E=1 
qf = P(E=1 

= 1) 
=0) 

Now we are in a position to calculate the components of a weight to be 
assigned to any specific number of occurrences (value of K) for this term, 
according to formula (2). We have: 
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P(K=k i A=1) = P(K=k I E=1) P(E = 1 I A=1) 
+ P(K=k ! E=0) P(E=0 ! A=1) 

1 
= - (pf exp(-l)lk + (1-p») exp(-m)mk) 
k! 

and similarly for A=0 and q' (the first step in this derivation makes use of 
independence assumption I). Hence the full expression for W(K=k), according 
to formula (2), becomes: 

p
k Q o 

W(K=k) = log (9) 
p o Q k 

where Pk = p
fexp(-l)lk + (1-pf )exp(-m)mk 

Qk = q
fexp(-l)lk + (1-qf)exp(-m)mk 

?Q = pfexp(-l) + d-p')exp(-m) 
Q0 = q

fexp(-l) + (1-qf)exp(-m) 

If we make independence assumption IIf then this weight (the 2-Poisson 
independence or TPI weight) gives optimal retrieval performance according to 
probabilistic retrieval theory. 

Expression (9) is a pretty alarming one, not so much because of its size and 
inherent complexity (which is no problem to a computer), as because of the 
number of different bits of information it requires. In particular, it needs 
the estimates of 1, m from the Harter-type analysis, query specific 
estimates of pf and qf (which, like p and q, might be taken from relevance 
feedback data), and values of K for each document-term pair. However, there 
is a sufficient theoretical justification to attempt some experiments (at 
least) on the formula, even if we may subsequently look for some 
simplification of it for practical purposes. 

4.4 Estimation of TPI 

As with BI, we suppose first of all that we have complete relevance 
information: that is, we know the set of relevant documents (which have 
A=1). Unfortunately, we do not know the elite set for a term exactly: our 
knowledge of it is probabilistic, based on term occurrence data. So the 
estimation of pf and qf is not quite as obvious as that of p and q. The 
following argument, however, provides us with plausible estimates. 

For a given term, we can calculate the probability that any specific 
document belongs to the elite set, based on the number of occurrences of the 
term in the document: 
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uk = P(E=1 i K=k) 

for which an expression has already been given (5). 

Given the relevant documents, we wish to estimate 

pf = P(E=1 i A=1) 

and an appropriate estimate would be 

Number of relevant documents in the elite set 

p . = 
Total number of relevant documents 

We do not know the numerator, but we can obtain an expected value for it: 
the sum, over the relevant documents, of the probability of each document 
belonging to the elite set. Using this value, we can write 

/_ 

V 
/ 

^Auk 

A 

where in each case the sum is over all documents. Since u^ is the same for 
all documents with the same K value, we can cumulate by K value: 

\ 

Pf = /_ fkuk 

k 
(10) 

where f^ is the proportion of relevant documents having k occurrences of 
the term. Similarly, 

\ 

l! = / fkuk (11) 

where f^ is now the proportion of non-relevant documents having K=k. 

Again following the BI example, we may reasonably use estimates of the same 
form if we have only partial relevance information. Then f^ in (10) would 
be the proportion of known relevant documents having K=k, and in (11) it 
would refer to the remaining documents (the complement set). 

It is also possible, in the absence of any relevance information, to make 
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plausible guesses for p ' and qf
f following the example of Croft and Harper's 

(1979) guesses for p and q. Some such guesses are discussed below (in 5 ,9) . 

4.5 Mixability of independence weights 

One further comment should be made here about the general weighting scheme 
discussed above. The breaking down of formula (1) into its components (2) 
under independence assumptions does not depend on the various components 
being similar in nature. One might, for example, have some components (say 
words in text) which have 2-Poisson characteristics, and thus should be 
weighted according to (9), and others (say assigned index terms or authors 
or citations) which are essentially binary, and thus should be weighted 
according to (3). The two sets of weights would then (according to the 
theory) be strictly compatible, and could therefore be used in combination 
in weighted retrieval. 

No experiments with such mixings are reported here, but the theoretical 
result is a powerful and potentially important one. 

5 Experiments 

5.1 Overview of the experiments 

In this section, we present the results of a series of experiments on one 
test collection. The purpose of these experiments was to test some of the 
theoretical ideas discussed above. In particular, we have 

(a) repeated some earlier experiments using binary independence weights on 
unexpanded and expanded queries; 

(b) performed a Harter-type analysis of distributional characteristics of 
terms; 

(c) tested some simple weighting schemes based on the Harter model (query 
terms only); 

(d) tested the full 2-Poisson independence weights in various ways (query 
terms only); and 

(e) tested the use of some Harter-type indexing criteria. 

Descriptions of the test collection used and the experimental method follow. 
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5.2 The NPL data 

The NPL test collection consists of the titles and abstracts of about 11000 
documents, together with a set of queries and corresponding relevance 
assessments. The material was originally prepared by Vaswani and Cameron at 
the National Physical Laboratory, and this is described on pp. 9-13 of their 
report (1970). For the purpose of experimentation, we have represented each 
document by a vector of the terms which index it, and the terms are derived 
from the title and abstract for the document by discarding the common words 
(AND, ARE, BY etc.) and applying a stemming algorithm (see Porter, in press) 
to the remainder. A document d is therefore indexed by a list of terms t<|, 

2̂» where each t- corresponds to a word stem derived from the 
original text representative for the document, t̂  will have a document 
frequency k^, the number of times the stem of tj_ occurs in the document 
representative, n^ will denote the number of documents in which t^ 
occurs, and we will usually drop the suffixes, so that k and n are frequency 
parameters of term t. 

The queries are set up as vectors of terms in an analogous way, and the 
relevance assessments consist of vectors of document numbers. The following 
table provides a brief summary of the NPL data: 

number 
max length 
min length 
total length 
average length 

documents 

11429 
105 
1 

228087 
19.96 

inv 

7491 
2511 

1 
228087 
30.45 

queries 

93 
13 
2 

664 
7.14 

inv I 

337 I 
19 ! 
1 ! 

664 i 
1.97 ! 

relevance 
assessments 

93 
84 
1 

2083 
22.40 

inv 

1735 
6 
1 

2083 
1.20 

Thus the third column shows that there are 93 queries, with an average 
length of 7.14 terms (total length = 664) ranging from 2 to 13 terms. The 
columns headed inv show the statistics for the inverted structures. Thus 
the inverse of the term vectors of documents is a set of vectors containing 
document numbers, which give the documents in which the various terms occur, 
and the second column shows that there are 7491 terms in the collection, and 
each term occurs in an average of 30.45 documents, the most frequent term 
(highest n value) occurring in 2511 documents. 

A number of changes were made to the original text of the collection in the 
form in which we received it. About 1900 edits were applied to the text to 
remove some of the gross typing errors. This task had been beyond the 



resources of the original investigators. 142 documents were removed which 
had been inexplicably duplicated in the collection, and the document numbers 
were reduced accordingly. Finally, the queries with empty relevance 
assessments were discarded. 

5.3 Appropriateness of the NPL test collection 

The NPL test collection is an unusually large one. This was important in 
testing the Harter model, since a substantial amount of term frequency 
information was required in order to be able to get good estimates of the 
parameters 1, m and h for each term. Three points, however, must be made: 

1) The term frequency information is derived from document abstracts, not 
from the entire document text. Following Harter, we felt that this was 
acceptable since, like the document text, the abstract is a piece of 
continuous prose containing words which will fall into two classes, those 
appropriate and those not appropriate for indexing the document. Furthermore 
we were naturally interested in the applicability of the model to the 
typical IR environment where the document representative will contain little 
more than the document abstract. 

2) The removal of the common words (AND, ARE, BY etc.) could be left to the 
Harter model. The list of common words is however short (just 251), and the 
words in it are very neutral in meaning, and it was felt to be 
unexceptionable to remove them at an earlier stage. 

3) The Harter model is being applied here to word stems rather than words. 
Harterfs argument for using words is discussed above. 

5.4 Estimating the Harter parameters 

In deriving 1, m and h for each term, Harterfs estimation method was used, 
whereby 1 and m are the roots of 

al2 + bl + c = 0 

where 

a = M2 - L, b = K - LM, c = L 2 - MK, 
and M = R1, L = R2 - R-| f K = R3 + 2R-| - 3R2, 

R1» R2» R3 b e i n8 the first three sample moments of the distribution. 
And h is given by 

M - m 
h = 

1 - m 
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Various degenerate cases can arise, which are dealt with as follows: 

if b2 - 4ac <= 0 set 1=M and m=0, 
if m < 0 set 1=L/M and m=0, 
and then, unless 0 < h <= 1f set 1=M and m=0, and recompute h. 

In fact, for the majority of these terms, one or other of these degenerate 
cases will apply. This is because, for the low frequency terms, there is 
insufficient data to separate out the two Poisson distributions, and the 
Zipfian distribution of the terms guarantees that the majority will be of 
low frequency. But this does not necessarily matter, since the 'important1 

terms in a collection (those that get used in queries) are usually of high 
to middle frequency. 

As an illustration of the use of Harter's model with the NPL data, the 
following table gives a list of 40 nearly equifrequent terms taken as a 
continuous batch from the term frequency ranking, and arranged by decreasing 
z, Harter's measure of term effectiveness, equation (6). Each term is given 
by a representative word corresponding to the stem 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

term 

RESPONSE 
MAXIMUM 
CHARGE 
ELEMENT 
COUPLE 
IMPEDANCE 
RECORD 
SOURCE 
PLASMA 
AMPLITUDE 
VALVE 
CONSTANT 
COMPONENT 
DIRECT 
NUMBER 
APPROXIMATE 
FORMULA 
CHANGE 
TERM 
PERIOD 

z value 

1.41 
1.20 
1.18 
1.09 
1.07 
1.07 
1.03 
0.99 
0.99 
0.94 
0.90 
0.89 
0.84 
0.81 
0.78 
0.78 
0.75 
0.74 
0.73 
0.72 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

term 

INCREASE 
PROBLEM 
MICROWAVE 
LINEAR 
PROPAGATE 
NEW 
SIMPLE 
TECHNIQUE 
VARIOUS 
DEPEND 
PRODUCE 
EXPRESS 
DUE 
INCLUDE 
POSSIBLE 
ELECTROMAGNET 
GIVE 
ACCOUNT 
REPORT 
SEE 

z value 

0.72 
0.70 
0.69 
0.64 
0.57 
0.57 
0.55 
0.52 
0.46 
0.45 
0.42 
0.40 
0.40 
0.37 
0.35 
0.34 
0.28 
0.26 
0.23 
0.18 
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5.5 Presenting the experiments 

In each of the experiments in which the queries are matched against the 
documents, recall and precision values are obtained using the standard 
recall cutoff method (van Rijsbergen, 1979). A result can be presented in 
the form of a simple table as follows: 

Coordination level match 

recall 

0 
10 
20 
30 
no 
50 
60 
70 
80 
90 
100 

precision 

59.91 
49.07 
37.62 
30.59 
24.94 
20.36 
13.22 
10.61 
7.23 
4.72 
2.23 

This shows the percentage precision at the percentage recall values 0t 10 
... 100 using a coordination level match on the NPL collection. The label 
(1) will identify the experiment. To abbreviate this table, the recall 
column will be omitted, the precision will be given to the nearest percent, 
the recall 0 value, which is untrustworthy, and the recall 100 value, which 
is relatively uninformative, will be omitted, and the whole written on one 
line as: 

49 38 31 25 20 13 11 7 5 [1] C 

where C indicates 'Coordination level match1, and the experiments are 
identified by a number in square brackets possibly followed by a letter e.g. 
[5x]. When an experiment is being presented merely for comparison, it is 
prefixed with 'cf.f, thus 

54 45 37 31 24 18 15 10 6 [2] log(N/n) 
cf. 49 38 31 25 20 13 11 7 5 [1] C 

In [2] each term is given a simple form of collection frequency weight, 
namely log(N/n) where N is the collection size. 
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5.6 Collection frequency experiments 

A number of experiments were 
to provide a basis for compar 
collection was split into two 
constituting one half (the E 
constituting the other half ( 
half only was used, and in ex 
experiments [2p] and [2q] the 
derived from the whole collec 
were derived from the 0 and E 
follows: 

performed using the term weight log(N/n)f so as 
ison with other retrieval methods. The document 
halves, the even numbered documents 

half), and the odd numbered documents 
the 0 half). In experiments [2a] and [2p] the 0 
periments [2b] and [2q] the E half only. But in 
values of N and n for each term weight were 

tion, while in experiments [2a] and [2b] they 
halves respectively. The results were as 

57 48 39 33 28 21 17 12 
57 49 39 33 28 21 17 12 

cf. 54 45 37 31 24 18 15 10 

8 [2p] logCN/n) to 0 
8 [2a] log(N/n) 0 to 0 
6 [2] log(N/n) 

56 48 38 31 26 23 17 14 10 [2q] log(N/n) to E 
57 48 39 30 26 22 17 14 10 [2b] log(N/n) E to E 

cf. 54 45 37 31 24 18 15 10 6 [2] log(N/n) 

fE to E! means that the the parameter estimates were derived from the E half 
and that the retrieval run was done on the E half, !to E1 means that they 
were derived from the whole collection and applied to the E half, and so on. 
Although performance on the 0 and E halves differ from each other and also 
from performance on the whole collection, it will be seen that [2a] nearly 
equals [2p] and [2b] nearly equals [2q]. This type of equality will be 
assumed in the sequel, where, in experiments on the half collections 
involving the Harter model, the Harter parameters are in fact estimated from 
the whole collection. 

5.7 Binary independence weighting experiments 

Seven experiments were performed on the BI weight using formula (8). In [3] 
the BI weights were derived using the entire relevance set. In [3a] the BI 
weights were derived from the relevance set in the 0 half and then the 
retrieval run was performed on the 0 half. In [3d] the BI weights were again 
derived from the relevance set in the 0 half, but then the retrieval run was 
performed on the E half. [3b] and [3c] correspond to [3a] and [3d] with 0 
and E interchanged. In [3e], the BI weights were derived from the relevant 
docs occurring in the top 20 rank positions in a coordination level match on 
the E half. The retrieval run was then performed on the 0 half. [3f] is [3e] 
with 0 and E interchanged. 

Experiments [3], [3a] and [3b] can be thought of as providing upper bounds 
for retrieval performance using BI weighting. [3e] and [3f] simulate a 
retrieval situation in which the user discovers relevant documents among the 
D highest ranking documents by coordination level match (here D=20)f and 

-55-



this relevance information is used by the system in a further retrieval run 
[3c] and [3d] provide upper bounds on the performance of [3e] and [3f] as D 
is allowed to increase to infinity. The results are as follows: 

69 59 51 44 37 28 22 16 10 [3] BI 

70 63 55 47 42 34 27 18 12 [3a] BI 0 to 0 
65 56 46 38 34 26 21 15 9 [3c] BI E to 0 
59 50 40 33 29 22 18 12 8 [3e] BI E/20 to 0 

73 66 57 49 42 35 26 23 16 [3b] BI E to E 
62 56 49 39 34 29 21 17 12 [3d] BI 0 to E 
60 52 43 35 30 25 17 14 10 [3f] BI 0/20 to E 

5.8 Simple weighting from the Harter model 

Several simple weighting formulae are suggested (in a somewhat ad hoc 
fashion) by the Harter model (simple in the sense that they use the 
distributional characteristics of terms, but no individual within-document 
frequencies). 

The parameter h in the Harter model plays a similar role to collection 
frequency (n/N) in ordinary binary indexing. Since collection frequency 
weighting is known to be of value, this suggests trying -log h as a weight: 

55 45 37 30 25 19 14 10 6 [4] -log h 
cf. 54 45 37 31 24 18 15 10 6 [2] log(N/n) 

As predicted, -log h provides a weight comparable in performance to 
collection frequency. 

Now Harterfs z measure: 

cf. 54 45 37 31 24 18 15 10 
54 43 35 29 23 16 12 9 

cf. 49 38 31 25 20 13 11 7 

6 [2] log(N/n) 
6 [5] z 
5 [1] C 

There are good theoretical reasons (Croft and Harper, 1979) to suggest that 
a successful term weight will have a collection-frequency type of 
distribution. Harterfs z weight does not have this, and the placing of [5] 
between [1] and [2] indicates that z gives a useful discrimination to 
equifrequent terms, but does not scale correctly over the entire range of 
terms with different frequencies. An attempt can be made to force a 
collection-frequency type of distribution by multiplying the z weight by 
log(N/n). The result is: 
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cf. 69 59 51 44 37 28 22 16 10 [3] BI 
60 50 41 33 26 20 15 11 7 [6] z log(N/n) 

cf. 54 45 37 31 24 18 15 10 6 [2] log(N/n) 

This is an attractive result, giving, at the high recall end, a performance 
mid-way between the collection frequency weight and the BI upper bound. In 
fact, the weight z log(N/n) operating on the half collections will 
outperform the relevance feedback experiments E3e] and C3f3: 

61 52 39 34 29 22 18 13 8 [6a] z log(N/n) to 0 
cf. 59 50 40 33 29 22 18 12 8 C3e] BI E/20 to 0 

63 54 44 37 32 27 20 15 11 [6b] z log(N/n) to E 
cf. 60 52 43 35 30 25 17 14 10 [3f] BI 0/20 to E 

But it is unfortunate that we have not been able to derive a weight of this 
kind directly from the Harter theory. 

A more complex (but still ad hoc) weight is the b weight (Harter1s beta) 
defined above (7K This does use the individual within-document frequencies, 
K, and performs as follows: 

52 44 35 30 23 16 12 9 6 [7] b 
cf. 54 43 35 29 23 16 12 9 6 [5] z 

60 51 41 34 28 20 15 11 
cf. 60 50 41 33 26 20 15 11 

7 [8] b log(N/n) 
7 [6] z log(N/n) 

It can be seen that b and z perform in about the same way. This means that 
we are not making any effective use here of the within-document information 
about each term. 

5.9 2-Poisson independence weights 

In the formulae of (10) and (11) p! and qf are derived from a certain set of 
relevant documents, and the complement of that set. Calling either set S, p1 

and q' are estimated by 

\ 
/ fkuk 

where fk is the proportion of documents in S having k occurrences of term 
t, and #£ is P(doc inl^ik). The summation here does not involve many 
terms, since f^ quickly becomes 0 as k increases. 

The experiments conducted with the TPI weighting scheme, equation (9), are 
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entirely analogous to experiments^] to [3f], and are as follows: 

71 

74 
61 
57 

74 
61 
61 

60 

67 
53 
48 

64 
51 
53 

49 

56 
42 
38 

55 
44 
43 

42 

48 
36 
32 

49 
37 
35 

35 

43 
32 
28 

42 
32 
29 

27 

36 
25 
21 

35 
27 
24 

20 

28 
19 
16 

26 
21 
18 

15 

20 
13 
10 

22 
17 
14 

10 

15 
8 
6 

17 
12 
10 

[9] TPI 

[9a] TPI 0 to 0 
[9c] TPI E to 0 
[9e] TPI E/20 to 

[9b] TPI E to E 
[9d] TPI 0 to E 
[9f] TPI 0/20 to 

A comparison with [3] to [3f] shows that usually the TPI in its present form 
performs about the same as (perhaps slightly worse than) the BI model. 

A simpler approach to the TPI weight is to make plausible guesses for the 
values of p1 and qf. The guesses p!=1 and qf=0 have the merit of simplifying 
the formula to k log(l/m)t although as guesses they are not too plausible 
since they involve the assumption that for each query term the elite set is 
the relevant set. Despite this, k log(l/m) does even worse than we expected. 
On the other hand, it was found empirically that log(l/m) as a weight 
(another simple weighting scheme) does quite well: 

32 25 19 16 13 10 9 7 5 [10] k log(l/m) 
56 46 37 28 23 18 14 10 6 [11] log(l/m) 

The natural guess for q? is h. With pf then ranging from 0 to 1, various 
performance figures were obtained, which outperformed collection frequency 
weighting for pf >= 0.3, and which reached a peak at about pf=0.5. The 
pf=0.5 estimate performed as follows: 

57 48 40 32 26 21 16 11 8 [12] TPI pf=0.5 qf=h 
cf. 54 45 37 31 24 18 15 10 6 [2] log(N/n) 

Comparing experiment [12] with the best simple weight z log(N/n) (neither 
using relevance information), we find similar overall levels of performance 
but differently shaped curves: 

cf. 60 50 41 33 26 20 15 11 7 [6] z log(N/n) 
cf. 57 48 40 32 26 21 16 11 8 [12] TPI pf=0.5 qf=h 

5.10 Harter indexing experiments 

In the main document collection, and in particular for all the experiments 
involving binary indexing, each document is indexed by every term within it. 
Instead of using Harter-model ideas to weight the terms, we might follow 
Harterfs original suggestion of applying indexing criteria to decide whether 
or not to apply a term under given conditions. This could have the effect of 
reducing the collection, i.e. of discarding some term assignments previously 
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made. 

As has been noted above, Harter's final indexing criterion contains an 
obvious mistake, and so cannot be used directly. His other criteria involve 
assessments of cost to the user, and so again are not accessible to us in 
this case. Instead, we tried two very simple criteria: 

a) Index if and only if P(E=1 i K=k) > P(E=0 | K=k) 
or equivalently P(E=1 ! K=k) > 0.5 

b) Index if and only if P(E=1 I K=k) > P(E=1) 

!

r equivalently P(E=1 i K=k) > h 

inor variants on these criteria. 

The indexing strategy could then be evaluated by comparing the performances 
of the same retrieval method used with the main and the reduced document 
collections. With these experiments the results have been entirely negative: 
removal of terms from the main file degraded performance, and the more terms 
removed, the greater the degradation became. 

5.11 Query expansion experiments 

Our results on query expansion using the NPL data are disappointing We have 
not been able to achieve any significant improvements over non-expansion. We 
have repeated experiments done previously in which the query was expanded 
and the resulting set of search terms then weighted by BI. Once again the 
results have been conflicting. On the one hand when the feedback experiment 
is evaluated by residual ranking the performance of the expansion does not 
differ significantly from that for non-expansion. On the other hand using 
the half-collection technique we found that query expansion degraded 
performance. The reason for this remains unclear and needs further 
investigation. 

6 Discussion 

The theory of probabilistic retrieval can be applied to various bits of 
information about The documents, the simplest idea is to apply it to query 
terms only, and binary indexing (terms present or absent). Beyond this, one 
might consider various additional bits of information, in particular, index 
terms other than query terms, or within-document frequencies of terms. For 
the latter, we can imagine three different ways of using within document 
frequency information: 

(a) locally only, that is, to use the occurrences of terms in a particular 
document to aid in the decision whether to retrieve that document or 
notj 

-59-



(b) globally, that is, to use the statistical properties of occurrence 
distribution of terms as a guide to the use'of those terms in retrieval; 

(c) globally and locally, that is, to combine general statistical 
characteristics of terms with document-specific information. 

The 2-Poisson model on which much of the work in this paper is based does 
not have anything to say about possibility (a). It does suggest (in a rather 
ad-hoc manner) some possibilites for (b), but principally it leads to (c). 
Again, there are two possibilities for (c), namely that we use the 
information for selective term assignment (as suggested by Harter) or for 
index term weighting. The major theoretical contribution of this paper is 
the development of an appropriate weighting scheme. Experimentally, we have 
tested some of the ideas on one test collection. All conclusions must be 
tentative at best until other collections have been tried. However, the 
principal conclusions to be drawn from this series of experiments are as 
follows: 

I 
There is benefit to be gained from using within-document frequency on a 
global basis. 

II 
The local-and-global use of within-document frequencies appears to have 
potential, but does not (in the form proposed here) match simpler 
methods. 

Ill 
Our experiments confirm earlier ones on the difficulty of gaining 
substantial improvements by expanding the query. 

A possible reason for the slightly disappointing performance of the 
2-Poisson independence weighting scheme lies in the problem of estimation. 
This area is known to cause difficulties with binary independence weights, 
and there are many more parameters to estimate with TPI. 

Apart from repeating some of the experiments on different collections, we 
might therefore suggest two further lines of work. The first is to delve 
more deeply into the estimation problems, and the second is to look for a 
better theoretical explanation of the performance of the global-only 
methods. For the latter it seems likely that these methods work well because 
they are related in some way to TPI (as collection frequency is related to 
BI). 
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