
- Dl -

SECTION D : Computing 

This section is intended simply to constitute a short note on our 
computational procedures, to indicate our approach and resources, and not 
in any way to provide an exhaustive technical description. It summarises 
first our treatment of data, and second our program facilities. 

I Data 

It will be evident from previous sections in the Report that our 
collection, and especially document, data is much simpler than that used 
in operational systems in that we concentrate only on index terms and can 
disregard bibiliographic detail, etc. It will also be clear that the static 
character of test collections, even where natural language rather than 
controlled language indexing is involved, means that bulky verbal material 
can be replaced by simple numerical data, with identifying number names 
for keywords or stems. A further point is that as the request and relevance 
sets are known in advance, files can be set up embodying all term matching 
information, for example, which may be more economical for repeated search 
experiments than regular files. Our standard data formats are therefore 
primarily for a range of simple data structures with numbers (typically simply 
positive or negative integers including zero) as primitive elements. We have 
found that while particular bodies of data having these structures may 
have very different interpretations, our processing requirements for many 
different purposes can be effectively met by common programs based on 
standard formats. 

Of course, such ideas are by now common places of data management, 
but in the past information retrieval projects have tended not to aim 
at generality of data structures of processing, largely because they have 
been relatively short term, or have been closely associated with operational 
services having their own specific formats and operations. We have 
noticed an increasing payoff, in research over a relatively long period, 
from our emphasis on standardisation, and in particular have profited 
from cur habit of setting any collection up in standard form before 
conducting any experiments with it, even though this may be a non-negligible 
effort. Our standard form collections are also, we hope, more portable and 
easily exploited than some of our collections have been in the forms in 
which we initially received them. 

1 Data Formats 

From the interpretive point of view our data structures may be 
divided into two main groups, and this is a convenient way of presenting 
them here; but it must be emphasised that different data sets with the same 
format may have quite different interpretations, and that there may, as will 
be described below, be overlaps between standard form collections in 
predominantly different formats. 

a b data 
Our initial data sets were mostly in a b form. A data set in this 

form consists of a list of a elements (numbers) each having a list of b 
elements. The list of a's is terminated by our standard terminator '/'# 
and each b list is similarly terminated. Examples of a b data are: 

a set of documents (names) each characterised by a list of terms (names) 
a set of requests (names) each characterised by a list of relevant 
documents (names) 
a set of terms each characterised by a list of documents. 



• D2 -

The constraints on a b data are that the a's must be in ascending order, 
without duplicates, and equally the b's in a specific b list. There is, 
however, no requirement that either a's orb's in a list should be 
successive, and a or b lists may be empty (but correctly terminated). 

p q data 
A natural associate of a b data is the p q list or information list: 

this consists of a single list of number pairs terminated by '/': i.e. 
each p number has an accompanying q. Examples of p q data are: 

a set of documents each with the number of terms it contains 
a set of requests each with the number of its relevant documents 
a set of terms each with the number of documents in which it occrs. 

Clearly in this structure each p mentioned must have its q, even if this is 
only zero. The p's must again be in ascending order without duplicates, 
but need not be successive. 

a b c data 
One extension of a b data is a b c data, where each b has an 

accompanying c element, i.e. each a has a list of b c pairs. Examples are: 
a set of documents each characterised by a list of terms, each term 
having a weight 
a set of terms each characterised by a list of cooccurring terms and 
cooccurrence values. 

The general constraints on a b c structures are as for a b structures, with 
the additional requirement that each b has its c. 

a b b data 
As noted in the text, the UKCIS profile data called for treatment 

rather different from that adopted for the other collections, as the profile 
terms consisting of word fragments, word strings etc. could not be 
treated in a simple way as items in a document-derived term vocabulary 
list: a word fragment corresponds to a set of document words defined 
essentially arbitrarily at search time and referring to only one of many 
possible groups. This led us to data sets acceptable in an experimental 
context with a closed collection, embodying information about the occurrence 
of each profile term in the document set, i.e. representing request document 
matching. The format is a list of a's, each a having a list of b's 
(referred to as bl's), with each bl having a furtherlist of b's referred 
to as b2's; each list is terminated in the usual way. The format is in 
fact quite generally useful, though originally designed for a specific 
purpose. Examples are 

a set of profiles each with a list of profile terms, the latter 
each with a list of documents 
a set of profiles each with a list of relevant documents, the latter 
each with a list of terms. 

The constraints are similar to those for a b data, namely that the a's, 
bl's and b2's must all be in sort order; an a may have no bl list, and a bl no 
b2 list. 

The corresponding information list has an already defined format, 
namely a b c. Thus for the first example above we may have a document count 
for each term. 

Once these schemes are familiar, a variety of extensions are easily 
made and handled, for example a b c c data; the general concepts are also 
naturally applied to cases where one type of element is a word: for example 
we may have an analogue of a b data consisting of document names followed by 



- D3 -

word lists with regular terminators, or of a p q list consisting of term 
names each accompanied by a word. The use of common formats has in particular 
made us appreciate that programs originally thought of in one context for 
one specific application may have a far wider utility. For example, a 
program designed to supplement request relevant document lists with the 
latter1s term lists is equally a program to expand request term lists 
with the latter1s document lists. Of course, not everything is as tidy as 
the foregoing would suggest; but the general picture is solid enough: 
for example the initial processing of data obtained from elsewhere will 
typically produce many intermediate ad hoc files; and some program outputs 
giving, for instance, retrieval perofrmance or data analyses, fall outside 
the framework. 

2 Standard Collections 

The standard formats for our collections consist of a set of stream 
embodying the basic document request and relevance information. We 
have two types essentially associated with non-matched and matched request-
document sets respectively. The former, relying primarily on the a b format, 
has been used for most of our collections, the latter, relying on the 
a b b format, has mainly been used for the UKCIS profile collections, 
though as it has proved convenient for some experiments we have begun to 
extend some of our older collections in this way. 

The two forms are as follows: 

(a) non-matched collection 
This represents a collection as available for retrieval experiments, 

with associated information. 

Part 1 Stream 0 Documents with term numbers 
1 As 0, but documents serially numbered 
2 Requests (serially numbered) with term numbers 
3 Requests with relevant document numbers 
4 Conversion list for real-serial document numbers 
5 Term dictionary - i.e. words representing the alphabetically 

first member of each keyword group based on a common stem, 
with numbers, numerical order 

6 Term dictionary, alphabetical order, if different from 5 
7 Documents with terms 
8 Requests with terms 
9 Inverted documents - i.e. inversion of 0 

10 Inverted requests - i.e. inversion of 2 
11 Inverted relevant documents - i.e. inversion of 3 
12 Document term frequencies - i.e. summary of 0, giving the 

number of terms per document 
13 Request term frequencies - i.e. summary of 2 
14 Relevant document frequencies - i.e. summary of 3 
15 Distribution data : see below 

Part 2 Stream 0 Term document frequencies - i.e. summary of 9 
1 Term request frequencies - i.e. summary of 10 
2 Relevant document request frequencies - i.e. summary of 11 
3 Conversion list for original-serial request numbers. 

Distribution data 
This analyses PI S12,13 and 14 and P2 S0r 1 and 2. 

Using the Keen Documents Distribution information as an example, we have 

it 

Owing to extreme antiquity there are small variations in the standard pattern for 
some collections e.g. for stream 4 the order may be real-serial, or serial-real. 
There is also some variation in whether the names of empty items are given e.g. 
in stream 9. 



~ D4 -

MIN a identifying number of the shortest item (or first equal shortest) 
and its length: thus document 317 has 1 term 

MAX = identifying number of the longest item (or first equal longest) 
and its length: thus document 512 has 20 terms 

NOS ss number of items: thus there are 797 documents 
TOT = total of item lengths - in this case total postings: thus there 

are 5729 postings 
AV s» average item length: thus there are seven terms per document. 

NB that for some old data the integer part only, not rounded, 
is given. 

There follow the numbers of items having given lengths: thus there is 
1 document of length 1, 30 of length 2, 48 of length 3,etc. 

(b) matched collection 
This represents a collection after document matching for request terms 

(which typically consists of a fragment, but may also consist of a multi-word 
string, which may match different words in different documents, or different 
strings), with associated information. 

Part 1 Stream 0 Requests (serially numbered) with document numbers each 
with matching request term numbers, the latter internal 
to requests and referred to as idnos 

1 As 0, but document numbers serial 
2 Nil 
3 Requests with relevant document numbers 
4 Coversion list for real-serial document numbers 
5 Term, i.e. word dictionary, usually without stop words 
6 Term dictionary, alphabetical order, if different from 5 
7 Documents with terms, i.e. words, as texts, including 

stop words 
8 Requests (serially numbered) with idnos and terms, and 

any other e.g. Boolean structural information 
9 Inverted matched requests, i.e. inversion of document 

number/idno information of 0, per request 
10 Nil 
11 Inverted relevant documents, i.e. inversion of 3 
12 Requests with document term frequencies, i.e. summary of 0 
13 Request term frequencies, i.e. summary of part of 8 
14 Relevant document frequencies, i.e. summary of 3 
15 Distribution data: see below 

Part 2 Stream 0 Requests with term document frequencies, i.e. summary of 9 
1 Nil 
2 Relevant document request frequencies, i.e. summary of 11. 
3 Conversion list for original-serial request numbers 

Distribution data 
This analyses PI S12,13 and 14 and P2 SO and 2 

The format is the same as for the standard collection, but where three 
rather than two level data is involved i.e., PI S12 and P2 SO, the identifying 
numbers of the shortest and longest items involve a specific request 
number reference. 

Note that as the collection embodies matching information there is no 
direct distribution information about words and documents, but only about 
matching terms and documents, where terms are specific to requests. 



- D5 -

II Programs 

By now we have built up a substantial general purpose suite of 
programs. The programs fall (roughly) into seven classes, respectively 
concerned with 

(a) creating standard data 

(b) manipulating standard data 

(c) information gathering 

(d) classification 

(e) weighting 

(f) retrieval 

(g) evaluation 

Our philosophy has been that it is more useful, given the unexpected 

directions that research can take, to devise solid data formats and to allow 

many individual programs for carrying out relatively specific operations 

on a body of data. In early projects we built a few large, multi-purpose 

(i.e. multi-option) packages, but these proved costly and inflexible, and 

we have found our current approach much more satisfactory. Our programs 

are written almost entirely in BCPL, and are run on the University's 

3 70/165 computer, on which an extremely good service is provided. Runs 

typically take, say, 1-5 seconds for simple processing of smaller data 

sets, such as inverting a request set or carrying out coordination term 

matching on the 42 x 200 C200T collection, and 20-30 seconds for data 

set generation or retrieval for the U27000P collection. Our suite contains 

over 200 different programs, amounting to perhaps 20,000 lines of code. 

Creating standard data 

As our collection data has been obtained from various sources programs 

have been required to extract material of interest from a range of miscellaneous 

tape and file formats, and from a mass of mixed information. These have 

unfortunately not always been trivial, but are not usually of general 

interest. The more important, general programs in this group are those 

for word processing: they include those for removing stop words, for sorting 

word lists, for setting up dictionaries, for suffix stripping, and for 

dictionary matching. The last, for example, is done by two-letter table 

lookup for simple word matching, and by character inclusion check followed 

by string matching for front-truncated fragment matching. 

Later stages in collection creation are dealt with by standard data 

manipulation routines. 

Manipulation standard data 

This group covers a range of programs for operating on data in the 

standard formats described earlier. In particular there are corresponding 

programs for a b data and for a b b data, and some of the programs are designed 

to deal with data sets too large for in-core operations. Altogether there 

are a large number of programs in this group, including ones for sorting, 

inverting, intersecting and merging data sets in different formats, and 

for a wide range of selection and expansion procedures using one data set, 

say of p q type, to control derivation from another of a b or a b b type. 

A characteristic example is a routine to replace the b elements in one a b 

data set by those in a second. 

Information gathering 

The routines in this group are chiefly relatively simply frequency 

counting ones, for different standard formats, but it also includes programs 

for comparing data sets, for collecting the distributional information given 



- D6 

in the standard collection characterisations, and for providing more 
detailed information like that embodied in the Q values for individual 
terms described in Section B. The cluster hypothesis test program also 
falls into this category. 

Classification 
Earlier research involved a considerable number of classification 

programs but these were not transferred to the 370, and the current range 
is fairly limited. It comprises programs for obtaining cooccurrence 
arrays, for computing similarities, and for constructing simple star-type 
classes. 

Weighting 
The routines in this group cover the provision of the various forms 

of weighting we have studied for both a b format and a b b format collections. 
Thus there are simple programs for obtaining collection frequency weights 
and rather more complex ones for computing the four types of relevance 
weight in both their straightforward and special case versions. 

Retrieval 
Corresponding to the two types of data are two main sets of retrieval 

programs producing output by matching levels. They include programs for 
unweighted term matching and for different kinds of weighting: we have 
found separate programs for the various cases more efficient than one 
global one with many options. The programs are mainly quite simple, but 
those for relevance formulae. F3 and F4 are more complex since term absence 
as well as presence is covered. For a b data the programs make a single 
pass of the document file against the inverted requests and relevance 
judgements; for a b b data the basic data already gives request document 
matching information so the single pass is only against relevance, and in 
some cases weighting information. There is a separate set of programs, 
necessarily more expensive, for producing ranked output, and a further set 
for Boolean matching. In addition, programs are available providing detailed 
performance for individual requests. 

Evaluation 
Though the main retrieval programs produce our standard recall and 

precision results, we have other routines for characterising performance 
according to our various alternative methods, for example giving cumulative 
effectiveness. 

Overall, our program sets include routines suited to most contexts, 
allowing us to conduct equivalent experiments with data in different formats. 
New collection preparation requires a good deal of time, particularly if 
the collection is large, but many of our data processing operations and 
comparative retrieval experiments can be performed in a very straightforward 
way. We can also by now carry out new tests within our general range of 
tests quite easily, with little additional programming effort. 

Note on stemming 
The stemming procedure is fully described in Andrews 1971. It is of a 

straightforward kind involving the use of a single suffix dictionary and con
textual rules for identifying genuine suffixes and for determining stems. 
Thus '-ual1 is not removed from 'equal1 and 'control-1 is found as stem in 
'controlling'. The program works fast and generally correctly. It should 
be emphasised that what stems are found, i.e. what words are conflated, 
depends on the input word list, since there is no stem dictionary. 




