
VI-I

VI. Template Analysis and its Application
to Natural Language Processing

S tephen F. Weis s

Abs trac t

The first section of this paper introduces the three

basic types of templates and the theoretical basics of

template analysis. Building on this, the second section pre­

sents some practical considerations needed for the implementa­

tion of a general template analysis scheme, including the

concept of template keywords. An actual implementation of

template analysis is presented in Section 3 . The scheme

uses template analysis for the extraction of bibliographic

phrases from natural language text. Basic implementation

techniques as well as experimental results are presented.

1. The Basics of Template Analysis

A) Introduction

Template analysis is a technique for partial semantic

analysis of natural language. It consists of matching a

natural language input string against a predetermined set

of templates. A template is a string of one or more words

or special symbols. Its exact meaning will become clear in

the examples that follow. If a match occurs between a complete

template and some part of the input, a specified set of

VI-2

actions is performed. These may involve direct effects which

change the input string or side effects which work on other

data. The process may terminate after the discovery of a

single template match as in ELIZA [3], but more often it con­

tinues until all template matches in the input have been

located and the associated actions performed.

Each template is a string, usually made up of very

common words, which forms the framework of a natural language,

phrase. The template words generally convey little meaning.

They do, however, create a context into which other words

may fit and thus form a meaningful phrase. These words which

fit into the template and bear the crux of the meaning of

the phrase are called the template environment. The words ir

the template thus indicate the existence of a specific type

of phrase as well as qualifying the environment. The

template environment gives specific meaning to that phrase.

Template analysis is basically a two step process. First,

the input is compared with the template set. A match gives

an indication that a certain type of phrase is present.

Second, the environment of the matched segment of the input

is checked. This either provides the exact meaning of the

phrase or rejects the original analysis. The following ex­

amples serve to clarify the meaning of templates and template

analysis. Consider the template:

VI-3

BETWEEN 0_ AND ()

The zeros indicate "holes" where one and only one word may

occur. This template matches phrases A, B and C in Figure 1

It will not match D or E because the holes contain the wrong

number of words.

A.

B.

C .

D.

E.

BETWEEN

BETWEEN

BETWEEN

BETWEEN

BETWEEN

A AND Z

HERE AND THERE

1950 AND 1965

AND BEYOND

LAST YEAR AND NOW

Sample input phrases

Figure 1

A match of this template with an input string provides an

indication of a date phrase. To verify this it remains only

to determine if the words in the template environment, in

this case the two words in the holes, are date indicators.

If such is the case as in C, appropriate action is taken

such as passing the dates to a search program. If as in

A and B the environment check fails, the phrase is rejected.

The environment check can sometimes be eliminated by the

use of a more complete template. Consider the modified

version of the previous template:

BETWEEN 19//// AND 1 9 # #

VI-4

The pound signs indicate the presence of any digit. Of

the inputs in Figure 1, this template matches only C. No

further testing of the environment is needed in this case and

appropriate actions can be taken immediately.

B) Types of templates

There are three basic types of templates. They are

distinguished by the processing required and results achieved

in the two step template analysis process.

1. Certainty (CI). Under certain circumstances the

template match phase provides all the information required to

determine the meaning of a phrase. The environment test is

thus not needed. An example of such a template is the

second of the above examples:

BETWEEN 19// / / AND 19// / /

The template is complete within itself and the environment

test may be omitted. While a high degree of accuracy in

analysis is expected from them, CI templates are not usable

in practice. The large number of templates required to

provide any degree of generality in allowable inputs, along

with the huge task of creating the template list, makes CI

templates impractical for all but a few cases.

2. Conjecture-Certainty (C2-C1). The second type

of template, the C2-C1, is typified by the following:

BETWEEN 0 AND 0

VI-5

where the zeros match any single word. In this case a

template match is not a guarantee of a particular type of

phrase. This example in particular matches inputs A, B, and

C in Figure 1. The system thus only conjectures the existence

of a specific phrase. This decision is subject to possible

rejection depending on further examination of the template

environment. Environment testing may consist of determining

if the environment words are of a specified type or types.

Or it may consist of testing environment words against a

table. In all cases of C2-C1 templates, the template match

produces a conjecture which is then completely resolved by

the environment test, hence the name "conjecture-certainty".

Because of this final certainty, the C2-C1 templates provide

nearly the same high degree of accuracy as do the CI

templates. The analysis of the C2-C1 template matches,

however, is more complex due to the extra testing needed

to provide cortainty. The prime advantage of the C2-C1

templates is that only the frame of a phrase need be

specified. The job of determing the template set is greatly

eased and the number of templates required for each phrase

type is significantly reduced. As an example, in the

small system implemented for this study, journal phrase

detection is accomplished using 18 C2-C1 templates and a

journal list. To do the same job with CI templates alone

VI-6

requires 450 templates, each longer than the present 18.

Savings in search time, storage space as well as template

preparation effort are substantial.

3. Conjecture-Conjecture (C2-C2). The third type of

template is quite similar to the C2-C1 in that it consists of

only the frame of a phrase, and a match yields only a conjec­

ture that a phrase exists. Also like the C2-C1, an environ­

ment test is performed after the match is found. But in this

case the environment test merely weakens or supports the

original conjecture. The result is not certain, but is a se­

cond, and probably better, conjecture and hence the C2-C2

designation. It is apparent that because of the uncertainty

in the final result, analyses with these templates cannot be

expected to be as accurate as those of the CI or C2-C1 types.

The C2-C2 templates are necessitated whenever the environment

for a phrase becomes too large or varied for practical use

of a look-up table or environment testing rules. Such is the

case of author phrases where a list of all possible forms

of all author names is prohibitively large. A template such

as :

WRITTEN BY

may give an indication of a possible author phrase; and there

exist certain rules which may help the decision (see Section

3, part C) . But the final decision of phrase type is still

VI-V

only an educated guess. This, however, is better than no

guess at all, and thus the C2-C2 templates serve a useful

purpose when no other method is applicable.

From the standpoint of generality and ease of

creation and use, the C2-C1 templates seem best. For this

reason the vast majority of the templates used in this

study are of this type. Figure 2 below summarizes the three

types of templates.

Template

t y p e
Decision after
template match

Decision after
environment test

CI

C2-C1

C2-C2

c ertain

conj ec ture

conj ec ture

no t needed

certain

improved conjecture

Summary of template types

Figure 2

C) Applicability of template analysis

The use of template analysis requires an a. priori

knowledge of every type of natural language input that is

to be analyzed. This is specified in the form of the tem­

plates themselves as well as environmental testing rules

and look-up tables. If the input form is quite varied or

unpredictable, then clearly template analysis cannot be used.

In such cases more general and complex forms of syntactic

and semantic analysis are required. But there are some

VI-8

applications in which the input structure meets the criteria

for template analysis. One such application is input from

a console. While the semantic and syntactic structures

that the average person can understand are almost without

bound, the language that a person actually uses, called his

performance grammar, ±s a small subset of his understandable

language. This performance set is further restricted when

the user must type rather than speak his input. The extra

time and effort required to compose and type complicated

sentence structure tend to discourage such actions. When

the further restriction is added that for each input the user

is limited to a specific set of input types, the inputs

become sufficiently predictable to permit effective use of

template analysis. The remainder of this paper explores the

uses of template analysis and describes a working implemen-

tat ion.

2. An Implementation of Natural Language Analysis by Template
Analysis

The theoretical basis of template analysis has been

presented in the previous section. The present section ex­

plores the practical considerations used in the implementation

of an experimental template analysis system.

VI-(J

A) Keyword analysis

Searching an input string against a template set can

often be a very inefficient process. The vast majority of

templates do not match a given input string, and of these

nonmatching templates, the majority do not have even a single

word in common with the input. These templates thus have

no possible chance of matching the given input, and it would

be advantageous to exclude them from the template matching

phrase. For this reason the technique of keyword templates

is introduced. This is similar to the scheme used by

Weizenbaum in ELIZA [3]. The technique entails assigning one

of the words in each template to be the keyword. As the

templates are entered into the system, those with identical

keywords are stored in a group. After all the templates

have been entered, a keyword list is created. The list con­

tains the keyword for each group, and the storage location

of the first and last template for that particular group.

The template matching process begins with a search of the

keyword list. If the particular keyword is contained in

the input, then each member of the associated template group

is searched for a possible match. If the input does not

contain the particular keyword, the associated template set

is ignored. Thus with a single scan of the input, an

entire group of obviously nonmatching templates is eliminated

VI-10

from the set which must be searched. The savings in search

time by keyword templates is quite substantial. These savings

are further enhanced if the keyword is the least likely

word in the template. "Least likely word" is defined as that

word in the template which occurs least often in contexts

other than that of the given template phrase. Consider the

template:

DURING Oi TO <0

Clearly the use of "DURING" as the keyword leads to fewer

unsuccessful match attempts than would the use of "TO". Thus,

by eliminating those templates which have no chance for a

match with a given input, the keyword template facility greatly

streamlines the complex and fairly lengthy template matching

process.

The keyword template technique has a second useful

function; it permits a middle-out template matching scheme.

Without keywords, template matching algorithms require a

decision of where to start. The only solution is to try

every word in the input as a possible first word of the

template. If a match occurs, the next word of the input is

tested against the second template word, and so on. For

long input strings this can be a time consuming process. This

is especially true for nonmatching templates since rejection

VI-11

cannot occur until every input word has been tested. Since

the keyword scheme tests only those templates which have

at least one word in common with the input (i.e., the keyword)

this common word provides an ideal place to start the

search. For inputs with two or more occurrences of the

same keyword, one is designated as the principal key and

searching begins there. Words to the left of the keyword

in the template are tested against words to the left of

the keyword in the input, and likewise for the right; and

hence the middle-outward strategy. Most templates used in

this study have their keyword as either the first or last

element, so that most searching is actually in one direction

only. But the important thing about this technique is that

the search seed, that is the starting point for the search,

is uniquely determined. This also permits rejection of

nonmatches to occur after only a very few tests rather

than after exhaustion of the entire input string. A further

advantage of the keyword process involves the inputs con­

taining more than one substring which matches a given

template. A normal matching process searches the input

left to right and picks out the first of the substrings.

This, however, may not be the intent of the system designer

who in fact may want the second, or possible rightmost,, sub-

VI-12

phrase analyzed first. The solution is easy using keywords.

Inputs with multiple matches of the same template must con­

tain multiple occurrences of the keyword for that template.

By simply designating the desired keyword as the principal

key, the proper substring is analyzed first.

Thus the keyword technique helps in template matching

on two levels. First, it narrows the set of templates which

must be tested against the input, and second it provides

a specific point in both the template and input for the start

of the search. This permits the matching process to run

faster and more efficiently, as required for on-line use.

The template matching process proceeds in a manner

similar to that of a Markov algorithm [13]. The template list

is scanned in top down order until a match with the input is

found. The associated actions are then carried out. The

process is then restarted at the top of the template list.

Of course this necessitates removal from the input string

of matched substrings in order to prevent repeated matching

of that substring. This is generally done by replacing the

substring with a nonterminal symbol appropriate to the type

of template matched. This nonterminal may then be used in

subsequent template matches. The process terminates when the

end of the template list is reached without finding a match.

VI-13

The advantage of the Markov approach is that it

specific hierarchy of templates and ordering of

be imposed in the system, as well as allowing a

template grouping to be maintained.

B) Implementation conventions

The templates shown in the previous examples are

made up of words and are represented alphabetically. While

these are easy to read and understand, they are not practical

for an actual implementation. Alphabetic templates require

large amounts of storage with a variable amount of space

needed for each word. Second, alphabetic searches are quite

complex and time consuming. And third, the use of alpha-

betics makes it necessary that even synonymous templates be

represented individually. For example the templates below

all have the same meaning and associated actions.

WRITTEN BY

AUTHORED BY

PRESENTED BY

The use of alphabetic templates would require that all three

be in the template set. From actual experimentation it

appears that there are in fact many such synonymous templates,

and thus a very large template set can result. Clearly a

enables a

ana lysis to

desired

VI-14

shorthand template representation which overcomes these

problems is desired. For this reason numerical templates and

input vectors are used. The conversion from a word to its

associated numerical concept is achieved through a special

template dictionary. The dictionary is quite small and is

composed, for the most part, of functor type words, that is

conjunctions, prepositions and a few other very common words.

Words not found in the dictionary are assigned the concept

"999" to indicate that they are unknown. The dictionary used

in this implementation contains 140 words which map into 22

concept numbers. The problem of synonymous words is solved

by assigning to the desired words the same concept number.

The numeric input vector maintains the same word order as

the natural language input. The example below shows two

natural language inputs and the numeric vector that results

from either of them. Note the treatment of synonyms and

unknowns.

Input A: PAPERS WRITTEN BY LESK ON CLUSTERING

Input B: ARTICLES AUTHORED BY WEISS CONCERNING
TEMPLATES

Concept Vector: 27 15 12 999 999 999

Sample natural language and
numeric input strings

Figure 3

VI-15

Templates are also stored in numeric form with the

addition of some special conventions explained in the

following paragraphs. In the remainder of this study all

templates and stored input strings are assumed to be numeric.

Occasionally, however, some alphabetic examples may be

presented for purposes of clarity. The use of numeric

representation of inputs and templates clearly solves the

previously mentioned synonymy problem. The resultant

reduction in the size of the template set varies with the

number of synonymous words, in the present implementation 44

templates are required instead of more than two thousand.

Numeric templates also make storage and searching easier.

Unlike an alphabetic string, a number uses a fixed amount

of storage. Comparison of numbers is also easier and

faster than comparison of variable length alphabetic strings.

In general the use of numeric vectors provides a more compact

data representation and facilitates faster and more

efficient processing.

Templates are stored numerically in a similar

manner to that of input strings. They may be entered into

the system in alphabetic form and run through a dictionary

look-up, or they may be entered in numeric form. The

latter is used in this implementation. The general form

of a template is given in the BNF definition in Figure 4.

The reason for the distinction of the digits in lines 5, 6

VI-16

and 7 will become clear in what follows.

1. Template ::= <Parameter part> <Template
element s>

2. Parameter part ::= <Action number> <Key
position> <Length>

3. Template elements ::= <Template symbol>
<Template symbol> <Template elements>

4. Template symbol ::= <Concept number (i.e.,
a number _>11)> | Minus sign ^Concept
number)

5. Template symbol ::= 0 (zero)

6. Template symbol ::= digit 1-9

7. Template symbol ::= 10 (ten)

Formal definition of a template

Figure 4

The act ion number is the identification number of an action

routine which is to be executed if that particular template

is matched. More than one template can have a particular

action numer. The key posit ion indicates the keyword within

the template. And length is merely the number of elements in

the template. A general template is shown below:

55 3 7 15 -16 11 0 18 5 18

The three parameters here indicate that action routine

number 55 is to be called if this template is matched. Also

the template is seven elements in length and the keyword is

in position three of the template elements (i.e., the 1 1) .

VI-17

As shown in Figure 4 the template elements consist

of numbers and certain of these numbers have special

meaning. The simplest form of a template is shown in

Figure 5 along with several sample inputs. The template

consists entirely of concept numbers, that is positive integers

greater than ten. Such a template matches an input if and

only if an exact match of concept numbers, ordering, and

contiguity occurs. The sample template matches the under­

lined portion of input A. It does not match B because

not all the concepts are present; C has incorrect ordering;

and in D the 15 and 16 are not adjacent. In this example

and in all subsequent template samples, the three parameters

are omitted for simplicity.

Template:

Inputs: A.

B.

C .

D .

Example of

15

11

11

1 7

15

the

16 17

9 9 9 15 16 17 18

16 17

15 16

18 16 17

simplest template form
Figure 5

VI-18

Most desired templates can be specified in this form but

there are several drawbacks. First, there is no way to

specify templates with "holes" in them, that is a template

with noncontiguous elements. And second the number of

templates required by this format is fairly large. In

particular there is no facility for combining similar templates,

or templates of which one is a subset of another. Thus, a

shorthand for representing numeric templates is needed. By

combining some of the templates, the size of the template set

is reduced, and search time is also saved since one search

of the combined template replaces the several individual

searches .

The present implementation allows four options in

template specifications. The first is the optional concept.

It is often useful to be able to specify a certain concept

in a template as being optional. The template matches an

input if all the required concepts match. If any optional

concepts also match, this is noted for possible use in

the action routines. An optional concept is denoted by a

minus sign preceding the concept number. In the example

below (given here in alphabetic) the template matches all

inpu t s shown.

VI-19

Templat e: -

Input s : A.

B.

C.

D.

Example of

PUBLISHED IN -THE -YEAR

IN

PUBLISHED IN

PUBLISHED IN THE YEAR

PUBLISHED IN YEAR

optional concept facility

Figure 6 i

The example indicates the usefulness of this technique in

combining several templates. This facility is also useful

in combining the positive and negative forms of a phrase

as is seen below.

p

_

O S

Temp

Inpu

i t ive

late

ts :

and

• ,-,

A .

B.

ne
Fig

NOT PUBLISHED IN

PUBLISHED IN

NOT PUBLISHED IN

gative phrase combinati
ur e 7

on

The indicated template matches both inputs. The occurrence

or non-occurrence of the "NOT" is passed on to the action

routine so that the proper action may be taken. The system

always tries to match as many of the optional concepts as

possible and of course the keyword concept may not be

op t ional .

VI-20

It is often desirable to specify templates with holes

in them, that is having noncontiguous elements. This is

made possible by the use of three types of skip operators.

The first type, the single skip, is indicated by a zero in

the template. This specifies that exactly one input word

is to be skipped. The example in Figure 8 illustrates this

operator^ The template matches only those inputs with the

words "COMPUTER" and "DEPARTMENT" separated by one

arbitrary word. Thus a match occurs with input B only.

Template

Inputs: A

B

C

S

COMPUTER

COMPUTER

COMPUTER

COMPUTER

0 DEPARTMENT

DEPARTMENT

SCIENCE

SCIENCE
DEPARTMENT

ingle skip <
Figure 8

operator

DEPARTMENT

EDUCATION

A second type of skip operator is the bounded skip.

This is indicated by a number i where 1 £ i < 9 , and

specifies that as few as zero, or as many as i, words are to

be skipped at that point in an effort to match the template.

If several matches are possible, the one involving the fewest

number of skipped words is chosen. Figure 9 demonstrates

this facility. The template matches any input with "COMPUTER"

VI-21

and "DEPARTMENT" in that order and separated by two words

or less. Matches thus occur with inputs A, B and C, but not

with D because there are three separating words. A match

also occurs with the underlined portion of E. Note that in

input E, the second occurrence of "DEPARTMENT" instead of the

first would also satisfy the template. This illustrates the

usefulness of skipping the least possible number of words.

Template: COMPUTER 2 DEPARTMENT

Input s: A.

B.

C .

COMPUTER DEPARTMENT

COMPUTER SCIENCE DEPARTMENT

COMPUTER SCIENCE EDUCATION
DEPARTMENT

COMPUTER INFORMATION AND
SCIENCE DEPARTMENT

COMPUTER SCIENCE DEPARTMENT
DEPARTMENT

Bounded skip operator
Figure 9

The facility to skip from zero to nine words is

adequate for most templates used in this implementation.

For those few templates for which a skip greater than nine

is needed, no upper bound on the number of skipped words

is really desired. To indicate this, the unbounded

vi-:}2

skip is used. This is specified by the number ten and causes

an arbitrary number of input words to be skipped in an effort

to match the template. Figure 10 demonstrates this. A

match always occurs with input A. The ellipsis indicates

a string of words of arbitrary length but of course not

containing the word "DEPARTMENT'1.

Template: COMPUTER 10 DEPARTMENT

Input: A. COMPUTER ... DEPARTMENT i

I — . 'i
Unbounded skip operator j

Figure 10

i _ 1

For all the skip operators a record is kept of how many

words are skipped. This information can then be used by the

action routines. The use of the optional concepts and skip

operators reduces the number of needed templates to 44 as

opposed to the more than 81 which would otherwise be needed

for this implementation.

While the previously presented conventions are adequate

for the present system, several other facilities are suggested

for future use. It is sometimes useful to be able to specify

that a group of words may appear in any order and in an

VI-23

assignable proximity to one another. For example the template

in Figure 11 matches any input containing the words "INFOR­

MATION" and "PROCESSING" within a three word group. It

matches inputs A, B and C. This can be generalized to words

in the same sentence or words in the same input.

Template: 3 (INFORMATION PROCESSING)

Inputs: A. INFORMATION PROCESSING

B. INFORMATION TEXT PROCESSING

C. PROCESSING OF INFORMATION

Arbitrary ordering and proximity
Figure 11

A second addition recommended for the future is the facility

to indicate that a single template spot may be occupied by

any member of a group of concepts. This can be partially

accomplished in the present system by mapping the desired

words into the same concept number. But there are some

instances in which several nonsynonymous words (i.e., with

different concept numbers) may appear in similar templates.

To allow such a substitution would reduce the number of

required templates. The example of Figure 12 shows two standard

templates and a third which combines the first two.

VI-24

T em plates

Com

: A.

B .

A+B.

COMPUTER

COMPUTER

COMPUTER

bination of simi

Figure 12

PROGRAM

SYSTEM

<PROGRAM, SYSTEM>

.lar templates

A third possible improvement would render whole sets of

words as optional rather than single words only. Notice,

for example, that in Figure 6 the template matches \

PUBLISHED IN THE
PUBLISHED IN YEAR

both of which have dubious meaning. In this case it might

be desired to make "THE YEAR" optional as a phrase rather

than as individual words. This can eliminate undesirable

matches with partial phrases. For the most part these

suggestions do not add any power to the template, but they

do allow a more compact template set and more efficient

template searching.

This section has described the template analysis

implementation under study. The complete system is

summarized in Figure 13. Natural language input is con­

verted to numeric form by the dictionary. The template

analyzer then tries to match a template with the input. If

VI-

a match is found, the action routine associated with the

template is executed. This process results in a modified

input, and possibly in the setting of some side effect variables

Control then returns to the template analyzer and the process

continues until no further template matches exist. The

process then halts. The template analyzer is a tool which can

be used in a number of applications. One such application

is discussed in Section 3,

Natural
Language
Input

:> Dictionary

Numer ic
Inpu t

Vec tor

k.
Template
Analyzer

^ ft ft

JL

1 l

J
•M

Side Effect
Variables

"I

3Z
r • -i

Action
Rout ines

Templates

Summary of template analysis system

Figure 13

VI-2b

3. An Implementation of Template Analysis

This section presents an application of the template

analysis scheme for extraction of various forms of biblio­

graphic information from natural language text. The template

analysis section extracts date, journal, and author phrases

from English input; and the action routines convert this

information into a form usable by a search program. This

system can be used as a query processor in an information

retrieval system thereby allowing the user to include biblio­

graphic information in his query. This system is chosen

for implementation and study not only because of its obvious

application to information retrieval but also because the

techniques used cover the full spectrum of template

analysis schemes. It is therefore expected that the problems

encountered and results achieved in the operation of this

piLot system are typical of those to be expected in any

template analysis application. Thus while it might be

argued that the present analysis facility is not practical

for actual information retrieval, the implementation does

provide a useful indication of the performance of template

analysis in general. The following three sections deal

respectively with the extraction of date, journal, and

author phrases and their associated problems and techniques.

VI-27

The order of presentation is the order in which the types

of phrases are isolated from the input.

A) Date phrases

In this system a date phrase is defined to be any

phrase which specifies a year or group of years. Single

date phrases contain only one date reference while double

date phrases contain two. Examples of date phrases are shown

in Figure 14.

Single date phrases

IN 1965

NOT IN 1964

BEFORE 1967

SINCE 1960

Double date phrases

FROM 1955 TO 1967

NOT BETWEEN 1957 AND

DURING 1950-1955

1960

Examples of date phrases
Figure 14

The somewhat more complex problem of date phrases involving

months or specific days is not considered here. To handle

phrases a slight modification of the template dictionary

look-up procedure is employed. The general procedure used

VI-2K

is a binary search on the first character of a w)rd to get

into the proper section of the dictionary, followed by a

linear search for the whole word. This is altered slightly

in the case of words beginning with the number one. When

such a word is found, and before the linear search of that

section of the dictionary is started, a check is made to

determine if the word consists of exactly four numbers with

the first one being a one and a nine. If so, the word is

assumed to be a date and is assigned the date concept number

1900. If not, normal dictionary procedure continues. This

actually provides a quick and compact way of storing all

dates from 1900 to 1999 in the dictionary with the concept

nunber 1900 for e\ery one.

The alphabetic templates for date phrases are shown

in Appendix A. Tie word "DATE" in quotes denotes the position

of the date concept 1900. The "pp M is a nonterminal symbol

deroting a single date phrase. Template analysis is much

like context-free bottom-up analysis with each isolated

phrase being replaced by a nonterminal. In this case the

nonterminal for single date phrase enters into the analysis

for the double date phrase. In a L1 templates except the last

two, the 1900 concept is the key. Thus a search of the date

phrase templates is performed only when a word of the form

19 ij appears; t h i F provides a good indication of the presence

of a date phrase. When a date phrase template is matched,

VI-29

no further tests need to be made to validate the decision.

It of course remains necessary to look at the input to

determine exactly what year is specified; this however has

no bearing on whether or not the matched phrase is a date

phrase. The date phrase decision is certain at template

match time, and thus is an example of a certainty or CI

template match. For this reason date phrases are easiest

to recognize among the three phrase types, and provide the

least potential for error. Performing the date phrase

analysis first provides a way to accurately break up an

input into smaller units which facilitates easier subsequent

phrase isolation.

Once the date phrase has been recognized, there is

still the problem of storing the indicated information in a

useful way. For the most part dates appear in either single

or doubJe date phrases. It thus seems natural to store date

specifications in pairs. Each element of the pair can con­

tain an operator and a date. The operator part indicates the

specified requirement concerning each date. Internally the

operators are represented numerically and are shown in

Figure 15.

VI-30

O p e r a t o r
Numer ical

Equivalent

<

>

>

<

3

-3

2

-2

1

-1

Operators and their
numerical equivalents

F igure 15

Single date phrases use only the first element of the pair,

while double date phrases use both. More than one pair of

date elements may be filled by a single input. Figure 16

gives some examples of input phrases and the resultant date

pair element s.

mhe date ra.'r form specif ' ed above is one that can

easily be used by i search program. There is, however, one

further process th it must be carried out to coordinate the

dat(i specifications. This process need not be applied for

those inputs which fill no more than one date pair. But

for those that use two or more, three possible relations may

occur and these necessitate appropriate modifications of Lie

date specifications. First, two single date phrases may act

in i bounding capacity, that is they act as a double date

VI-31

Inpu t

General form

IN 1965

BEFORE 1965

BETWEEN 1964-1967

NOT DURING 1950-1951

DURING 1950-1955 OR

DURING 1960-1965

Result

op

3

2

-2

-1

2

1

.. -2

-1

-2

-1

date

1965

1965

1964

1967

1950

1951

1950 1

1955 j

1960 |

1965 |

Sample date representations

Figure 16

phrase. In this case the single date phrases are combined

into the appropriate double specification. Second, one

double date phrase may specify a date interval lying com­

pletely inside an interval specified by another double date

phrase, Here the enclosed date interval is discarded and

only the larger remains. Third, two double date phrases

may specify overlapping date intervals. In this case the

overlapping intervals are combined into a single interval

which is the union of its constituents. The final date

VI-32

specification is tlie union of those specifications which re­

main after the appropriate coordinations have been performed

Figure 17 summarizes this coordination phrase of the date

phrase analysis and provides some examples.

Type Example

Bounding
single
date
phrases

Inclus ive

Overlapping

AFTER 1965

BEFORE 1968

IN 1965-1967

IN 1960-1968

IN 1965-1969

IN 1963-1967

Act ion

Combine into

one double

Use larger

one only

Take the

union

Result

1 1956

2 1968 !

|-2 1960

|-1 1968

1-2 1963

|-1 1969

Summary of date phrase coordination

Figure 17

B) Journal phrases

The determination of journal phrases is a more

difficult task than that of date phrases, and requires that

several assumptions be made. First, it is assumed that any

user request for a publication relates to a periodical rathe

than to a single edition such as a book or specific paper.

This seems to be a realistic assumption since a user who

knows the specific publication he wants has no need of the

VI-33

retrieval system at all. This section is therefore concerned

only with extraction of journal names.

The determination of journal phrases consists of

two parts. The first is a search for a journal phrase

template match. The templates are shown in Appendix A

and are for the most part of the form:

PUBLISHED IN

FOUND IN

NOT PUBLISHED IN

etc,

Clearly a match of one of these templates is no guarantee

of a journal phrase. The actual decision is made using a

journal name table look-up which constitutes the second

part of the journal phrase analysis. The journal name

table contains the names of all the journals in the collec­

tion and assigns a unique reference number to each. For

each journal all anticipated forms of its name are included.

For example, the "Journal of the Association for Computing

Machinery" is listed as

JACM

ACM JOURNAL

JOURNAL of the ACM

in addition to the full name. The list also contains some

journal famiJy names which can specify a group of journals.

VI-34

In this way an input which specifies

IN AN ACM PUBLICATION

is taken to mean both the ACM "Journal" and "Communications".

Clearly in an operational system there will be some journal

references which have not been anticipated. These can be

added to the journal list periodically and hopefully the list

would quickly stabilize. After a journal template is

matched the words following the template are looked up in

the journal table. If a match is found, the reference number

of the specified journal is placed in a journal specification

list along with an operator (3 for equals and -3 for not

equals). This list may then be used by a search program.

If the search of the journal table fails, the phrase is

assumed not to be a journal reference. While this method

will occasionally miss a proper journal reference, it does

prevent searches of the collection keyed on journals which

do not appear in the collection, thereby eliminating some

wasted searches. Figure 18 includes some examples of journal

phrases and their resultant entries in the journal specifica­

tion table. For clarity the journal names rather than

reference numbers are shown in the specification table.

The journal phrase analysis is a good example of a

C2-C1 process (conjecture-certainty). The template match

VI-35

Input Resulting journal
specification

IN JACM

IN JACM
AND CACM

IN AN ACM
PUBLICATION

NOT IN JACM

3
3

3
3

JACM

JACM
CACM

JACM
CACM

JACM

Journal phrases and specifications

Figure 18

provides an indication that a journal phrase may be present;

and then a check of the environment against the journal

name table determines the final decision.

C) Author phrases

At first the problem of determining author phrases

looks similar to that of journal phrases. Template matches

indicate possible author phrases and then an author table

look-up can finalize the decision. However, upon further

analysis it is determined that the author list is not

feasible. In a typical collection dealing with a specific

subject area, the number of journals included is fairly

small. Furthermore both the discontinuation of present

journals and the creation of new ones is quite infrequent.

Thus a journal list is compact and varies little with time.

VI-35

Author lists, however, have different properties. Few

authors produce more than ten papers per year. A collection

which grows by ten thousand documents each year can thus have

thousands of authors. Also people are continually entering

and leaving a given field. An author list would thus be too

large and would require too much file maintenance in an

information retrieval system. Several alternate schemes

exist. One such method developed by Borkowsky [5] is

successful in extracting personal names from newspaper text.

The method centers on the recognition of capitalized words

and on finding personal titles such as Mr., Miss, President,

etc. This method, however, is not applicable to this particular

study. User input is entered in a single type case because

of the input devices used (keypunches and teletypes have only

upper case). Thus recognition of capitalization is impossible.

Also a user is unlikely to preface his author specification

by a personal title simply because it represents more input

work and adds nothing to the meaning of the input. Another

method is therefore called for.

The method developed for author phrase determination

makes use of the collection dictionary. This is the large

dictionary used in a query and document text analysis and

is not to be confused with the small dictionary used in

template analysis. The method requires a slight modification

VI-37

in the dictionary structure. The motivation and development

of the author phrase extraction method is presented in the

following paragraphs.

Two types of personal names are defined. The

first type includes those which are used only as names.

Some examples are Jones, Dattola, Borkowski, Fredrick, etc.

These words are generally not found in the collection

dictionary, and thus if they occur in the query, are

classified as unknowns. If all names were of this type,

author phrase determination would be relatively easy. An

author name would simply consist of a string of unknown words

following an author template match. Unfortunately a second

type of personal name exists, including those names that can

be used in capacities other than that of a name. These

include Rose, Brown, Fox, Little, Smith, etc. These words

may be found in the dictionary and thus would not necessarily

be classified as unknown. Analysis of the ADI dictionary

shows that very few words of this type are actually included

in the dictionary. There are enough, however, to indicate

that the performance of a name extractor which uses unknown

words only would not be acceptable. The solution centers

around tagging certain words in the dictionary. When

documents are entered into the system each word must be looked

up in a dictionary in order to compose the document vector.

VI-3'3

There must also be a facility to perform a dictionary update

at this time to ensure that the dictionary is adequate to

handle the new material. The dictionary tagging process fits

within this framework and thus imposes no new dictionary

processing. The names of document authors are looked up in

the same process in which the document words are looked up.

If an author name is found in the dictionary, a dictionary

update is required. During this update the specified diction­

ary entry is tagged as a possible author name. This can be

done by considering the tag as an extra part of speech for

the word or by the use of a special tag bit in the dictionary

ent ry. If the dictionary does not contain the author name

or if the name is ilready tagged, no update is r a quired.

The algorithm for author nhrase extraction uses both

unknown and tagged words. When a match of an author template

is found, the string of words immediately following the template

is tested. A string of initials and unknown and tagged words

is taken to be the author name. The string is terminated by

the first known and untagged word. If the terminating word

is a conjunction or a comma, a second test of the string

following the conjunction is made to test for possible

multiple authors or inverted ordering (i.e., Brown, T .) . The

great variety of possible ways used in specifying a name, as

shown in Figure 19, presents a considerable problem in author

VI-39

det erminat ion.

J

J

J

J

J

J

J

J

Examp

ohn

ohn

.A.

ohn

Alan J ones

A . J o n e s

Jones

Jones

. Jone s

. Al

ones

ones

le o

F

an Jones

, John

, J .A.

f name

igur e

variations

19

The one invariant is the surname. For this reason the

author extractor tries to isolate the last name. It uses

the given names and initials for modifiers for the last

name. Figure 20 shows some sample analyses performed by

the author extractor.

Input

John Jones

J . Jones

J.A, Jones

J . Jones and
S. Smith

Jones, J.

Jones, S. Smi
and F. Brown

Sampl

th

e

Fi

au th

gur e

o r

O u t

Surname

Jones

Jones

Jones

Jones
Smith

Jones

Jones
Smith
Brown

analys es

20

put
Mod if iers

John

J

J
A

J
S

J

S
F

VI-' 0

The templates for author phrases appear in Appendix A

In ill except the Last two, the author name is assumed to

follow the tempa.ltc The last two deal with posse ssives of

the form:

SMITH1S

JONES !

The template keyword is the apostrophe, and here the author

name preceeds the template. As with the journal phrases, a

match of an author template is only an indication of a possitle

phrase, not a guarantee. But unlike the journals, the envir­

onmental testing for an author phrase does not mike the

decision a certainty. This testing can reject or support

the original conjecture but cannot guarantee it. Thus the

author phrase extraction is an example of a C2-C2 (conjecture-

conjecture) process.

The above method is chosen because a useful author

name list would become excessively large and require con­

tinuous file maintenance. It may be argued that by adding

tags to the dictionary structure and updating the dictionary

whenever new author names are entered, no advantage is gained

over the more straightforward author list method. This,

however, is not the case. The tags themselves occupy a

maximum of one bit per dictionary entry. This is quite small

in comparison with the dictionary size. It may even be possible

VI-41

to incorporate the tags into existing dictionary fields with

no increase in size. Furthermore the number of words in the

dictionary is not increased by the tagging process. Also,

an analysis of the ADI dictionary shows that there are very

few words which function as possible author names. Thus

since the dictionary need be altered only when a new author

name is found, dictionary updates are very infrequent. The

proposed method thus provides a useful procedure for ex­

traction of author names from natural language text and

requires a minimum of extra storage space and file processing.

D) Experiments and results

The system performs the following operations; a

query which may contain bibliographic information is

entered. The query is analyzed and the date, journal, and

author phrases are identified and removed, leaving only the

subject part. Three types of errors can occur in this

process, First, a phrase of one type may be improperly taken

to be of another type; second, a bibliographic phrase may be

missed; and third, a false drop may occur, that is, a set of

words not denoting a bibliographic phrase may be taken as

one. The following experiments are used as an initial test

of the system. First, to check for false drops, a set of

queries from the ADI collection is entered. These 35

queries contain no bibliographic information, and thus any

VI-42

such phrases found by the system are clearly in error. The

queries contain many words found 1n the template dictionary

as well as words tagged as possible names (such as Field and

Will). These result in matches of author and journal templates.

However they were all rejected by the environmental tests.

The final results indicate that no bibliographic phrases are

found, and in every case the query which remains after analysLs

is identical to the original, thus indicating that the system

is not prone to false drops.

The second experiment involves the use of the same

ADI queries but modified to include bibliographic information.

These queries were constructed by the author and by several

others who knew nothing of the structure of the system. The

informants were merely given some ADI queries and told to

rewrite them incorporating bibliographic information, and

to phrase them as if they were typing at a teletype console.

31 such queries were used, including a total of 63 biblio­

graphic phrases in this set. The phrase extractor correctly

located 60 of these phrases, and made no false drops. The

three phrases misses are all journal phrases. The errors

are caused because the system is unable to read the journal

list backwards and thus cannot cope with journal templates

which occur to the right of a journal name. Thus a journal

VI-H3

phrase such as

DATAMATION ARTICLES

is missed. This problem is corrected by slight modification

in the structure of the journal name list, and will be

implemented in a future edition of the system.

A second experiment using the modified ADI queries

makes use of what remains after the bibliographic phrases

are removed from a query for a normal SMART run. By comparing

these results with those achieved using the unmodified

queries, it can be determined how much, if any, the retrieval

quality is hurt by the added information and processing. For

several reasons this experiment was abandoned. First, the

performance of the system is such that the processed modified

queries are almost identical to the unmodified. And second,

nearly all the words in the bibliographic phrases are either

high frequency or unknown, and are therefore ignored in the

construction of concept vectors. Thus the concept vectors

resulting from the processed modified queries are identical

to the unmodified queries. Obviously the retrieval results

are the same in both cases, so that an actu.il retrieval test

need not be performed. Thus although the results are

based on a fairly small data set, they indicate that it is

possible to extract bibliographic information from natural

actu.il

VI-44

language queries via template analysis with little or no

loss in retrieval power of the query.

E) Conelus ion

It may be argued that extraction of bibliographic

information from natural language queries is not a useful

facility in an actual information retrieval system. Many

working systems such as RECON [12] successfully use a more

structured input method which requires the various parts of

the query to be specified individually. An example of such

an input is shown in Figure 22. From the results obtained

by the RECON study, only a small percentage of users object

to the structured input.

AUTHOR:

AUTHOR:

JOURNAL:

SUBJECT:

JONES

SMITH

JACM

INFORMATION

DATE: AFTER 1965

S truetured

Figure

input format

22

RETRIEVAL

This is probably due to the fact that a user generally struc­

tures his query in his head in much the same way as it is

structured in the input format. Be that as it may, this

study indicates that bibliographic information can be

extracted from natural language text with a high degree of

VI-45

accuracy. Of more importance is the fact that this study

is a successful test of the general template analysis schemes

and it indicates that template analysis has definite

potential in natural language analysis.

M-6

Bibliography

M. Rubinoff, S. Bergman, W. Franks, E. Rubinoff,
"Experimental Evaluation of Information Retrieval
through a Teletypewriter", CACM, Vol. 11, No. 9,
Sept. 1968.

M. Rubinoff, S. Bergman, H. Cautin, F. Rapp, "Easy
English, A Language for Information Retrieval
through a Remote Teletypewriter Console", CACM,
Vol. 11, No. 10, Oct. 1968.

J. Weizenbaum, "ELIZA - A Computer Program for the
Study of Natural Language Communications between
Man and Machine", CACM, Vol. 9, No. 1, Jan. 1966.

J. Weizenbaum, "Contextual Understanding by Com­
puters", CACM, Vol. 10, No. 8, Aug. 1967.

C. Borkowski, "An Experimental System for Auto­
matic Identification of Personal Titles in
Newspaper Text", American Documentation, Vol. 18,
No. 3, July 1967.

B. Lampson, B. Dimsdale, "A Natural Language
Information Retrieval System", Proceedings of
the IEEE, Vol. 54, No. 12, Dec. 1966.

IBM Systems/360 Document Processing System; Applications
Descriptions. IBM Document H20-0315-0, 1967.

M. Halpern, "Foundations of the Case for Natural Language
Programming", IEEE Spectrum, Vol. 4, No.3, March 1967.

W. D. Mathews, "TIP Reference Manual", TIP-TM-104,
Technical Information Program, The Libraries, Massachusetts
Institute of Technology, Cambridge Mass., 1968.

E. Parker, "SPIRES User's Manual", Stanford Physics Information
Retrieval System, Institute of Communication Research, Stanford
University, Palo Alto, California.

R. Williamson, "A Prototype Document Retrieval System",
unpublished.

D. Meister, D. J. Sullivan, "Evaluation of User Reaction
to a Prototype On Line Information Retrieval System"
(Appendix: "Recon User's Manual"), Report NASA-CR-918.
Prepared by Bunker-Ramo Corp. Canagn Park, California.

E. Mendelson, Introduction to Mathematical Logic, D. Van
Nostrand C , New York, 1964.

VI-H7

Templates

Appendix A

The templates shown below are in alphabet .c form with

the parameter part omitted. The underlined words are the

keywords. The word "DATE" indicates the position of the

date concept 1900. The order shown here is the order in

which the templates are scanned in the analysis process.

I. Housekeeping templates

OTHER THAN

LATER THAN

II. Date phrase templates

A. Double date phrases

DP 1 UNTIL "DATE"

DP AND -THE -YEAR "DATE"

DP "DATE"

B. Negative double date phrases

NOT 1 DPP 2

DDP EXCLUDED

C. Negative single date phrases

NOT 1 DP^

DP EXCLUDED

1. DP is a nonterminal which replaces an analyzed single
date phrase.

2. DDP is a nonterminal which replaces an analyzed double
dat e phrase.

VI-43

Appendix A (Cont'd)

Single date phrases

-WRITTEN IN -THE -YEAR "DATE"

-WRITTEN BEFORE -THE -YEAR "DATE"

-WRITTEN AFTER -THE -YEAR "DATE"

-WRITTEN BETWEEN -THE -YEAR "DATE"

Current year phrases

-WRITTEN IN 1 PRESENT YEAR

-WRITTEN BEFORE 1 PRESENT YEAR

III. Journal phrase templates

A. Multiple journals

JP3 AND

Journal phrases

EXCEPT THOSE -PUBLISHED I_N

-PUBLISHED NOT ^N

NOT -PUBLISHED I_N

WHICH ARE -NOT I_N

-PUBLISHED LN

EXCEPT THOSE -PUBLISHED .BY

-PUBLISHED NOT .BY

NOT -PUBLISHED B_Y

WHICH ARE -NOT JBY

-PUBLISHED _BY

DP

DDP

3. JP is a nonterminal which replaces an analyzed journal
phrase.

VI-49

A p p e n d i x A (C o n t ' d)

IV. Author phrase templates

A. Author name follows template

-ARTICLES NOT -PUBLISHED BY_ -MR.

-ARTICLES -PUBLISHED NOT BY; -MR.

ARTICLES -PUBLISHED BT MR.

-PUBLISHED BY_ MR.

B. Author name occurs inside template

WHAT HAS 10 WRITTEN

WHAT HAS 10 DP

WHAT HAS 10 DDP

WHAT HAS 10 JP

WHAT HAS

C. Author name precedes template

NOT 10 Ĵ S
fS -NOT

VI-E'O

Template dictionary used for

implementation in Section 3

Appendix B

Concept No Word Concep t No Word

11

12

13

14

15

ABOUT

AROUND

DURING

FROM

IN

OF |

WITH

BY

BEFORE

PRIOR

AFTER

FOLLOWING

LATER

BETWEEN

SINCE

APPEAR

APPEARED

APPEARING

AUTHORED

DEVELOPED

FOUND

15(contTd)

16

1 7

1 9

PRESENT

PRESENTED

PRINTED

PUBLICATION

PUBLISHED

SEEN

WRITTEN

WROTE

EXCLUDING

EXCEPT

NOT

NOTHING

EXCLUDED

EXCEPTED

TO

TILL

UNTIL

- (dash)

AND

BUT

OR

, (comma)

V I - 5 1

A p p e n d i x B (C o n t T d)

C o n c e p t N o .

2 0

21

25

2 6

27

Word

CURRENT

PRESENT

THIS

YEAR

YEARS

WHAT

WHICH

ARE

BE

BEEN

IS

WERE

ARTICLE

ARTICLES

BOOK

BOOKS

DATA

INFORMATION

PAPER

PAPERS

PRESENTATION

PUBLICATION

PUBLICATIONS

Concept

27(Cont

28

50

51

5 2

53

No .

fd)

Word

REPORTS

THESES

THESIS

HAD

HAS

HAVE

DID

DO

DOES

A

AN

THE

Any ini t i

A . . . Z or

A. ... Z.

Personal

titles;

MR.

MRS .

PROF

etc,

OTHER

VI-1. 2

Appendix B (Cont ' d)

Concept No Word

54 THAN

55 1 (apostrophe)

1900 Any word of the form
19ij where i and j
are digits

Nonterminal
Concep t No.

Phrase
T y p e

100 Single date phrase

101 Double date phrase

110 Journal phra se

120 Author phrase

