
II-l

II. A Scatter Storage Scheme For
Dictionary Lookups

D. M. Murray

1# Introduction

A document retrieval system must have some means of recording the

subject matter of each document in its data base. Some systems store the

actual text words, while others store keywords or similar content indicators.

The SMART system [1J uses concept numbers for this purpose, each number

indicating that a certain word appears in the document. Two advantages are

apparent. First, a concept number can be held in a fixed sized storage

element. This produces faster processing than if variable sized keywords

were used. Second, the amount of storage required to hold a concept number

is less than that needed for most text words. Hence, storage space is used

more efficiently.

SMART must be able to find the concept numbers for the words in any

document or query. This is done by a dictionary lookup. There are two

reasons why the lookup must be rapid. For text lookups, a slow scheme Is

costly because of the large number of words to be processed. For handling

user queries in an on-line system, a slow lookup adds to the user response

time.

Storage space is also an important consideration. Even for moderate

sized subject areas the dictionary can become quite large — too large for

computer main memory, or so large that the operation of the rest of the

retrieval system is penalized. In most cases a certain amount of core

storage is allotted to the dictionary, and the lookup scheme must do the

II-2

best possible job within this allotment. This usually means keeping the

overhead for the scheme as low as possible so that a large portion of the

allotted core is available to hold dictionary words. The rest of the dic­

tionary is placed in auxiliary storage and parts of it are brought in as

needed. Obviously the number of accesses to auxiliary storage must be

minimized.

This paper represents a study of scatter storage schemes for appli­

cation to dictionary lookup. These methods appear to be fast and yet con­

servative with storage. The next two sections describe scatter storage

schemes in general. The fourth section presents the results of various

experiments with hash coding algorithms. The fifth section discusses the

design and use of a practical lookup scheme. The final sections deal with

extensions and conclusions.

2. Basic Scatter Storage

A) Method

A basic scatter storage scheme consists of a transformation algorithm

and a table. The table serves as the dictionary and is constructed as follows.

Given a natural language word, the algorithm operates on its bit pattern to

produce an address, and the concept number for the word is placed in the table

slot indicated by this address. This process is repeated for every word to

be placed in the dictionary. The generated addresses are called hash addresses;

and the table, a hash table.

There are many possible algorithms for producing hash addresses. [2,3,4]

Some of the most common are:

1) choosing bits from the square of the integer represented by

II-3

the input word;

2) cutting the bit pattern into pieces and adding these

pieces;

3) dividing the integer represented by the input word by the

length of the hash table and using the remainder.

BX Collisions

The ideal situation would arise if every word placed in the dictionary

had a unique hash address. However, as soon as a few slots in the hash

table have been filled, the possibility of a collision arises — two or more

words producing the same hash address. To differentiate among collided

entries, the characters of the dictionary words must be stored along with

their concept numbers. Then during lookup, the input word can be compared

with the character string to verify that the correct table entry has been

located.

The problem of where to store the collided items has several methods

of solution. [3] The linear scan method places a collided item in the

first free table slot after the slot indicated by the hash address. The

scan is circular over the end of the table. The random probe method uses

a crude algorithm to generate random offsets R(i) in the interval [1,H]

where H is the length of the hash table. If the colliding address is A ,

slot A+R(l) mod H is examined. The process is repeated until an empty

slot is found. Both of these methods work best when the hash table is

lightly loaded, that is when the ratio between the number of words entered

and the number of table slots is small. In such cases the expected length

of scan or average number of random probes is small.

Chaining methods provide a satisfactory method of resolving colli­

sions regardless of the load on the hash table. However, they require a

II-4

second storage table — a bump table — for holding the collided items. When a

collision occurs, both entries are linked together by a pointer and placed

in the bump table. A pointer to this collision chain in placed in the hash

table along with an identifying flag. Further colliding items are simply

added to the end of the collision chain.

C\ Table Layout and Search. Procedure

In the virtual scatter storage system described later, the hash table

has a high load factor. Hence the chained method (or rather a variation of

it) is used to resolve collisions. Further discussion involves only scatter

storage systems using collision chains. With this restriction, then, a

scatter storage system consists of a hash table, a bump table, and the asso­

ciated algorithm for producing hash addresses. A dictionary entry consists

of a concept number and the character string for the word it represents.

These entries are placed in the hash-bump table as described above. Conse­

quently there are three types of slots in the hash table — slots that are

empty, slots holding a single dictionary entry, and slots containing a

pointer to a collision chain held in the bump table. A typical table layout

is shown below.

Hash Table

Concept + Char.

Pointer

empty slot

single dictionary entry

> Entry 1
• >

Entry 2

Collision Chain

II-5

One of the advantages of scatter storage systems is that the search

strategy is the same as the strategy for constructing the hash-bump tables.

Given a word, its hash address is computed and the tables searched to find

the proper slot. During construction, dictionary information is placed in the

slot. The basic search procedure is illustrated by the flow diagram in

Fig. 1, The construction procedure is similar.

D\ Theoretical Expectations

An ideal transformation algorithm produces a unique hash address for

each dictionary word and thereby eliminates collisions. From a practical

point of view, the best algorithms are those which spread their addresses

uniformly over the table space. Producing a hash address is simply the

process of generating a uniform random number from a given character string.

If the addresses are truly random, a probability model may be used to pre­

dict various facts about the storage system.

Suppose a hash table has H slots and that N words are to be

entered in the hash-bump tables. Let H. be the expected number of hash

table slots with i entries for i = 0,1,...N . In other words H is

the expected number of empty slots, E is the expected number of single

entries, and E ,E ,...,EN are the expected number of slots with various

numbers of colliding items. Even though the it€ims are physically located

in the bump table, they may be considered to "belong" to the same slot in

the hash table.

It is expected that:

N
CD E = I E

i=0

N
C2> N =; I i E.

1=0 *•

II-6

Input the

Text Word

x
Compute

Hash Address

±

"Pointer"

>
Get Next
Bump Table
Entry

Dictionary

Yes

T>

±
Yes

Return
Concept
Number

-Empty -

No
- ^

JSl£
Word Never
Entered in
Dictionary

Flow Diagram for the Lookup Procedure in

Basic Scatter Storage Systems

Fig. 1

II-7

Now let

ll if exactly i items occur in the j slot
X =\

0 if exactly i items do not occur in the j slot

for j = 15 2,• . . , H

Then H. = E {X.. + X.n + . . . + X.u} I L xl x2 iEj

= I E {X 1
j=l 1]

Assume that any chosen table slot is independent of the others so

that the probability of getting any single item in the slot is 1/H . Then

the probability of getting exactly i items in that slot is

^ \-\im u-ir1

Then E {x . . } = 1- P. + 0 (1 - P .)
l] i i

P.

Substituting into the above

O) H. = H-P.
I I

^fl^rM)"1 for i=0,1"" ,H

For the cases of interest H and N are large, and the Poisson approxima­

tion can be used in equation C3):

P. = e-N/H CN/H)1
1 7-i

file:///-/im

II-B

The ratio N/H is the load factor mentioned previously. It is usually

designated by a so that

(5) H. = H e"a a1 i = 0,1, . . . , N

In a form more convenient for hand computation

H = e
o

H. = H. ,-%- i = 1,2, . . . , K
I i-l I

Equation C5) is sufficient to describe the state of the scatter storage

system after the entry of N items. Most of the statistics of interest

can be preducted using this expression; a few of them are listed in Table 1.

The time required for a single lookup using a hash scheme depends on

the number of probes into the table space, that is, how many slots must be

examined. Suppose the word is actually found. If it is a single entry,

only one probe is required. If the word is located in a collision chain, the

number of probes is one (for the hash table) plus one additional probe for

each element of the collision chain that must be examined. Suppose that the

word is not in the dictionary. If its hash address corresponds to an empty

table slot, again only one probe is needed. However, if the address points

to a collision chain, the number is one plus the length of the chain.

For words found in the dictionary the average number of probes per

lookup is:

(8) P = 1 + jjj- {(0)H + Cl+2)H2 + tl+2+3)H3 + . . ,

„ i + Clt2+.„tNlHNi

= 1 + I &* I J
1=2 Lj=l

II-9

Measure

Load factor

Number of empty table slots

Number of single entries

Number of collision chains of
length i

Expected sums

Fraction of hash table empty

Fraction of table filled with
single entries

Fraction of hash table slots
with i entries

Expected sums

Number of collisions

Number of entries in the bump
table

Total table slots required

Average lookup time Cprobes)

a = N/E

Hx = N e"
a

' H. = H e"a -
X

N
E = y E.

. L X
1=0

N
N = y iH.

1=0

F = k =
0 E 0

Fl = E Hl =

F. = rr H. =
JL a. x

N

1 - I F. .L x
1 = 0

N
a = y i F.

.L x
x=o

Formula

i
_2 .• - 9 0
-T^ X - ^ , 0 , , .

-a
e

-a
ae

-a a i=2,3,.
e -TT

N c = H 2 + H 3 + ... + HN

B = N - H

S = M t B

P = 2 + « -

= H. - H - H.
0 1

-a
e

. ,N

..,N

E = number of hash table slots
N = number of words to be entered

Expected Storage and Search Properties for
Basic Scatter Storage Schemes

Table 1

11-10

H n
1 + £ I H- iCi+D

N . n Tfl- X i=2 H

1 N

i + 2 i I iCi+DF
i=2

1 N

I t i I (i+l)F. .
A £ _ 2

N N
1 + l j 2

a - 1) F i - l + 2 [=2
Fi-l

N + l N+l

1 + 2L2 Ci"1)F-i + 7 L 2
F i ^

1 + - a + Cl-F)

2 + —- a - e Cprobes)

3. Virtual Scatter Storage

A) Method

From Table 1, the expected number of collisions is

N = H - H - tL
c o 1

= HCl - e - — e)

For a fixed N , this number decreases as H increases. At the same tine

the number of empty hash table slots

H = H e" N / H

o

increases as H increases. Both of these results are expected — as the

11-11

hash addresses are spread over a larger and larger table space (H slots),

the number of collisions should decrease and the number of empties increase

for a fixed number of entries (N).

A virtual scatter storage scheme tries to balance these opposing

strains by combining hash coding with a sparse storage technique. Large

or virtual hash addresses are used to obtain the collision properties asso­

ciated with a very large hash table, and the storage technique is used to

achieve the storage and search properties of a reasonably sized hash table.

If the virtual hash address is taken large enough the expected number of

collisions can be reduced to essentially zero. With no expected collisions,

it is possible to dispense with verifying that a query word and the dic­

tionary word are the same. It is enough to check that they produce the

same virtual address. Hence, the character strings need not be stored in

the hash-bump tables at all.

To implement the virtual scheme a large hash address is computed,

say in the range [0,V], and is split into a major and minor part. The

major portion is used just as before — as an index on a hash table of size

H. Instead of storing the character string in the hash or bump table, the

minor portion is substituted. With this difference, the virtual scheme

works just as the basic scheme. The lookup procedure is identical, but

the minor portions are used for comparison rather than character strings.

All the results of the previous section apply as storage and timing esti­

mates.

The advantage of virtual scatter storage systems is economy of

storage space. The size of the minor portion is much smaller than the size

of the character string it replaces. It is true, that the virtual scheme

11-12

assigns the same concept number to two different words if they have the same

virtual address. This need not be disastrous for document retrieval appli­

cations. Presumably V is chosen large enough to keep the number of colli­

sions small. On the one hand, errors could be neglected because of their

low probability of occurrance and their small effect on the total performance

of the retrieval system. On the other hand, it is always possible to resolve

detected collisions even in a virtual scheme. Collisions may be detected

during dictionary construction or updating, and the characters for the colli­

ding words appended to the bump table. The hash or bump table entry must

contain a pointer to these characters along with an identifying flag. Colli­

sions occurring during actual lookups cannot be detected.

B) Collision Problem

In order to use a virtual hash- scheme, the virtual table must be

large enough to reduce to expected number of collisions to an acceptable

level. From a practical point of view, a collision may be considered to

involve only 2 words, rather than 3, M-, or more. It Is assumed that the

probability of these other types of collisions is negligible* Let V be

the size of the virtual hash table. Then the expected number of collisions

is simply

Nc = H2

2
- V - e

where a = — . In this case V>>N so that a is small and e is approxi­

mately 1.,

11-13

2
(9) N = V 5L

c 2

N 2

2V

13
Suppose, for example, the dictionary has N = 2 words. If the

1) f

size of the virtual hash table is chosen to be V = 2 , then the expected

number of collisions is

(2 1 3) 2 1
c 2 C 226 X 2

Suppose further that this table size is adopted for the dictionary, and that

the hash code algorithm produces 3 collisions. The question arises whether

the algorithm is a good one — whether it produces uniform random addresses.

The answer is found by extending the previous probability model.

Consider a virtual scatter storage scheme in which the virtual table

size is V , and N items are to be entered into the hash-bump tables.

Again assume that collisions involve only two items. Let

P(i) = Prob {i collisions}

= Prob {i table slots have 2 items and N-2i slots

have 1 item}

The number of ways of choosing the i pairs of colliding words Cin an

ordered way) is:

fN [N-21 . . . N-2i+2|

2 1 01-211!

There are i! ways of ordering these pairs and

11-14

(v)„ . = v:
'N-i ' CV-N+i}!

ways of placing the pairs in the hash table, so that

(10) P C i) % i . , (N-2i)l - ^ fori=a,l,...,L|j
2-ij <-« " ' • r

In a form for hand computation,

en) PCO) = a - i-x a - fi . . . a - ^~i

PCX) = PCI - i) 2iCv-N+iy f o r x = 1 » 2 . " - » L y J

These results are exact, but the following approximations can be used with

accuracy

N - l

log PCO) = I log Cl - ^

N - l

si
2V

N . •
Let 3 = — • Terms l i n e a r in N may be neglected in equat ion (11) g iv ing

PCO) = e~6

PCi) = I PCi-l>

This i s a l s o a Pois-son d i s t r i b u t i o n :

C12) PCi) = e-® C ^ r i = 0 , l , 2 , . . . , L | j
a.:

11-15

This equation gives the approximate probability of i collisions for a

virtual scatter storage scheme. It may be used to form a confidence

interval around the expected number of collisions N = 6 .

For the previous example in which V = 2 , N = 2 ' ^ N ~ y 5

the following table of values can be made:

i

0

1

2

3

PU>

.607

.303

.076

.012

£PCU

.607

.910

.986

.998

The probability is .986 that the number of collisions is less than or equal

to 2. Since the algorithm gave 3 collisions, it appears to be a poor one.

The results for the collision properties are summarized in Table 2.

4. Experiments with Algorithms for Generating Hash Addresses

Any scatter storage scheme depends on a good algorithm for producing

hash addresses. This especially is true for virtual schemes in which colli­

sions are to be eliminated. In these experiments three basic algorithms

are evaluated for use in virtual schemes. The words in two dictionaries —

the ADI Wordform and CRAN 1400 Wordform — are used. The hash-bump tables

are filled using these words and the resulting collision and storage sta­

tistics compared with the expected values.

A) Dictionaries

The ADI Wordform contains 7822 words pertaining to the field of docu-

11-16

Measure

Collision factor

Expected number of collisions

Probability of i collisions

Probability that the number
of collisions C lies
in [a,b]

Formula

B - N 2 1
6 ' IT
N = 6
c

PCi) = e~
e |i i=0* !

b
Prob = I P(i)

i=a

V virtual hash table size

N number of words to be entered

Expected Collision Properties for

Virtual Scatter Storage Systems

Table 2

1 1 - 1 /

mentation. It contains 206 common words (previously judged) averaging 3.93

characters. The remaining 7616 noncommon words average 8.00 characters.

In all there are 61,712 characters.

The CRAN 1400 Wordform contains 8926 words dealing with aeronautics.

The common word list consists of that of the ADI, plus four additional entries.

The 8716 noncommon words average 8.40 characters. There is a total of 74,074

characters.

Figs. 2 and 3 show the distribution of the length of the words versus

percentage of collection. The abrupt end to the curves in Fig. 2 is due to

truncation of words to 18 characters.

Both dictionaries have approximately the same size and proportions

of words of various length. However, their vocabularies are considerably

different. A good hash scheme should work equally well on both dictionaries.

B) Hash Coding Algorithms

By their nature, hash coding algorithms are machine dependent. The

computer representation of the alphabetic characters, the way in which arith­

metic operations are done, and other factors all affect the randomness of

the generated address. The algorithms described below are intended for use

on the IBM S/360.

Words are padded with some character to fill an integral number of

S/360 fullwords. Then the fullwords are combined in some manner to form a

single fullword key, and the final hash address is computed from this key.

In the experiments which follow, the blank is used as a fill character. This

is an unfortunate choice because of the binary representation of the blank

01000000. In some algorithms the zeroes may propagate or otherwise affect

the randomness. A good fill character Is one that

1) is not available on a keypunch or teletype,

2) will not propagate zeroes,

11-18

O Common Words
A ADI
D CRAN 1400

8 10 12 14

Word Length

Distribution of Dictionary Words
According to Their Lengths

F i g . 2

11-19

O Common Words
A ADI
D CRAN 1400

10 12

Word Length

18 20

Cumulative Distribution of Dictionary Words

According to Their Lengths

Fig. 3

11-20

3) will generate a few carries during key formation, and

M-) has the majority of its bits equal to 0, so their positions

may be filled.

A likely candidate for the S/360 is 01000101.

Three basic methods of generating virtual hash addresses — addition,

multiplication, and division — are studied. The first and second provide

contrasting ways of forming the single fullword keys. The second and third

differ in the way the hash address is computed from the key. Variations of

each basic method are also tested to try to improve speed, programming ease,

or collision-storage properties.

1. Addition Methods

AC — addition and center

The fullwords of characters are logically added to form the key.

The key is squared and the centermost bits are selected as the

major. The minor is obtained from bits on both sides of the

major.

AS — addition with shifting

Same as AC, except the second, third, etc. full words are

shifted two positions to the left before their addition

in forming the key, (An attempt to improve collision-storage

properties)

AM — addition with masking

Same as AC, except the second, third, etc. fullwords have

certain nonsignificant bits altered by masks before their

addition in forming the key. (An attempt to improve collision-

storage properties)

2. Multiplication Methods

MC — multiply and center

The fullwords of characters are multiplied together to form

11-21

the key. The center bits of the previous product are saved

as the multiplier for the next product. The key is squared

and the centermost bits selected as the major. The minor is

obtained from the bits on both sides of the major.

MSL — multiply and save left

Same as MC, but during formation of the key, the high order

bits of the products, rather than the center, are used as

successive multipliers. CAn attempt to improve speed)

MLM — multiply with left major

Same as MC, but taking the major from the left half of the

square of the key and the minor from the right half. (An

attempt to improve speed)

3. Division Methods

DP — divide by prime

The fullwords of characters are multiplied together to form

the key. The center bits of the previous product are saved

as the multiplier for the next product. The key is divided

by the length of the virtual hash table — a prime number in

this case — and the remainder used as the virtual hash address.

The major is drawn from the left end of the virtual address

and the minor from the right.

DO — divide by odd number

Same as DP, except using a hash table whose length is odd.

(An attempt to provide more flexibility of hash table sizes)

DT — divide twice

Same as DP, except two divisions are made. The major is

produced by dividing the key by the actual hash table size.

The minor results from a second division. Primes are used

throughout as divisors. CAn attempt to improve storage-

collision properties)

C) Evaluation

In the experiments to evaluate each variation of the above hash

11-22

schemes, the size of the virtual hash table varies from 2 to 2 slots.

12 m
The actual hash table varies in size from 2 to 2 slots. Bump table space

is used as needed. The tables are filled by the words from either the ADI

or CRAN dictionaries and the collision and storage statistics taken. Because

good collision properties are most important, they are examined first. The

storage properties are dealt with later.

The number of collisions obtained from each scheme versus the virtual

table length is plotted in Figs. 4 to 7. The AD1 dictionary is shewn in Figs.

4 and 6, and the CRAN in Figs. 5 and 7. The circled lines correspond to

curves generated from equations C9) and Cl2). The horizontal one shows the

expected number of collisions and the lines above and below it enclose a

95% confidence interval about the expected curve. In other words, if an

algorithm is generating random addresses, the probability is 95% that the

curve for that scheme lies between the heavy lines.

Consider Figs. 4 and 5 showing the results for all the addition

methods and the MC variation of the multiplication variation. The AC and

MC algorithms differ only in that addition is used in forming the key in the

first one and multiplication in the second one. Yet the curves are specta­

cularly different. The result seems to have the following explanation*

The purpose of a hash address computation is to generate a random

number from a string of characters. If the bits in the characters are as

varied as possible, then the algorithm has a headstart in the right direction.

However, the S/360 bit patterns for the alphabet and numbers are:

A to 1 1100 xxxx

J to R 1101 xxxx

S to Z 1110 xxxx

0 to 9 1111 xxxx

11-23

ooooo Theoretical Curves
(Equations (9) and (12))
Experimental Curves
Interpolated Curves

49

45

41

37

33

29

25

21

29

25

AS
|-ooooooooooooc7

MC<*>°° o°' -£$
kjo1"

18

°o,
"OOOOOOOOOOOO

24

16

ooooooooooooo

J— oooooooooo

16

12

^C,AM-

4 h

O^ICjSSS^000 26

AS
1C8888888888 ° ^ C

28

8 r
HAC,AM

20

0|
22

Virtual Hash Table Size (Power of two)

Collisions in the ADI Dictionary for Addition

and Multiplication Hash Schemes

F i g . 4

ooooo Theoretical Curves
(Equations (9) and (12))
Experimental Curves
Interpolated Curves

58

54

50

46

40

38

34

30

26

29

oooooooooy

M&-

18

14

10

17

13

9

°o0
oooooooooooo

16

12

ooooooooooooo
jaoooooooooooo

Soooool

20
Virtual Hash Table Size (Power of two)

Collisions in the CRAN Dictionary for
Addition and Multiplication Hash Schemes

Fig . 5

11-25

ooooo Theoretical Curves

Experimental Curves

Interpolated Curves

at
-O

25h

26

22

18

14

10

mo

oooooooooooo2\-ooooQQQoqpoocmMCQ8SS88§§tiCt05\
z T I ^JMCa^ 2 - "^

DP

16

12

8
^ " " " • P - - ^

6h
DP °<5io5boooooooooooo.

16

12

8

DO.

DRi
DT-

26

fDO

DT
MC.DP

28

20
Virtual Hash Table Size (Power of two)

Collisions in the ADI Dictionary for Division

and Multiplication Hash Schemes

Fig. 6

ooooo Theoretical Curves
(Equations (9) and (12))

Experimental Curves

Interpolated Curves

>oo 2l-oooooooooQfiPT^Toooooooooo^pjOPDT^MC

Virtual Hash Table Size (Power of two)

Collisions in the CRAN Dictionary for Division

and Multiplication Hash Schemes

F i g . 7

11-27

In each case the two initial bits of a character are lTs so that in any

given word -r- of the bits are the same.

In forming a key, the successive additions in the AC algorithm may

obscure these nonrandom bits if sufficient number number of carries are

generated. However, the number of additions performed is usually small —

2 or 3 — and it appears that the patterns are not broken sufficiently. The

MC algorithm uses multiplication to form its keys which involves some 31

additions — certainly enough to make the resulting key random.

fThe multiplications ?*.n the MC algorithm are costly in terms of com­

putation time. Therefore the AS and AM algorithms are tried. These addi­

tion variants try to hasten the breakup of the nonrandom bits by shifting

and masking respectively. Although these variants reduce the number of

collisions somewhat, none of the addition schemes could be called random.

Typically a few words are singled out at some point and continue to collide

regardless of the length of the virtual address. Several collision pairs

are listed below. Note the similarities between the words.

COUNT - SOUND

WORTH - FORTY

TOLERATED - TELEMETER

WHEEL - SHEET

Consider the multiplication algorithms. During key formation, the

process of saving the center of successive products adds to the computation

time. The MSL variation attempts to remedy this by saving only the high

order bits between multiplications Con the S/360 this means saving the

upper 32 bits of the 64 bit product). This method is so inferior that its

collision graph could not be included with the others. The poor results

11-28

stem from the fact that characters at the end of fullwords have little effect

on the key and that the later multiplications swamped the effects of the

earlier ones. Examples of collision pairs are given below. For convenience

the fullwords are separated by blanks.

CERT AINT Y - CERT AINL Y

PREV EKTE D - PRES ENTE D

HEAV ING - HEAT ING

EXPE NSE - EXPA NSE

CHAR TER - CHAP TER

I

The MC and MLM variants are identical with respect to collision pro­

perties. In general these algorithms produce good results, reducing the num­

ber of collisions to zero in both dictionaries. The collision curve is

always beneath the expected one.

Consider Fig. 7 and 8 showing the results for all division methods

and the MC method. All of the division algorithms display a distinct rise

24

m the number of collisions when the virtual table size is near 2 — regard­

less of the dictionary. The majority of the colliding word pairs are 4 char­

acter words having the same two middle letters. This brings to light a curi­

ous fact about division algorithms. For virtual tables, the divisor of the

key is large and the initial few bits determine the quotient, leaving the

rest for the remainder. For words of less than 4 characters (which require

24
no multiplications during key formation)> dividing by 2 is equivalent to

selecting the last 3 characters of the word as the hash address. Because

. . 24
the divisors are not exactly equal to 2 , only the two middle characters

tend to be the same. Examples are:

DEAL - BEAR

11-29

TOOK - SOON

HELD - CELL

VERB - TERM

This phenomenon apparently continues for table sizes around 2 and

2 8
2 , but there are few or no words of 4 characters or less which agree in

24
26 or 28 bits. Eor divisors smaller than 2 , a larger part of the key

determines the quotient and apparently breaks up the pattern.

24
Because the above effect occurs only for V = 2 , these points are

passed ĉ ver on the graphs.

In general, the DT algorithm is superior to the rest of the division

methods, mostly because each of its two divisors is smaller than those used

in other methods. Prime numbers seem to produce better results than other

divisors.

On the basis of collision properties, the MC, MLM, DT, and possibly

AS algorithms are the best. Storage-search evaluations are included for

these methods only.

The experiments with each hash coding method also include counting

the frequency of various length of collision chains. Here a collision

chain refers to chains of words producing the same major. The frequency

counts are compared with the expected counts given by equation (5). The

comparison is in terms of a chi-square goodness of fit test with a 10% level

of significance. Figs. 8 and 9 show the results of this test for each

dictionary. Included in the graphs is the line corresponding to the 10%

level of significance. If the major portions of the hash addresses are

really random, there is a probability of 0.90 that the 10% line will lie

above the curve for the algorithm tested.

MC-

_L

-MC- -MC

JL

MLM

-MC-

AS.DT

24 26 28 20 22

Virtual Hash Table Size (Power of two)

X —curve for 10% level of significance

Deviations of Storage-Search Properties from Expected

Values for Storage Hash Schemes using the ADI

Dictionary

Fig . 8

MLM
MLM

L J J_
20 22 24 26 28

Virtual Hash Table Size (Power of two)
X —curve for 10% level of significance

Deviations of Storage —Search Properties from Expected

Values for Selected Hash Schemes using the CRAN
Dictionary

Fig . 9

11-32

Consider the MC and MLM algorithms which differ only in that the

major is selected from the center and left of the virtual address. From

the graphs, it is clear that the multiplication methods produce their mos":

random bits in the center of their product. This is somewhat as expected

because the center bits are involved in more additions than other bits.

The division algorithm, which had fairly good collision properties,

seems to have rather mediocre storage properties. This is probably due to

the same causes as the collision problems, but working at a lower level, and

not affecting the results as much.

The AS curve is included simply for completeness. The scheme dis­

plays a well behaved storage curve, but unfortunately it has poor collision

properties.

In summary, the MC scheme seems to be the best for both dictionaries

in terms of collision and search properties. In terms of computing time,

the method is more time consuming than the addition methods, but less expen­

sive than the division methods. The differences in computation times is

not an extremely big factor. All methods required from 35 to 55 microseconds

for an 8 character word on the S/360/65. The routines are coded in assembly

language and called from a Fortran executive. The times above include the

necessary bookkeeping for linkage between the routines.

5. A Practical Lookup Scheme

A) General Description

The lookup scheme described below is designed for use with dictionaries

15 29
of about 2 v words. The virtual table size selected is 2 ' and the actual

15 table size is 2 . On the basis of the results presented in previous sections,

11-33

when the dictionary is full, it is expected that

1) 36.8% of the hash table will be empty,

2) 36.8% of the hash table will be single entries,

15
3) the bump table will require (0.632)2 v entries,

*+) 1 collision is expected,

5) the probability of 5 or fewer collisions is 0.999, and

6) the average lookup will require 2.13 probes.

(B) Table Layout

In all previous discussions a dictionary entry has included a minor

and a concept number. A concept number is simply a unique number assigned

to each word. The hash address of a word is also unique, and hence can be

used. There is no need to store and use a previously assigned concept num­

ber.

A dictionary entry contains a 14 bit minor and a single bit indica­

ting whether the word is common or noncommon;

1 2 15

Minor

C = 0 implies the word is common

C = 1 implies the word is noncommon.

A hash table entry contains 16 bits arranged as:

0 1 lb

Flag Information

Flag = 0 implies that the information is a dictionary

entry

11-34

Flag = 1 implies that the information is a pointer to

the bump table

Words that have the same major are stored in a block of consecutive

locations in the bump table. This eliminates the need for pointers in the

collision "chains". A bump table entry also has 16 bits structured as:

0 1 2 15

End
1

C Minor
1 . • . • • • • , . . • „ | • . „ • • •

End = 0 implies that the entry is not the last in

the collision block

End = 1 implies that the entry is the last in the

block.

Some convention must be adopted to signify an empty hash table slot. A

zero is most convenient in the above scheme. Unfortunately a zero is also

a legitimate minor. However, to cause trouble the word generating the zero

minor would have to be a common word and a single table entry (zero minors

in the bump table are no problem). Hopefully this occurs rarely because of

the size of the minor (14 bits) and the small number of common words. How­

ever, even if this combination of circumstances occurs, the common word

could be placed in the bump table anyway.

In designing the tables, it is important to make the hash table

entries large enough to accommodate the largest pointer anticipated for the

bump table. For the above scheme, the expected bump table size is less than

2 so that the 15 bits allocated for pointers is sufficient.

C) Search Considerations

The number of probes needed to locate any given word depends on the

11-35

place that the word occupies in a collision block. The average search time

is improved if the most common words occupy the initial slots in each block,

A study of ADI text yields the following statistics.

Division of Words by Category

Number of Words

17270 Total words

8716 Common words

8554 Noncommon words

Percent of Total

100.0

50.5

49.5

Number of
Characters

1-4

5-8

9-12

13-16

17-20

21-24

Totals

Average
Length

All
Words

10145

4630

2249

221

11

5

17270

6.3

Distribution of

Percent

58.8

26.8

13,0

1.3

0.1

a. a
100,0

Common
Words

8057

627

32

0

a
0

8716

4.3

Lengths

Percent

92.5

7.2

0.3

0.0

0.0

0.0

100.0-

Non-
common
Words

2097

4003

2217

221

11

5

8554

8.3

Percent

24.5

46.8

25.9

2.6

0..1

0.1

100.0

Using the categorical information, it appears that in filling the hash-bump

tables, the common words should be entered first. Within each category,

all words should be entered in frequency order if such information is known,

If frequency information is not available, the distribution by lengths can

11-36

be used as an approximation to it. For common words, this means entering

the shorter words first. For noncommon words, the words of 5 to 8 charac­

ters should be entered first.

The greater the number of single entries, the greater the average

search speed. Fig. 1Q shows the fraction of single entries (J,) and frac­

tion of empty slots (J) for various load factors. The fraction of single

—ot
entries F = ae reaches a maximum for a = 1, but since the slope of

the curve is small around this point, and load factor in the interval CD.8,

1.2) is practically the same. Table usage is better, however, for the lar­

ger values of a. These facts imply that scatter storage schemes make most

efficient use of space and time for a = 1.

Most text words can be assumed to be in the dictionary. Thus the

order of comparisons during lookup should be:

Hash Table Scan

1) check minor assuming the text word is a common word

2) check minor assuming the word is noncommon

3) check if the entry is a pointer to the bump table

4) check if the entry is empty

First Bump Table Entry Cmust be at least two)

5) check minor assuming the word is a common word

6) check minor assuming the word is noncommon

Other Bump Table Entries

7) check minor assuming the word is noncommon

8) check minor assuming the word is common

9) check if at end of collision block.

11-37

.70

60 O Fraction Empty Slots

A Fraction of Single Entries

P 50

o
X

c
o
a
o

.40

.30

.20

ioh

/

A "

/

.8 1.2 1.6 2.0

Load Factor

Theoretical Hash Table Usage

F i g . 10

11-38

The search pattern can be varied to take advantage of the storage conditions.

For example, if all common words are either single entries or the first

element of a collision block, then step 8) may be eliminated.

D) Performance

The lookup system described above has been implemented and tested

on the IBM S/360/65. A modified form of the MC algorithm is used to com­

pute a 29 bit virtual address and divide it into a 15 bit major and a 14-

bit minor. The modification is the inclusion of a single left shift of

the fullwordi of characters during key formation. This breaks up certain

types of symmetries between words such as WINGTAIL and TAILWING. Without

this, such words will always collide. The hash-bump tables were filled

with entries from the ADI dictionary — common words first, followed by

noncommon words. The shortest words were entered first. A comparison of

the expected and actual results follows.

a = .239

Number of empty table slots

Number of single entries

Number of collision blocks

Longest collision block

Average length of collision
blocks

Size of bump table

Number of collisions

Average probes per lookup

Expected

25810

6161

797

4

2.1

16-63

.06

1.33

Actual

25762

6250

756

4

2,1

1572

1.33

11-39

To obtain the actual lookup times 627 words were processed. The

words were read from cards and all punctuation removed. Each word was

passed to the lookup program as a continuous string of characters with the

proper number of fill characters added. The resulting times are given

below (in microseconds):

Category
of Words

A l l v

Common

Noncommon

Not found*

Number
of Words

627

288

338

1

Percent
of Total

100.0

45.9

53.9

0.2

Average
Time

57.9

49.9

64.7

53.1

Standard
Deviation

11.7

6.7

10.7

0.0

Average
Probes

1.18

1.12

1.24

1.00

* A larger sample with less accurate timings indicates that the average
time for words in this category is about 62 microseconds (standard
deviation 26).

The time to compute a hash address depends on the length of the

word. Let n be the number of S/360 fullwords needed to hold these char­

acters. The time to form the initial address is

I(n) = 34.5 + 10.2 (n - 1) microseconds.

The average total lookup time, then, is

T = I(n) + cP

where c is the average time per probe into the table space and P is the

average number of probes. For the words in the experiment n = 2.3 2 (average),

I(n) = 40.3, and T = 57.9 so that each probe required about 15 microsec­

onds.

11-40

E) Comparisons

Timing information for other lookup schemes is difficult to obtain.

A tree structured dictionary is used for a similar purpose at Harvard. Pub-

lished information indicates 6pq microseconds are needed to process p words

in a dictionary of q entries. This time is for the IBM 709*4. Translating

this time to the S/360/65, which is roughly 4 times faster, and using the

ADI dictionary (q = 7822), it appears that each lookup averages 11,000 micro­

seconds. Exactly how much computation and input-output this includes is

unknown.

6. Extensions

A) Larger Dictionaries

As more words are added to the dictionary, the size of the virtual

address must increase in order to prevent collisions. As a result, the num­

ber of bits per table slot must also increase in order to accommodate the

larger minors and pointers that are used. For a fixed sized hash table, the

number of entries in the bump table grows as new words are added. At some

point the space required for tables will exceed the amount of core allotted

for dictionary use. To salvage the scheme, it may be possible to split the

bump table into parts — one part for more frequently used words and one for

words in rather rare usage. During dictionary construction common words

are entered first, then noncommon, then rare. When a rare word must be

placed in a collision block, a marker is stored instead, and the item is

placed in the secondary bump table. Presumably the nature of the words

in the second bump table will make its usage rather infrequent, thus saving

accesses to auxiliary storage to fetch it.

11-41

B) Suffix Removal

Many dictionary schemes store only word stems; the lookup attempts

to match only the stem, disregarding suffixes in the process. This is not

easily done with scatter storage schemes. One solution is to try to remove

the suffix after an initial search has failed. Each of the various possi­

ble stems must be looked up independently until a match is found. Another

solution is to use a table of correspondences between the various forms of

a word and its stem. The concept number could be used as an index on this

table containing pointers to information about the actual stem. A thesaurus

lookup can be handled the same way.

7. Conclusions

Virtual scatter storage schemes are well suited for dictionaries,

having both rapid lookup and economy of storage. The rapid lookup is due

to the fact that the initial table probe limits the search to only a few

items. The space savings come from the fact that the actual character

strings for words are not part of the dictionary. The schemes depend

heavily on a good algorithm for producing random hash addresses. The

theory developed in Sections 2 and 3 gives a basis for judging the worth

of proposed algorithms.

For any particular application, the table organization may vary

to suit different needs and to store different information. However, the

advantages of scatter storage schemes are still present.

References

[1] Salton, G.f A document retrieval system for man-machine inter­
action, Association for Computing Machinery, Proceedings of the
19th National Conference, Philadelphia, Pennsylvania, August 25-27,
1964, pp. L2.3-1 — L2.3-20.

[2] Mcllroy, M. D., Dynamic Storage Allocation, unpublished manuscript,
Bell Telephone Laboratories, Inc., 1965.

[3] Morris, R., "Scatter Storage Techniques", Communications of the
ACM, January, 1968.

[4] Maurer, W. D., "An Improved Hash Code for Scatter Storage",
Communications of the ACM, January, 1968.

{5J Johnson, L. R., "Indirect Chaining Method for Addressing on
Secondary Keys", Communications of the ACM, May 1961.

