I. The Cornell Implementation of the SMART System

D. Williamson, R. Williamson, M. Lesk

Abstract

The systems organization of the SMART programs is discussed as implemented for operation in a batch processing mode on the IBM 360/65.

Covered in particular are the basic input and text analysis routines, the document clustering programs, the search routines and the feedback operations. Sample computer output is shown in each case to illustrate the operations.

1. Introduction

The SMART system is designed for the exploration, testing and measurement of proposed algorithms for document retrieval. The system takes documents and search requests in English, performs a fully-automatic content analysis of the texts, matches analyzed documents with analyzed search requests, and retrieves those stored items believed to be most similar to the queries. The request authors (users) can submit information to improve their queries (relevance feedback), and this information is used by several experimental procedures to improve search results. The time required to match large collections of documents to requests can be reduced by grouping these documents (clustering) and matching requests against a representative of the entire group. Finally, exhaustive evaluation procedures can be used to ascertain the effectiveness of various methods used in searching.

Several important criteria are incorporated in the implementation

of the SMART system. [1] The requirement for mixing different processing methods, such as clustering, relevance feedback, and searching, implies that the programming system should be written in terms of many small blocks, in such a way that any one process would be synthesized by assembling several blocks into one unit. In this manner, not only can a process be carried out using many different combinations of methods, but a change in any part of the system does not require major alterations of the other parts of the system. The fast processing speed necessary to process large collections is gained by making it possible to process several queries in parallel.

2. Basic System Organization

The SMART information retrieval process can be divided into five basic sections: the input of printed text, the grouping of documents for searching purposes (clustering), the selection of a group of documents to be searched, the searching of the document group, and the evaluation of the search.

The printed text specifying the queries and documents must be converted into a form more easily handled by a computer. For this purpose various automatic language analysis devices can be used which reduce each query and document to "concept" vector form.

To produce fast searching algorithms, documents can be grouped into classes of similar documents. The grouping (clustering) is done by placing documents containing similar concepts together, into the same group; a representative central item is then constructed for each group.

The search of a document group (cluster) is done by first matching requests against clusters. Certain clusters are picked as most likely to

contain documents of interest. These documents are then searched in the normal manner, one item at a time. After seeing some retrieved documents, the requestor can modify his request, either by physically changing it, or using the requestor's relevance assessments to automatically modify the query.

Several measures of retrieval performance are computed to evaluate each search. The sign test, T test, and Wilcoxon Rank Sum test are also used to determine the significance of the evaluation measurements.

A) Input of Printed Text

The first section involves the reading of text (e.g., abstracts, queries) and the conversion of a given text into numeric concept vectors with weights. The conversion process may involve the use of suitable dictionaries, thesaurus, and other language normalization aids. At present, a relatively simple PL/1 program is used to implement this section. A more flexible Fortran IV program is planned for later implementation as described in report ISR-14 [2] and included in the system flowcharts, part 4 of the report.

The presently available text-handling program, LOOKUP, is a procedure which performs dictionary lookups on a large IBM 360-series computer. It accepts a dictionary, suffix list, and texts and produces "concept vectors" for the texts. Words missing from the dictionary are also processed. The algorithm is essentially that of Sussenguth [3] although the tree structure storage format is not used. LOOKUP is designed primarily for ease of programming, and is coded entirely in PL/1.

The overall operation of LOOKUP is divided into three parts. First, the dictionary and suffix list are read into memory, sorted alphabetically and necessary initialization is performed. Secondly, text is read in, divi-

ded into words, and the words looked up in the dictionary and suffix lists. Third, the concept numbers derived from the words in each document are sorted and condensed into a properly weighted vector. The vector can be printed and/or stored in machine-readable form. The lookup program finds a match between an input word and a dictionary entry under the following conditions:

- 1) the word exactly matches a dictionary entry; or
- 2) it matches a dictionary entry with a final "e" dropped and a suffix beginning with a vowel added; or
- 3) it matches a dictionary entry plus a suffix; or
- 4) it matches a dictionary entry with a final "y" changed to "i" and a suffix added; or
- 5) it matches a dictionary entry, with a final consonant doubled and a suffix added.

When several possible matches are found, the match involving the longest stem is preferred; within stems of the same length, preference is in numerical order as above. Thus, if "cop", "cope", and "copy" are all stems in the dictionary, and all normal English suffixes are included in the suffix list, "cops" is found from "cop" under rule 3; "copes" or "coping" is found from "cope" under rule 2; "copying" from "copy" under rule 3; "copies" from "copy" under rule 4; and "copper" from "cop" under rule 5. Other morphological features of English are not recognized; such word pairs as "mouse" and "mice", "sing" and "sung", "fight" and "fought", or "court-martial" and "courts-martial" must be entered explicitly in the dictionary if both members are to be recognized. Special rules exist which specify that all stems must be at least three letters long (to avoid, for example, finding "wing"

from "we" under rule 2 or "inning" from "in" under rule 5); furthermore, all words are truncated at 24 characters.

The program can distinguish titles from the body of the text, if asked; and it may either split the weight of an ambiguous word among its concept numbers, or weight all concept occurrences equally. The suffix list may be omitted from the lookup, in which case only words that exactly match a dictionary entry can be found; and the programmer may choose whether hyphenated words are to be considered as a unit or as separate words. As in the previous SMART implementations, concept numbers of zero or concept numbers of 32000 or more are considered to be nonsignificant and are dropped from the vector.

Fig. 1 shows a typical output of LOOKUP. First the title is given, and then the text of the document (or query in this case). The resulting numeric concept vector is next printed, consisting of pairs of concept numbers followed by the respective concept weights (for example, concept 927 with weight 12, 2574 with weight 12, etc.). Concepts are listed in the vector in increasing numeric order.

B) Document Clustering for Search Purposes

At present two clustering algorithms are in operation at Cornell — CLUSTR, which uses Rocchio's clustering algorithm [4], and DCLSTR, a variation of Doyle's clustering algorithm. [5]

Rocchio's clustering algorithm is based on the following methodology: an unclustered document is selected as a possible cluster center. Then, all of the other unclustered documents are correlated with it, and the document is subjected to a density test to see if a cluster should be formed around it. The density test specifies that at least N_1 documents should have corre-

VECTION - 1222 / 12/ VB21/ 12/ V316/ 12/ V3004 / 1 / V522

lations higher than a specified parameter p_1 with the document in question, and that at least N_2 documents should have correlations higher than p_2 (p_2 is generally larger than p_1). This test ensures that documents on the edge of large groups do not become cluster centers. If the document passes the density test, thus becoming a cluster center, a cutoff correlation, p_{\min} , is determined from the cluster size limits and the distribution of correlation values. The cutoff correlation becomes p_1 if fewer documents than the minimum cluster size (M_1) have correlations above p_1 . If more such documents exist, the cutoff correlation is chosen at the greatest correlation difference between M_2 adjacent documents, where M_2 is the maximum cluster size.

A classification vector is then formed by taking the centroid of all the document vectors having correlations above $\,p_{\mbox{min}}\,$. This centroid vector is matched against the entire collection, and the cutoff parameters for cluster size are recalculated to create an altered cluster.

As a result of this process, some documents may appear in more than one cluster; and some which were in a cluster when the centroid was originally formed may not remain in any cluster. These documents, as well as those which failed the density test, are termed "loose", and those within the cluster are termed "clustered".

This entire procedure is repeated with all unclustered documents, the first pass terminating when all items are either clustered or loose. Figs. 2, 3, and 4 illustrate the formation of a cluster. Document 2 is first correlated with all previously unclustered documents in the collection (9 documents of the 82 documents in the collection had previously been clustered around document 1). The correlations are ranked, and the ranks, documents are ranked, and the ranks, documents.

Tered LtoR

CI	USTERII	NG ABOUT	COCUMENT	2					
RANK	DCC	CORR	RANK	CC	C CORR	KANK	D	CC (CORR
1	. 2	1.0000	2	64	C.4CC2	3	27	0.363	1-
6	68	0.2512	7	61	0.2475	8	18	0.236	
11	12	C.1990	12	55	C.1867	13	14	0.186	1
16	34	0.1697	17	33	0.1689	18	22	0.1634	4
21	50	C.1445	22	82	0.1420	23	48	0.1400	0
26	19	0.1239	27	6	0.1235	28 .	30	0.1000	5
31	77	0.0934	32	81	0.0934	33	32	0.092	1
36	53	C.0854	37	78	0.0748	38	25	0.0729	9
41	26	0.0583	42	58	0.0578	43	38	0.0539	9
46	42	C. C460	47	15	0.0454	48	49	0.043	7
51	<i>z</i> 1	0.0394	52	35	0.C385	53	54	0.0374	4
56	43	C.0337	57	36	0.0335	58	44	0.0283	3
61	C.	C.G000	62	O	0.0000	63	0	0.0000)
66	0	0.0000	67	0	0.0000	68	0	0.0000)
71	0	C.0000	72	0	0.0000	73	O	0.000	0

	RANK	DOC	CORR	RANK	DOC	CORR
4	39	0.3466	5	41	0.2628	
9	29	0.2258	10	71	0.2174	
14	66	0.1749	. 15	73	0.1715	
19	16	0.1515	20	69	0.1511	
24	9	0.1257	.25	23	0.1257	
29	8	0.0934	30	65	0.0934	
34	67	0.0891	35	17	0.0880	
39	75	0.0691	40	24	0.0665	
44	7	0.0511	45	10	0.0467	
49	96	0.0432	50	7 9	0.0417	
54	63	0.0353	55	59	0.0347	
5 9	0	0.0000	60	9	0.0000	
64	0	0.0000	65	0	0.0000	
69	C	0.0000	70	0	0.0000	
74	0	0.0000	7.5	0	0 0000	

DOCUMENT 2 HAS PASSED THE DENSITY TEST. CUTOFF WILL BE CHECKED.

(annual)
œ
-
2
LL.
\circ
\propto
0
Ĭ,
4
S
Z

-
A
_
W
α
α
J
$\ddot{\circ}$

()

																	,												
CORR	0.5252	.278	.245	.225	.193	.159	.147	.123	.113	960°	.034	.057	.051	.017															
000	27	69	23	69	58	7.8	8	82	21	64	20	09	76	14															
RANK	mα	13.0	1 8	23	28	33	38	43	48	53	58	63	6 3	73															
CORR	C.5501	.297	.246	.225	. 205	.185	.148	.128	.113	.098	.087	.063	. C51	.038	CORR	964.	.408	. 262	.233	. 211	.190	.154	.145	.119	.105	.093	.073	0.0541	.041
0.00	18	52	22	5	14	00	53	51	45	19	7	37	4	31	200			12										5	~
X A A X	2	12	17	22	2.7	32	37	42	47	52	57	62	67	72	RANK	5												69	
CORR	0.7221	.385	•259	.232	. 209	. 186	• 148	• 138	.119	. 102	060.	.063	.052	• 038	CORR	.517	.433	.265	.236	.214	.191	.156	.145	.120	.105	•094	.074	0.0547	.043
DCC	68	30	33	17	34	28	11	63	74	36	10	24	45	13	000													35	
RANK	1 9	11	91	77	97		36	7 5	40	21	26	61	99	71	RANK	7	6	14	19	54	59	34	3.6	77	64	54	59	79	69

The Correlation of Centroid 2 with all Unclustered Documents

ITEM	2	CENTROID	00000000	200		ACIABIH	CCCS	200	C0CCC002		
		CCN		000		CON		CON) E	S	
		-		80				5	144		
									30		
									54		
									12		
				∞		∞	_		54		
				7		2		3	54	3	
		4		5		S		2	12	9	
1		6		6		6		-	24	_	
		(T)		3		4		4	12	5	
		282	12	284	12	286	24	287	48	162	24
		7		4		2		∞	9	3	
		CON	3	CON	3	CO		NOO			
		80		12		_		17			
		25		56		32		33			
		46		4 8		20		51			
		49		99		9		-			
		86		66		_		-			
		138	12	140	12	141	12	143	12		
		171		180		∞		0			
		_		-		2		2			
		9		9		7		-			
		9		6		6	12				
							,				
T	TFE	95 CONCEPT	IS ABOVE	'E HAVE	A SUM	OF AB	SOLUTE	WEIGHT	HTS =	2640	

377.00 11 SQUARED WEIGHTS 95 CONCEPTS ABOVE HAVE SUM OF ROOT WITH A

89 39 27 49 ~ 11 RELEVANT --TFE

30

41

19

59

18

The Completed Cluster 2

Fig. 4

ment numbers, and correlation coefficients are listed in Fig. 2. In the example, at least 10 documents (N_1) must have a correlation greater than 0.15 (p_1), and at least 5 documents (N_2) must have a correlation greater than 0.25. The correlation of document 2 is larger than 0.15 for 19 other documents, and for 5 other documents the correlation exceeds 0.25. Document 2 therefore passes the density test. M_1 in this example is 5, and therefore p_{\min} is calculated by finding the greatest correlation difference between adjacent documents, starting with the document of rank 5 (at least M_1 documents must be included) and checking differences up to M_2 documents (in this case 15 documents). The largest gap occurs between ranks 7 and 8 — therefore p_{\min} is taken to be 0.2475.

The classification vector (called the centroid) is formed by merging the document vectors of documents having correlations above p_{\min} (0.2475). The centroid, composed of concepts and weights, is shown in Fig. 4. This centroid is then correlated with all previously unclustered documents (Fig. 3). A second cutoff correlation p_{\min} is calculated to determine which documents belong in cluster 2. Here the greatest correlation difference (starting at M₁ and checking until M₂) occurs between the documents ranked 11 and 12. Therefore p_{\min} becomes 0.3859, and the top 11 documents are included in cluster 2. These documents are listed as the "11 Relevant" in Fig. 4.

DCLSTR uses a variation of Doyle's Algorithm. The following description of the algorithm covers the main points. [5] Assume that the document set is arbitrarily partitioned into m clusters, where S_j is the set of documents in cluster j . Associated with each set S_j is a corresponding concept vector C_j and frequency vector F_j . The concept vector consists of all the concepts occurring in the documents of S_j , and the frequency vector specifies the number of documents in S_j in which each concept occurs.

Every concept in C_j is assigned a rank according to its frequency; i.e., concepts with the highest frequency have a rank of 1, concepts with the next highest frequency receive a rank of 2, etc. Given an integer b (base value), every concept in D_j is assigned a rank value equal to the base value minus the rank of that concept. The vector of rank values is called the profile P_j of the set S_j. Fig. 5 illustrates the concept and frequency vectors, and the corresponding profiles for a sample document collection.

Starting from a partition of the document set into m clusters, the profiles are generated as described. Every document d_i in the document space is now scored against each of the m profiles by a scoring function g, where $g(d_i,P_j)$ equals the sum of the rank values of all the concepts from d_i which occur in C_j . Fig. 5 shows the results of scoring the documents in the sample collection against the profiles from Fig. 5.

A new partition of the document set into m+l clusters is then made by the following formula:

$$S_{j} = \{d_{i} | g(d_{i}, P_{j}) \ge T_{i}\} \qquad 1 \le j \le m$$

$$T_{i} = \begin{cases} H_{i} - [a \cdot (H_{i} - T)] & \text{if } H_{i} > T \\ T & \text{otherwise} \end{cases}$$

where

$$H_{i} = \max(g(d_{i}, P_{j}))$$

$$0 \le a \le 1$$
 $T = a$ is the given cutoff value.

Those documents which do not fall into any of the m clusters S. are called loose documents, and they are assigned to a special class L. The process is

<u>d</u> 1	d ₂	d ₃	d ₄	d ₅	d ₆	d ₇
c ₁	$^{\rm c}$ l	cl	$^{\rm c}$ l	$^{\rm c}$ l	с 3	c ₆
c ₂	c_2	^c 7	c ₂	С8		С8
c ₅		С8	c ₃			
	c ₅		^c 5			

$\frac{S_1}{1}$			P ₁				P ₂				
d	cl	3	5	d ₂	c_1	2	5	d ₆	c ₃	1	5
d ₃	c ₂	1	3		c ₂	2	5				5
d ₅	c ₅	1	3				4		С8	1	5
	^c 7	1	3		c ₄	1	4				
	c ₈	2	4		c ₅	2	5				

a) Documents

b) Initial Clusters, Profiles, and Frequencies

Document	Profile of Highest Score	Score
d ₁	2	15
d ₂	2	19
d ₃	1	12
d ₄	2	19
d ₅	1	9
d ₆	3	5
d ₇	3	10
· '		

b) Resulting Clusters

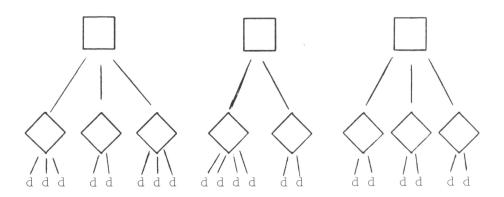
One Iteration of Doyle's Classification Algorithm (cutoff = 10)

now repeated after replacing P_j by $P_j^!$. The iteration continues until $S_j^!$ satisfies the termination condition that $S_j^! = S_j^!$ (actually $S_j^{*}! = S_j^{*}$, where S_j^{*} is the subset of S_j consisting of all those documents that score highest against profile P_j).

Basically, this algorithm matches documents to existing clusters by computing a document-cluster score for each document with respect to each cluster, and placing a document into those clusters for which a sufficiently high score is obtained. The clusters are then updated to include the new documents. In each iteration all the documents are correlated with all the clusters, and the clusters are updated until further updating does not alter the group of documents in each cluster. This updating is shown in list form in Figs. 6 and 7. The 12 profiles (clusters) of Fig. 6 are matched against the documents, and updated to become the profiles of Fig. 7.

It should be noted that the document clustering process can be extended to the clustering of clusters. That is, if one of the two clustering algorithms generates m groups of documents, these m groups could be grouped together, as if they were documents, into n clusters, where $1 \leq n \leq m$. These n clusters could then be grouped together, and so on, until a hierarchical cluster tree is formed as shown in Fig. 8. At present no routines for automatically constructing such multi-level cluster trees exist in the SMART system, although such an algorithm is planned for implementation in the near future. Both CLUSTR and DCLUSTR generate the first level of the cluster trees, thus representing special cases of more general tree construction routines.

C) The Selection of Documents to be Searched
The search process consists of four steps. First a search query is


	961				561			£	184		
	6 7				61			13	3.6		
	169		161		193	٠		132	781		
128	124		087		761			118	176		
707	122	191	151		183			104	091		
100	103	154	141	181	121			95	150	,	
87	9	135	140	120	115	·		92	141	891	
AK 84	ARE 85	ARE 112	ARE 134	AKE 113	ARE 114	AKE	ARE 188	AKE 91 159	AKE 136	ARE 167	AKE
4	~	m	4	2	٥	_	ω	5	01	7	12
а. 8	.E	-t-	LE 117	. E I I O	LE 111	ш,	LE 187	LE 78 158	-F 60	F.	
FIL	F 11	11 4	IF 11	11-11	F 11	F 11	F 10	F 11	F 1	FI	11 40
PKU 82	PRU 68	PKU 77	N PRU	P.K.	PRC 69	PŘÚ	7 X S	PRI 72 156	PRL 59	PRL 65	PRL
IN PRUFILE 82 8	IN PRÜFILI 68	2	IN PRUFILE	IN PRUFILE 94 11	IN PROFIL	IN PRUFILE	Z	IN PRUFILE 72 7 156 15	2	IN PRUFILE 165 160	2
	15	52			1S 63	15	57		11S 56		SI
EN S	ENI	N. J.	EN]	EN 3	EN 1	EN	E S	L L	Z.	EN	Z. W.
1HE DOCUMENTS	DULUMENTS 65 66	DUCUMENTS IN PROFILE	DULUMENTS 23 62	DUCUMENTS 90 93	DUCLMENTS 41 63	DUCUMENIS 39 101	DUCUMENTS IN PROFI 31 57 58	DUCUMENTS 29 43 153 155	JUCUMENTS IN PRUFILE	DOCUMENTS 163 164	INL DUCUMENTS IN PROFILE
1HE	Trie 64	1 HE	14E	וחב	Iнс 25	1HE	THE	1nt 20 152	Int 15	170 The 102	111
, 0	70	. C 4	· ~	· •	79	V	4	2.3 14.9	130	, p	

Original Profiles (Clusters)

Fig. 6

٥1			IN PROFILE 84 87		128	
64			IN PRUFILE 86 124	2 ARE		
74			IN PROFILE 112 154			
9			IN PROFILE	4 ARE		
٠ غ _ر			IN PRUFILE			
13			IN PROFILE		192	195
2	THL 19	the same time of the contract	IN PROFILE	7 ARE		
4			IN PROFILE 187 188	6 ARE		
 ∠ ♂			IN PROFILE			
ەۈ			IN PROFILE 182 184		198	
გ. გ			IN PROFILE			
40		DUCUMENTS 48 49	IN PROFILE	12 ARE		

cluster root
centroid
document

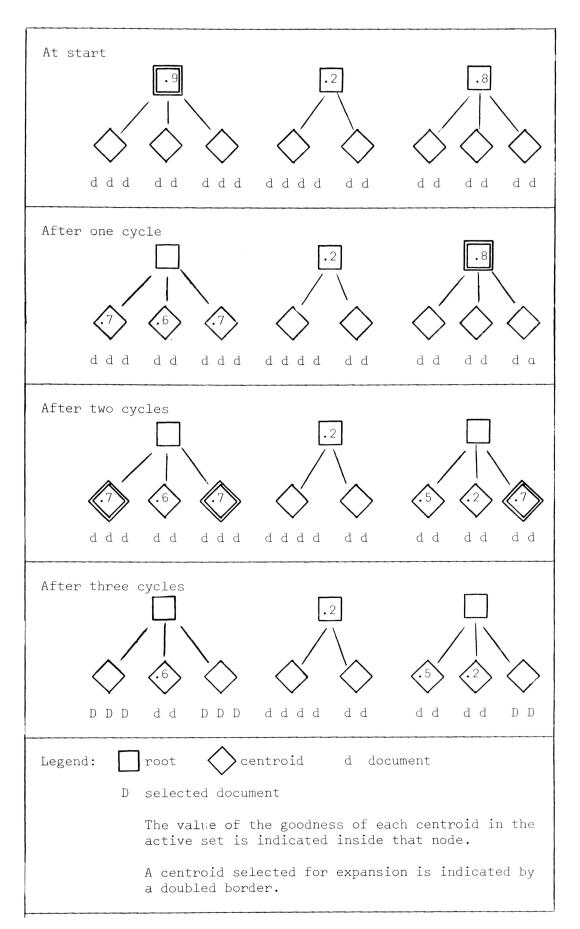

A Hypothetical Cluster Tree

Fig. 8

defined, either using the author's original query, or a modification of the original query, in numeric concept vector form. One important modification consists in using documents judged relevant by the author to modify the original query vector. This process is known as relevance feedback and is discussed in part D of this section.

Once a search query is defined, the set of documents to be correlated with the query is selected. SMART provides two options; either a <u>full search</u> or a <u>tree search</u> may be made. In a full search every document in the retrieval base is correlated with the query. In this case the selection of the documents to be searched is trivial — all documents in the collection are searched.

In the tree search [6], a set of documents is selected by a cyclic process, using a tree such as that pictured in Fig. 9. At any one time, a set of active nodes exists in the tree; initially this is the set of roots (the highest level of clusters). Each node in the active set is compared with the search query. The "goodness" of each node is defined from the relatedness of a query to a node, and from other information about the structure of a tree; the nodes of the "active" set are then ordered by this value of a "goodness". A subset of active nodes is selected as being most promising. The corresponding nodes are deleted from the active set, and the sons of these nodes (if centroids) are correlated with the query and become a part of the active set. Those sons which represent documents are then entered onto a list of documents to be used in subsequent correlations with the query. The active set is cyclically reordered and another group of nodes is selected to have its sons examined until some desired number of documents are located. The process used to obtain a list of specific docu-

Searching a Hypothetical Tree

ments to be directly compared to a query is represented in Fig. 9.

The listing reproduced in Fig. 10 shows an example of input to the cluster searching routine. The first iteration (Iteration 0) uses a full search instead of a tree search. The second iteration (Iteration 1) represents a tree search on the cluster collection "CENTROID NO MORE" using the "COSINE" correlation. The desired number of documents to be selected for correlation with the query is given by "WANTED", where "WANTED" is defined as:

where

CORDOC implies that at least "CORDOC" documents will be correlated in this iteration;

TIMALL "TIMALL" times "ALLOF" (for this iteration) documents are additionally correlated in this iteration;

TIMREL" times the number of relevant documents not yet retrieved are additionally correlated in this iteration;

TIMNMR "TIMNMR" times "NOMOR" (for this iteration) documents are additionally correlated in this iteration.

"ALLOF" and "NOMOR" are user-supplied constants indicating how many documents are used in relevance feedback. Therefore the second and fourth terms of the parameter "WANTED" are constants, like "CORDOC", for a given iteration. These constants are expressed by three parameters (rather than

ARAMETERS FOR TREE SEARCHING

A FULL SEARCH AATHER THAN A TREF SEARCH IS BEING DUNE.

0

I TERATION

Selection and Expansion of Third Set of Nodes 12 12 14 12 15 17 14 15 17 17 17 17 17 17 17	ITERATION	-	COLLECTION	CENTRUID NO	IO MURE		CURRELATION	COSINE			1
NATION 120 PALUE 1.20 PALUE PA	MANTED		CORDOC	2	TIMALL	2	TIMREL	0	TIMNMR		
MACTOR 0.0 PARTURE 0.0 P	GUODNESS	i	MCN	1.30	PCN	11.00	ML V	0.10	PLV		00.1
MUNION 1			MALL	0.0	PALLUF	G. 3	PALLCN	0.0	PALLLV	_	0.0
MCFLV 0.0 PFCFLV 0.0 PVCFLV 0.0 MNGOOD 1 MARNUD 3 GAP 0.10 EPSLUN 0.0 Parameters for Tree Searching Fig. 10 Fig. 10 SGCWENIS SG	,		ACT CA		Z Z Z	0.0	7 7 7 7 A A	000			
HINGOOD			MCFLV	0.0	PFCFLV	0.0	PVCFLV	0.0		The second secon	
#MGDOU 0.10 MMCGGR 0.75 PERCOL 0.0 % ITHWAN 0.0 Parameters for Tree Searching Fig. 10 Selection and Expansion of Third Set of Nodes Selection and Expansion of Third Set of Nodes FEG. 10 Fig. 10 Sourchers Sour Son	LECTION		MINNOD	1	MAXNUD	3	бАР	0.10	EPSLON	, -	0.05
Fig. 10 Fig. 10	JECTION		MNGDOD	0.10	MNCORR	90°0	PERCUL		TIMMAN		0.0
Fig. 10 QUERY ITER WANT HAVE NEED CENTRUID GUODNESS CROWN LEVEL CORRELATION 34-1 1 12 8 4 5 0.3157 21. 1.CO 0.3157 CLERY ITER WANT HAVE NEED CENTRUID 34-1 1 12 29 -17 5 21 DCCUMENT SONS - 12 4 7 19 24 25 38 40 25 5 36 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00				!					i		1
Fig. 10 QUERY ITER WANT HAVE NEED CENTRUID GOODNESS CROWN LEVEL CORRELATION 34-1 1 12 8 4 5 0.3157 21. 1.00 0.3157 CLERY ITER LANT HAVE NEED CENTRUID 34-1 1 12 29 -17 5 21 DOCUMENT SONS - 12 4 7 8 40 40 40 40 40 40 40 40 40 40 40 40 40					for						
QUERY ITER WANT HAVE NEED CENTRUID GOODNESS CROWN LEVEL CORRELATION 34-1 1 12 8 4 5 0.3157 21. 1.00 0.3157 GUERY ITER MANT HAVE NEED CENTRUID SON					Fig.	0 1				;	
34-1 1 12 29 -17 5 21 DOCUMENT SONS - 2 4 7 8 38 40 850	AUTHOR	QUERY	î			CROWN LEVE		,			
34-1 1 12 29 -17 5 21 DOCUMENT SONS - 2 4 7 8 8 40 25 38 40 67 60 Ouerv 34 500 Ouerv 34	ВАТСН	34-	1 1								
34-1 1 12 29 -17 5 21 DOCUMENT SONS - 2 4 7 8 19 19 17 19 19 24 25 38 40 46 48 67 69 11 12 12 17 19 19 19 19 19 19 19 19 19 19 19 19 19	' AUTHOR '	GUERY		7	TRGID		SON	NOS	SON	SON	NOS
24 25 38 40 46 48 67 69 and Expansion of Third Set of Nodes for Query 34	ВАТСН	34-1			, LO	21 DOCUMEN1	1	4 2	7.1	8 0	. 6 6
and Expansion of Third Set of for Query 34							24 46 71	48	38	04	70
					and Expansion for Ouer		of				

Fig. 14

being lumped into one) for user convenience; most users will set "TIMALL" and "TIMNMR" to zero. The parameter "TIMREL" allows the number of documents searched to be related to the number of relevant documents previously not found.

The "goodness" of each node (the parameter value used to rank the nodes) may also be controlled by the user through 17 parameters as follows.

where "COEF" is the correlation value (usually cosine) between the node and the query, "CROWN" is the number of nodes that are the sons of the node, and "LEVEL" is the level of the node. For example, the node in Fig. 9 with a "goodness" of 0.9, has a "CROWN" of 11 and a "LEVEL" of 3.

It should be noted that the formula for "GOODNESS" contains many combinations of "CROWN" and "LEVEL", making the formula extremely flexible for experimental purposes. It is expected that most users will use only two or three terms, most parameters in "GOODNESS" being usually set to zero.

The size of the subset of active nodes to be expanded (after all active nodes are ranked by "goodness") is determined by additional parameters specified by the user, as printed in the listing (Fig. 10) under "SELECTION" and "REJECTION".

MINNOD MAXNOD	At least 'MINNOD" nodes and not more than "MAXNOD" nodes are to be expanded for this iteration;
GAP	If there exist two nodes between "MINNOD" and "MAXNOD" which have a difference greater than "GAP", all nodes above that gap are expanded;
EPSLON	Any nodes within "EPSLON" of the last node selected for expansion are also to be expanded;
MNGOOD	Any node with a "GOODNESS" of less than "MNGOOD" is not to be retained for expansion;
MNCORR	Any node with a correlation less than "MNCORR" with the query is not retained for expansion;
PERCOL	Only nodes whose combined "CROWN" is greater than "PERCOL" percent of the size of the collection being searched need be retained for expansion.
TIMWAN	Only nodes whose combined "CROWN" is greater than "TIMWAN" times the number of documents to be correlated with are retained for expansion.

The selection of the documents using the parameters from Fig. 10 is shown in Figs. 11, 12, and 13. The queries are processed as a batch, and queries 31, 32, 33, and 34 are shown as examples. The queries are first matched against the "roots" of the centroid tree consisting of centroids 1, 2, and 3. The results of the matching and other useful statistics are shown in Fig. 11. The query number, iteration number, number of documents wanted and found, centroid used to match, "goodness" of the matching, statistics of the centroid, and the cosine correlation are given for each query match against all the roots. The "REJECTION" parameters are used here to eliminate centroids before any ranking is done on "goodness". A "MNGOOD" of 0.10 causes centroid 2 to be dropped from the active set of query 33, and centroid 3 to be dropped

17 QUERIES WILL BE CORRELATED. TREE SEARCHING -- SELFCTING THE CCCUMENTS WITH WHICH

		TO BE DROPPED (BY MINCOR)				TO BE DROPPED (BY MNGOOD)		BE	DROPPED (BY	3E DROPPED (BY	
CORRELATION	0.2375	6501.0	0.1419	0.2540	0.1111	C.0222	0.2842	0.0689	C.0502	0.0	0.5314
	2.00	00.7	2.00	2.00	2.00	2.30	2.00	2.00	2.00		2.00
CROWNS CROWN LEV	26.	• 07	26.	41.	41.	41.	41.	25.	25.		25.
GUJÜNESS	0.2375	6001.0	0.1419	0.2540	0.1111	0.0222	0.2842	0.0689	0.0502		0.5314
CENTROID GUUDNESS CROWN LEVEL		-	7	2	2	7	7	7	3	3	3
	12	12	12	12	12	12	12	12	12	12	12
DCCUMENTS NT HAVE NE	0.0	ی.ر	U	Э	O	O	S	J	ပ	0	ပ
DCCUMENTS WANT HAVE NEED	12	12	12	12	12	12	12	. 12	12	12	12
ITER		-	1	-	7	_	7	1	-	-	1
OLERY IT	31-1	33-1	34-1	31-1	32-1	33-1	34-1	31-1	32-1	33-1	34-1
AUTHOR	BATCH	ВАТСН	ВАТСН	BATCH	BATCH	ВАТСН	ватсн	ВАТСН	ВАТСН	ВАТСН	ВАТСН

AUTHOR	QUERY	ITER	DOCUMENTS WANT HAVE NEED	UMENTS HAVE N	S	CENTROID	CENTROID GCODNESS NODES EST.CUM	CRCWN NODES ES	VS ST.CUM	
ВАТСН	31-1	-	12	0	12			•		
						7	Ú.2540	41	41	TO RE EXPANDED
						-	0.2375	56	19	TO BE EXPANDED
ВАТСН	32-1	-	12	U	12					
						2	0.1111	41	41	TO BE EXPANDED
						1	0.1039	56	19	TO BE EXPANDED
BATCH	34-1	-	12	U	12					
						8	0.5314	25	25	TO BE EXPANDED
						. 5	0.2842	41	99	TO BE RETAINED
						-1	0.1419	56	26	TO BE RETAINED

First Selection of Nodes to be Expanded

AUTHOR	GLERY ITER	R MANT	T FAVE	FAEEC	CENTROID					SON	SON	SCA	SON
		1	;							i i			
BATCH	31-1	12	0	12	-		3 CENT	CENTROID SC	SCNS -	1-	9-	4	
ВАТСН	32-1	12	0	12	1		3 CENT	ENTROID SC	SCNS -	-1	9 1	7	
BATCE	31-1	12	0	12	· 2		3 CENT	CENTRUID SC	- SONS	-10	6-	. ?	
BATCH	32-1 1	12	0	12	2		3 CENT	CENTROID SO	SONS -	-10	6-	1	
ВАТСН	34-1	12	C	12	m.		3 CENT	ENTROID SO	- SNOS	-12	-11	& 	
AUTHOR	GLERY ITER	į.	COCUMENT MANT HAVE	NTS E NEED	CENTRULO	GUUDNESS	CROWNS CROWN LEVEL	NS LEVEL	CORRELATION	NO			
BATCH BATCH BATCH	32-1 1 32-1 1		2.5.5	0 12 0 12		0.0462		1.00	C.0462 0.1048		TO BE OROPPED	,ED (BY	MN G000)
BATCH	32-1 1 32-1 1 31-1 1		21		0 0		21.	1.00	0.0380		TO BE DROPPED) ED (8Y	MNGOOD)
BATCH BATCH		-	15 12				9 0	1.00	0.0865		TO BE DROPPED	ED (8Y	(0005NW
BATCH	32-1 34-1		12 12				10	1.00	0.0734		TO BE DROPPED	PED (8Y	MNGDDD
BATCH			12 12				9 4	1.00	0.2688				
BATCH BATCH			12					1.00	C.2240		TO BE DROPPED		(BY MNG000)
BATCH	4-1	_	12				* * &	1.00	0.6764				
D 40	- 1		12		2 12	0.2084	10.	1.00	0.2084				
				Expansion	4	7. YO. T. A.	+ 0 0	() () () ()					

AUTHOR	QUERY	ITER		CCCUMFAIS Want have need	S	CENTRUID	GUUDNESS	CRCWNS NODES EST.CUM	COM						
ВАТСН	31-1	-	12	U	12	~ 6 8 9 ⊃ 10 6 8 9 ⊃	0.3C85 0.2688 0.2480 0.2472	10 6 21 6 14	10 14 14 10 10	TO 86 TO 86 TO 86 TO 86	E EXPANDED E EXPANDED E EXPANDED E EXPANDED				
ВАТСН	32-1	1	12	0 ;	12	10 4	J.2C78 J.1C48	14	14						
ватсн	34-1	-	12	0	12	11 2 8 8 12 1	0.6764 0.2842 0.2180 0.2084 0.1419	8 41 7 10 26	8 6 9 8 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9				!		
AUTHCR	GLERY	ITER	TARK	MANT HAVE NEED	NEEC	CENTROID					SCN	NOS	SON	NOS	NOS
ВА ТСН	34-1	-	12	0	12	5		3 CENTROID	- SNOS O		-10	6			
ВАТСН	31-1	-	12	21	<u>ن</u> ا	w		21 DOCUMENT	T SCNS -		11 24 46 46	4 12 25 48	7 17 38 57	8 1 4 9 8 6 9 9 9	9 42 70
ВАТСН	31-1	-	15	2.7	-15	• • • • • • • • • • • • • • • • • • •		6 DOÇUMENT	- SONS -		71 1 80	14	27	37	99
BATCH	31-1	1 1	12	37	-25	۰ 6		10 DOCUMENT	T SCNS -		5 5 5 6	13 59	24 67	52 79	53 81
BATCH	32-1	-	12		2	01		6 DUCUMENT	T SCNS -		1,2,1	18	33	55	73
ВАТСН	34-1	·	12	&	4	11		8 DOCUMENT SONS	T SCNS T		29 51 51 7	32 63 15	5 6 9 8 5 6 9 5 6	30	34
				S	Selection	9 F	Second Set	of Nodes	+ C 4		ייס קר הוא בר ברי הוא ברי הוא	r r	19		

Selection of Second Set of Nodes to be Expanded and Expansion of These Nodes

from the active set of queries 31 and 32. Similarly, a "MNCORR" of 0.05 causes centroid 1 and centroid 3 to be dropped from the active set of every 33. The centroids remaining in the active set of each query are the ked and the "SELECTION" parameters used to select nodes to be expanded (F1 1). Note that query 33 has no active set remaining and therefore is dropped from further searching (a more careful set of parameters for "goodness" would have eliminated this problem).

The "SELECTION" parameters indicate that at least 1 centroid should be expanded, and up to 3 centroids may be expanded until a gap of 0.10 in "goodness" occurs. Query 34 exhibits such a gap between centroids 3 and 2; hence only centroid 3 is selected for expansion.

The expansion of centroids is shown in Fig. 12. Query 31 and 32 both now have an active set of 6 centroids; query 34 has 3 centroids in its active set. Again the active sets are matched against their respective queries and the "REJECTION" parameters are applied. This time one centroid (centroid 4) is dropped from the active set of query 31, 4 centroids (centroids 5, 6, 7, and 9) are dropped from the active set of query 32, and no centroids are dropped from the active set of query 34.

Fig. 13 shows the selection of centroids to be expanded from among the active sets. Again applying the "SELECTION" parameters, no gap greater than 0.1 occurs within the first 3 centroids (centroids 7, 9, and 5) for query 31; furthermore, centroids 6 and 10 have a goodness within the "EPSLON" of 0.05, and hence are also selected for expansion. A gap greater than 0.1 occurs between the first and second centroids (centroids 10 and 4) for query 32; therefore only centroid 10 is to be expanded. Query 34 has a gap in goodness greater than 0.1 between centroids 2 and 8; thus only centroids

11 and 12 are expanded.

The expansion for query 31 produces 43 document sons, easily satisfying the need for 12 documents. Query 32 finds 14 document sons during expansion, and the need for 12 documents is again satisfied. Query 34, however, finds only 8 document sons and 3 centroid sons on expansion; it thus becomes necessary to search further to find the additional four documents. The selection and expansion of a third set of nodes for query 34 is shown in Fig. 14. Here, expansion of centroid 5 produces 21 document sons for query 34, thus filling the total requirement of 12 documents.

It should be noted that the selection of documents to be searched is not equivalent to final searching. For example, query 31 must be processed in a regular search against the 43 documents selected (instead of performing a full search using the entire document collection). The averaged results of the searching runs are shown in section E.

D) The Searching of the Document Groups

Once the documents to be searched in a given iteration are selected, the query used in the search process is constructed. The search query is generated using concept numbers from four distinct sources: the author's original query, documents which the author considers relevant before the search is started, specific concepts and weights which the author would like to add to the query, and relevance feedback information from previous search iterations (if any exists). Information from the first three sources is contained for iteration 0 (first search hence no feedback information) in Fig. 15. The following information is given for each query: the authors, the query number, the iteration number, the sources of the query and the corresponding document numbers, multipliers for these documents (all weights of

MULT	мснт	2.)	WGHT	. THOW
# DOC #	* Z O	76(2)	* VOO	** ZOO
MULT	WGHT	61(2)	мбнт	₽ G⊬T
# 00 C	C C N#	61(CCN#	# Z O
MULT	F CHT	47(2)	MGHT	к6HT 12)
# DOC#	# CO)	11.6	#N 000	CUN# KGHT 3(12)
MUL T	(2 MGHI	(8)67	MGHT	м GHT 12.)
DOC# MULT	10(2) CGN# mGHT	167	* NJ).	CUN# MGHT
MULT	1) 2) 2) 14)	(7)	мGнТ 79)	1) 2) WGHT 12)
*200	(1) 3(2) CDN# MGHT 2(14)) 71	CCN# WGHT 2(79)	10(2) 10(2) CON# WGHT 1(12)
ITER SOURCE	ÜRIGINAL QUERY AUTHCR SUPPLIEU USEK SUPPLIEU CUNSEMÜHTS	ORIGINAL GUERY AUTHUR SUPPLIED	USER SUPPLIED CUNSEMGHTS	ORIGINAL QUERY AUTHOR SUPPLIED USER SUPPLIED CUNSEMENTS
ITER	0 1-1	0 1-7		3-1 0
OUFRY#	-1	-7		-8
AUTHOR	ватсн	вАТСН		ВАТС Н

First Construction of Search Queries

lg. Ib

SEARCH--CHECKING AND PRINTING OF CONTROL CARCS FOR SEARCH PARAMETERS.

O ARE:

OPTIONS FOR SEAKCH

ORIG MULT	PKEV MULT	MIN CERR 0.0150	IYPE CCRR COSINE	NCKMAL ABNOKMAL	ITEMSEMULTS YES	ITEMSEMULTS CONSEMENTS YES YES	FREEZE/FLUID UNITVC FLUID BY WORD	UNITVC BY WORD	MGHTS CRPFC PUS.AVE.	PER DRPED 99.90
POS PULT	NEG MULT O	POS RANK CUT	NEG RANK	COI	PCS CURR CUT NO 1.0000	NEG CORR CUT 1.0000	POS ATLEST NE 0	NEG ATLEST 0	PCS NOMORE	NEG NUMORE 0 ,
UNLESS	S T UP ALL NU	PREC CUTGEF 0.0	F PUEFIN ILS	7						
OPTIONS FOR SEARCH EHM	SEARCH EL		ARE:						i	
ORIG MULT O	PREV MULT 1	MIN CORR	TYPE CORR COSINE	NURMAL ABNORMAL	ITEMSEMULTS NO	CONSEMGHTS NO	FREEZE/FLUID FLUID	UNITVC BY WORD	WGHTS DRPED POS.NON.	PER DRPED 0.0

PER DRPED 0.0	NEG NOMURE	,
WGHTS DRPED POS.NON.	POS NOMURE	
UNITVC BY WORD	NEG ATLEST 0	
ITEMSEMULTS CONSEMENTS FREEZE/FLUID UNITVC WENTS DRPED PER DRPED NO NO FLUID BY WORD POS.NON. 0.0	CUT POS CORR CUT NEG CORR CUT POS ATLEST NEG ATLEST POS NOMURE NEG NOMURE 1.0000 1.0000 1.0000 0 5 2	
CONSEMENTS NO	VEG CORR CUT	
ITEMS&MULTS NO	S CORR CUT	
NURMAL ITE ABNORMAL	CUT PO	zσ
TYPE CORR COSINE	NEG RANK	PDEFIN ILS
MIN CORR TYPE CORR 0.0 COSINE	POS RANK CUT NEG RANK	PREC CUTUFF 0.0
PREV MULT 1	POS HULT NEG MULT 1 -1	STOPALL YES
URIG MULT	POS MULT	UNLESS 2

.

Options for Searching

ORIG MULT

TYPE CORR

concepts in a given document are multiplied by the specified multiplier), and the query concept numbers and their weights. For example, query one uses the concepts from the original query (with all weights multiplied by one), plus all the concepts from documents 3 and 10 (all weights in both documents being multiplied by 2), plus concept 12 with a weight of 14. Query 1 is then defined by the combination of all these concepts and their weights.

Following the initial search query set-up, further modifications can be made before the search is started. The user specifies the type of modification to be made by introducing parameters as shown in Fig. 16.

The options for the query modification are listed in Fig. 16, one section being devoted to each iteration. The parameters are defined as follows:

PREV MULT	Multiplier of query used for previous iteration.
MIN CORR	Parameter controlling retrieval. Any document
	with a correlation less than (or equal to)
	"MINCOR" is not shown to the user and is
	deleted from the recovered list prior to sorting
	into correlation order. The higher this value,
	the faster the system can answer a query. If
	punched, the field must include a decimal point.
	As usual, a blank field is equivalent to zero.

Multiplier of original query.

The type of correlation to be used. If blank, the correlation of the previous iteration is used. If blank for the zeroth iteration, 'COSINE' is substituted. At present, "COSINE" is the only available correlation.

NORMAL

If this field contains the word 'NORMAL' for each definition, "RMULT" is divided by the number of relevant used in that definition. "NMULT" is likewise divided by the number of nonrelevant used in feedback.

ITEMS & MULTS

This field contains 'YES' if specific items and multipliers are given for each and every query in this iteration.

CONS & WGHTS

This field contains 'YES' if a specific vector of concepts and weights is supplied for each and every query in this iteration.

FREEZE/ FLUID If this field contains 'FREEZE', the items seen by the user defining the query are frozen in the order seen. Otherwise, all rank positions are available and all documents are correlated.

UNITVC

If this field contains the words "BY WORD", the weights of a given vector are not normalized. If this field contains the word 'COSINE' all weights in a given vector are normalized according to the cosine correlation prior to being added to the composite for the new query. This produces the same weight for all documents, regardless of length. This is accomplished by multiplying each weight by the suitable multiplier and dividing by the square root of the sum of squared weights of the vector being added. To prevent weights from disappearing (due to integer arithmetic), the multipliers must be set at a high value when using this feature. If this field contains the word 'LINEAR', normalization is accomplished by dividing by the sum of absolute values of all weights in the vector being added.

WGHTS DRPED

This field is of the form 'XXXXYYYY'. If 'XXXX' is 'NEG.' negative weights are permitted; otherwise only positive weights will be kept after definition. 'YYYY' can be either ' ', 'ABS.', or 'AVE.'. If 'YYYY' is blank, only concepts with weight zero are deleted from the new query. (This obviously does not change correlations.) If 'YYYY' is 'ABS.' then all concepts with weight less than "PERDRP" are deleted. If 'YYYY' is 'AVE.' then all concepts with absolute weight less than ("PERDRP"* the sum of absolute weights)/(100% the number of unique concepts) are deleted. The former method is used to delete weights less than a specific value, say 12. The latter method permits dropping all weights less than a certain percentage of the average weight. For example, if all concepts less than 90% of the average weight are dropped from normal composites, 75% of the concepts are deleted, but only 40% of the weight of the composite is lost.

PER DRPED

(See above. This is a floating point number and must be punched with a decimal point.)

The second line of Fig. 16 covers parameters used for relevance feedback, and not for the initial iteration, although the values are printed.

Definitions for the second and third lines are covered in the discussion for the second iteration.

For query 1, the user-supplied parameters call for a multiplier of the query of 1, nonnormalized vectors, additional items and multipliers, additional concepts and weights, no normalizing of weights ("UNITVC" = "BY WORD"), and dropping of all concepts whose absolute weight is less than

(99.9 * sum of the absolute weights) / (100.0 * the number of unique concepts).

In query 1, concepts with a weight smaller than 40 are dropped in accordance with the specifications of Fig. 16. The display of Fig. 17 for query 1 shows that the original 23 concepts (formed by combining the concept vectors of the original query plus author-supplied documents and author-supplied concepts and weights) are reduced to the six concepts shown in the figure.

These modified queries are then correlated with every document in the group previously selected (in this case a full search of the entire collection is made). After the queries are correlated with all the documents, documents having a correlation greater than 0.015 ("MIN CORR" for this iteration) are ranked. The top 30 documents retrieved are listed in Fig. 18. The first two lines of the listing contain the titles for the iteration, the query title and the relevant items for the query. (At present, the document relevance is pre-judged and held constant for all runs using a given query collection.) The major section of the page contains the correlation and rank of the documents retrieved for each iteration. The recall and precision values (defined in section E) obtained after retrieval of the given document are also given. For example, document 69 is the first document retrieved for query one in the first iteration (iteration 0). The correlation coefficient of this document with the query is 0.3924, and the recall and precision values after the retrieval of document 3 are 0.0 and 0.0 respectively. Similarly, document 17, a relevant document, is retrieved with rank 2, and its correlation with the query is 0.3430. The recall and precision values after retrieval of document 17 are 0.333 and 0.333 respectively.

SQUARED WEIGHTS = 264.0 SQUARED WEIGHT SUM OF SAND A WEIGHT SUM OF TO 18 96 194 TO 147 48 154.0 SQUARED WEIGHT SUM OF SAND A WEIGHT SUM OF SAND A WEIGHT SUM OF	FOR COMPOSITE	<u>u</u>	1,	1. WEIGHTS WEIGHTS	3	ORU TES	BY GAI	8. S		99.91. THE	ORIGINALLY, THEKE ARE NUW	ALLY, NUM	23 (CONCEPTS CUNCEPTS	HAU	A WEIGHT A WEIGHT	MUS TH MUS TH	100	962.
CUN #1 CUN NT CU		AUL FIT	LES P.	ROB IN	MAKIN			DIFF IN			· ·							*	
THE O CUNCEPTS ABOVE HAVE A SUM OF ABSOLUTE MEIGHTS = 000 NITH A ROCT SUM UF SOUARED WEIGHTS = 264.0 2		CUN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CON TO		CON 11	7 4 8	CON 15	MT 72	CON 93	M1	CUN 533	MT 120	; ; ;					
402 FACT PERTINENT DATA REIR. AUTO IN RESPONSE TO REA E CUN WI CON MI CONCEPIS ABOVE HAVE A SUM OF ABSOLUTE MEIGHTS = 1987 MITH A ROOT SUM OF SCUARED MEIGHT SUM OF SOURMED MEIGHTS = 154.13 COUN MI CON MI CON MI CON MI CON MI CON MI MI CON MI MI CON MI MI CON MI MADOI SUM OF SOURMED MEIGHTS = 154.14			CUNC	EPTS A	BOVE H	∢		ABSOLU				∢		J.	SQUARE		H	00-49	
2 AUZ FALT PERTINENT DATA RETR. AUTO IN RESPONSE TO REQ E CUN wi CON wi	FOR COMPUSIT	ע	7	WE LGHTS	E E E E E E E E E E E E E E E E E E E	DKOPPEL TESTED	D BY (AGAIN	POS.AVE ST 47		•	CRISIN KE ARE	ALLY. NUM		CONCEPTS	HAD		SUR		2971. 1987.
CUN WI CON WI CONCEPTS = 48 132 81 144 116 192 126 48 134 48 135 72 147 48 THE 22 291 6C 304 48 530 48 136 WILLIAM ROUT SUM OF SCUARED WEIGHTS = 4 THE 22 CUNCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 1987 WITH A ROUT SUM OF SCUARED WEIGHT SUM WEIGHTS WERE TESTED AGAINST 39. THERE ARE NOW 4 CONCEPTS AND A WEIGHT SUM WEIGHT SUM WILLIAM RADIT IS I SCIENCE — GIVE DEFINITIONS CON WI CON WI CON WI CON WI CON WI CON WI CON WIT CON WITH A ROUT SUM OF SQUARED WEIGHTS = 300 WITH A ROUT SUM OF SQUARED WEIGHTS A ROUT SUM OF SQUARED WEIGHTS = 300 WITH A ROUT SUM OF SQUARED WEIGHTS = 300 WITH A ROUT SUM OF SQUARED WEIGHTS A ROUT SUM OF SQUAR		AUZ FAL		ERTINE	T DATA	A RETR.	AUTO	IN RESP	ONSE T		u.								
THE 22 CUNCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 1987 WITH A ROOT SUM OF SCUARED WEIGHTS = 4 COMPOSITE 3. WEIGHTS WERE DROPPED BY (POS.AVE., 99.9). CALIGINALLY, II CONCEPTS HAD A WEIGHT SUM WEIGHTS WERE TESTED AGAINST 3. A03 INFORM WHAT IS I SCIENCE — GIVE DEFINITIONS CUN WIT CON WIT CON WIT CON WIT CON WIT CON WIT HAD A WEIGHTS = 300 WITH A ROOT SUM OF SQUARED WEIGHTS = 11 96		CUN 1 46 140	1204 72 72	CON 2 48 48 291	MI 79 132 66	CON 4 81 304	M 7 72 144 48	CUN 5 116 530	192 192 48	CON 8 126	77 72 48	CON 9	1 3 8 4 8 4 8 4 8 4 8 4 8 8 4 8 8 4 8 8 4 8	CUN 11 135	WT 72 72				132 48
COMPOSITE 3, WEIGHTS WERE DROPPED BY (POS.AVE., 99.9). CKIGINALLY, 11 CONCEPTS HAD A WEIGHT SUM WEIGHTS WERE TESTED AGAINST 39. THEKE ARE NOW 4 CONCEPTS AND A WEIGHT SUM BIGHT SUM WILLIAM WHAT IS I SCIENCE — GIVE DEFINITIONS CLUN WIT CON WIT CON WIT CON WIT CON WIT LAWS 93 72 THE 4 CUNCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 3000 WITH A ROOT SUM OF SQUARED WEIGHTS =			CUNCE	EPTS AL	SGVE HA	4	O.F.	ABSOLUT	E WEIG	i ii		Ø		OF	GUAREL		,,	14.01	
3 AO3 INFORM WHAT IS I SCIENCE - GIVE DEFINITIONS CUN WI CON WIT CON WIT CON WIT 1 96 10 84 15 48 93 72 THE 4 CUNCEPIS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 300 WITH A ROOT SUM OF SQUARED WEIGHTS =	FOK COMPOSI1	.	n	WEIGHT:	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DKU 1ES	•	POS.AVE		1HE	OKIGIN KE ARE	ALLY, NOW		CONCEPT!	HAD		SUR	0.F	444.
		4 5	B BE SOLUTION OF THE SOLUTION	CUN LO LO EPTS AE	1 708	E - CON 15		CUN CUN 93 ABSOLUT	10NS WT 72 E WEIG		300			0.	SQUAREL		ıı	41.451	_

The Construction of the Vectors for the First Iteration

0.3333

0.5336

SMARTTEST	OF SEARCH OF ENTIRE AUI	COLLECTION			PAGE 55	04/17/69 04:43:21.51 33.4300	300
LEGEND	RUN 0 - SCHI	RUN 1 - SCH2		KUN 2	SСН3	RUN 3 - SCH4	
QUERY	1 - AOI TITLES PROB IN MAKIN	MAKING DESCRIPT - DIFF	F IN AUTO	TO RETROK	THE 3 RELEVANT ITEMS	BEING 17 46 62	•
))	RELATIONS	FANK	0	CUMENIS	RECALL	PKECISION	
0	1 2 3		0	1 2 3		3 0 1 2 3	
0.3924	0.9259	1	7.0	17R	0.0 0.333	0.0 1.000	
0.3430	0.3250	2	1 7K	4	333	.500	
0.3087	0.2577	8	4	04	333 0.	0.333 0.333	
0.2858	0.2561	4	2.1	7.1	333	.250 0.25	
0.2654	0.2407	5	=	46R .	333	200 0.	
0.2259	0.2331	9	7.1	69	333	0.167 0.333	
0.2146		7	41	25	3 0.	143 0.	
0.2123	0.2169	20	46R	89	0.667 0.667	0	
0.1945	0.2117	6	21	30	0.667 0.667	222 0.	
0.1788	0.2085	10	19	14	0.667 0.667	.200 0.2	
0.1778	0.1978	11	62R	11	1.000 0.667	Ċ	
0.1742	0.1963	12	53	99	1,000 0.667	0.250 0.167	
0.1742	0.1865	13	30	24		231 0	
0.1617	0.1853	14	81	56		214 0.14	
0.1358	0.1852	15	2	26		0.200 0.133	
0.1345	0.1838	16	0,			C.188 0.125	
0.1324	0.1797	11	_	43		0.176 0.118	
0.1286	0.1787	18	39	12	- 1	0 291	
0.1213	0.1771	19	22	16		0.158 0.105	
0.1196	0.1718	20	75	64	1.000 0.667	0.150 0.100	
0.1180	0.1702	21	15	22		0.143 0.095	
1611.0	0.1679	22	14	45	0	136 0.0	
0.1078	0.1657	23		. 65		o	
0660.0	0.1622	24	64	28		0.125 0.083	
0.0980	0.1622	25	34	19		0	
0.0947	0.1571	26	52	81		.15 0.	
0.0857	0.1558	27	61	53	1.000 0.667	0.111 0.074	
0.0835	0.1411	28	88	23		0.107 0.071	
0.0808	0.1382	59	55	21		0.103 0.069	
0.0797	0.1361	30	51	38	•	0.100 0.067	
	0.0768	56		62R	1.000	0.054	

DCC.CORR CENT.CORR DROP DUC CORR.RANK GLD.DCC OLD RELDUC NEW DOC POS.FEED NEG FEED QUERY CORR REC.CEIL 0.0 1.0000 0 0 0 0 65 23 0 82 RUN O

82

RUN 1

Retrieval Results for Query 1

Fig. 18

The last section of Fig. 18 contains various statistics for the run. These are defined as follows:

DOC. CORR	The total number of document-query correlations performed in the given iteration.
CENT. CORR	The total number of centroid-query correlations performed in the given iteration.
DROP DOC	The number of documents with a query-document correlation of less than "MIN CORR".
CORR. RANK	The number of documents with a query-document correlation of greater than or equal to "MIN CORR".
OLD. DOC	The total number of documents previously seen by the user.
OLD RELDOC	The total number of relevant documents pre- viously seen by the user.
NEW DOC	The total number of documents (relevant and nonrelevant) shown to the user in this iteration.
POS. FEED	The number of items in the definition of the query with a positive multiplier for feedback.
NEG FEED	The number of items in the definition of the query with a negative multiplier for feedback.
QUERY CORR	The correlation of the query used in the present iteration with the original user query.
REC. CEIL	The recall ceiling seen by the user.

The listing of the retrieved relevant documents completes the first iteration of the search. At this point, the user makes relevance judgments, or, alternatively, prejudged relevance decisions are registered, and a new

search query is constructed using information about the retrieved documents. The user-supplied instructions specifying what information is to be used, and how the new query is to be constructed are taken from the input parameters (shown in Fig. 16 in the second two lines under options for SEARCH 1). The definitions of the parameters are as follows:

	-
POS MULT	All weights of the relevant documents used in feedback are multiplied by this number.
NEG MULT	All weights of the nonrelevant documents used in feedback are multiplied by this number. To signify that negative feedback is not desired "NEG MULT" is blank or zero.
POS RANK CUT	All relevant items with iteration ranks above "POS RANK CUT" according to the ordering of the previous iteration are used in defining the new query.
NEG RANK CUT	All nonrelevant items with iteration ranks above "NEG RANK CUT" according to the ordering of the previous iteration are used in defining the new query.
POS CORR CUT	All relevant items with a correlation above this value are also used. (This value must include a decimal point.) If "POS CORR CUT" is zero or blank, no relevant are selected due to this parameter.
NEG CORR CUT	All nonrelevant items with a correlation above this value are also used.
POS ATLEST	At least "POS ATLEST" relevant will be fed back (if they exist $-$ i.e., more remain to be found).

At least "NEG ATLEST" nonrelevant will be fed

1

NEG ATLEST

back.

POS NOMOR

However, no more than "POS NOMOR" items will be searched to provide the "POS ATLEST" relevant documents.

NEG NOMOR

However, not more than "NEG NOMOR" nonrelevant will be used. Note that only documents scanned in an attempt to locate relevant documents for positive feedback are used in attempting to find nonrelevant for negative feedback.

UNLESS

Negative feedback is done except when "UNLESS" relevant documents are found. If "UNLESS" are found, no negative feedback at all is done.

To signify that no negative feedback is desired, "NEC MULT" should contain blanks or a zero.

Should 'UNLESS' be left blank or set to zero, negative feedback is attempted regardless of the number of relevant actually used in positive feedback.

STOPALL

"STOPALL" is set to 'YES' if the user wishes to stop considering documents for feedback once all the relevant documents have been found. If set to 'NO', documents will be considered until the specifications of the other feedback parameters have been satisfied. The default is 'NO'.

PREC CUTOFF

If the precision after "POS RANK CUT" documents is over "PREC CUTOFF", and if the precision after more items are judged drops below "PREC CUTOFF", the judging of documents ceases.

POEFIN

'SILENT' if search queries are not to be printed;
'STANDARD' if search queries are to be printed;
'DETAILS' if details of the search query definition process are to be printed (used only for debugging).

Using iteration 2 as an example, the new search query Q_{i+1} is defined by the following equation:

$$Q_{i+1} = (1)Q_i + (1)\sum_{j=1}^{n_r} (r_i)_j - (1)\sum_{j=1}^{n_s} (s_i)_j$$

where $(r_i)_j$ designates the concepts and weights of relevant document $(r_i)_j$; $(s_i)_j$ designates the concepts and weights of nonrelevant document $(s_i)_j$; Q_i is the previous query (for iteration i), and n_r and n_s are defined by the number of relevant documents retrieved and the number of nonrelevant documents retrieved, respectively.

In iteration 2, $n_r \le 5$; therefore, only the top five documents are retrieved, and not all of them will be relevant (in most cases). If at least two relevant documents are retrieved among the top five documents, no negative feedback will be done ($n_s = 0$). If fewer than two relevant documents are found, any nonrelevant retrieved among the top two documents will be used for feedback ($n_s \le 2$). This condition is stipulated by an "UNLESS" of 2 and a "NEG RANK CUT" of 2.

The newly defined search queries are shown in Fig. 19. For query 1, one relevant and four nonrelevant documents are retrieved in the top 5. The relevant document (17) and the only nonrelevant in the top two retrieved (69) are used to construct the new query. Query 2 retrieves 1 relevant, but the top 2 retrieved are both nonrelevant, so both (27 and 33) are used, together with the one relevant found during feedback. Query 3 finds 3 relevant in the top five retrieved; hence no negative feedback is used. The new query vectors (Fig. 20) are used for searching, and the results are shown in Fig. 18, second iteration.

MATCH	CH	-1					1													
PREVIOUS QUERY FELL KNO-REL USED 691 -11																				
Heart 1				PREVI REL E	DOS DO	ERY EL USE		69			17(
RELEVINUS QUERY 1 1 31 1 31 1 31 1 31 1	ВАТСН	2-																		
PREVIOUS QUERY FEL 6 NO-MEEL USED 601 1) 431 1) 31 1) 31 1) REL 6 NO-MEEL USED 601 1) 431 1) 31 1)				PREVI REL &	DOS QUI	ERY EL USEI	0	27			3	'		71.						
Fig. 19 L AOI TITLES PROB IN MAKING DESCRIPT - DIFF IN AUTO RETR R CON WIT C	ВАТСН	ф	-	PREVI	DUS QUI	ERY EL USEI	0	9				1		3(a					
A OLITITES PROB IN MAKING DESCRIPT - DIFF IN AUTO RETR R A OLITITES PROB IN MAKING DESCRIPT - DIFF IN AUTO RETR R A OLITITES PROB IN MAKING DESCRIPT - DIFF IN AUTO RETR R A OLITITES PROB IN MAKING DESCRIPT - DIFF IN AUTO RETR R A OLITITES PROB IN MAKING DESCRIPT - DIFF IN AUTO RETR R A OLITITES A OLITICES A OLITITES A OLITICES A OLITITES A OLITITES A OLITITES A OLITICES A OLITI						Re	defir	nition	of	earch		Ϋ́								
1 A01 TITLES PROB IN MAKING DESCRIPT - DIFF IN AUTO RETR R CON WT CON W								Щ	ρ(•	6										
Marine Sprob In making Descript - Diff In muto retr R Con wit Co)											
CON WIT CON WITCON	1							í :												
1 12 5 12 6 12 9 12 21 36 22 6 23 18 25 24 59 50 20 12 12 12 12 12 12 1		A01 TIT		08 IN P	AK ING	DESCRI	٠ .		AUTO	RETR	α 5	NO	5	0	5	2	5	2	5	
THE 23 CONCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 336 WITH A ROOT SUM OF SQUARED WEIGHTS = 76.37 2 AO2 FACT PERTINENT DATA RETR. AUTO IN RESPONSE TO REQ E CON WIT CON		1	12	2	12	9	12	5	12	202	36	22		3 0	α -	200	3,6	200	12	
THE 23 CONCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 336 WITH A ROOT SUM OF SQUARED WEIGHTS = 76.37 2 AO2 FACT PERTINENT DATA RETR. AUTO IN RESPONSE TO REQ E CON WT C			12	12	12	7.8	12	104	12	115	12	5	12	-	12	185	12	228	15	
THE 23 CONCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 336 WITH A ROOT SUM OF SQUARED WEIGHTS = 76.37 2 A02 FACT PERTINENT DATA RETR. AUTO IN RESPONSE TO REQ E CON WT C		229	12	276	54	27.7	24	297	12	529	12									
20N WT CON WT CO				PTS ABC			0F	SOLUT	1	1	36		ROOT		1		S	16		
CON WT CON	ITEM 2	AOZ FAC		RTINENT	DATA	RETR.				O RE	ш									
## 12		CON	3	CON	I	CON	1	CON	I	CON	-	0	I	CON	I A	CON	E	CON	WT.	
THE 26 CONCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 360 WITH A ROOT SUM OF SQUARED WEIGHTS = 77.30 3 A03 INFORM WHAT IS I SCIENCE - GIVE DEFINITIONS CON WIT CON		£3	71	د رم	12	» «	12	71	36	21	30	2 2	12	26	12	36	12	41	12	
THE 26 CONCEPTS ABOVE HAVE A SUM OF ABSOLUTE WEIGHTS = 360 WITH A ROOT SUM OF SQUARED WEIGHTS = 77.30 3 A03 INFORM WHAT IS I SCIENCE - GIVE DEFINITIONS CON WT CO		223	12	566	12	271	54	284	12	291	12	0	12	777	12	481	9	200	71	
3 AO3 INFORM WHAT IS I SCIENCE - GIVE DEFINITIONS CON WT			CONCE			•	OF.	BSOLUT	Ä			ITH	8		S	ED WE	S	77.3		
WT CON WT	I TEM 3		ORM WH	18		1		FINITI	SNO											
36 38 12 52 12 58 12 10 108 12 134 12 162 12 163 12 171 12 195 12 211 12 217 12 225 24 240 12 253 12 260 12 274 12 363 12 427 36 465 12 533 72 240 12 253 12 260 12 274		NOO	TH.	CON	E C	CON	L A	CON	H 0	NO.	H	NO.	JE .	CON) ma	CON	JR .	CON) 38	
12 195 12 211 12 217 12 225 24 240 12 253 12 260 12 274 12 363 12 427 36 465 12 533 72		34	36	38	12	52	12	288	12	108	12	134	12	162	12	163	12	31	12	
12 363 12 427 36 465 12 533 72		193	12	195	12	211	12	217	12	225	24	240	12	253	12	260	12	274	12	
		291	15	363	12	427	36	465	12	533	72		:		1		:		-	

Construction of the Vectors for the Second Iteration

E) Search Evaluation

Several different evaluation measures are used in the SMART system, all based on the concepts of recall and precision. The definitions of these measures are the following:

Recall =
$$\frac{a}{b}$$
Precision = $\frac{a}{c}$

where

a = the number of relevant documents retrieved

b = the number of relevant documents in the collection

c = the number of documents retrieved.

These measures are usually computed at a specified point during retrieval, usually either after a given number of documents have been retrieved, or after a given recall has been obtained.

Two types of averaging graphs, and four types of overall recall and precision averages are generated by the SMART system and listed in Figs. 21, 22, 24, and 25. Fig. 21 shows one type of graph and all four overall averages. At the top of the listing the runs being evaluated are identified (in this case a full search run (run 0) and a centroid search run (run 1)). Below are listed the recall levels being used, and the precision achieved at each recall level. The number of queries used in the averaging at each point is also given. For example, at recall level 0.10, run 0 shows a precision of 0.4948, but for only 2 queries a relevant document had been retrieved at that recall level.

RECALL -- LEVEL AVERAGES

LEGEND:	RUN	0	 35	QUERIES	(PLUS	0	NULLS)	 SMART FULI	SCH
								DUCUMENTATION	N KUN
,	RUN	1	 35	QUERIES	(PLUS	0	NULLS)	 SMART CEN	r SCH
								DOCUMENTATION	V RIIN

		P	RUN	0	R	UN	1
H	RECALL	NÜ	PKEC	1510N	NQ	PRECI	ISTON
	0.0	U	0.4	948	0	0.48	313
	0.05	1	0.4	948	1	0.48	313
	0.10	2	0.4	948	1	0.48	303
	0.15	5	0.4	734	4	0.46	520
	0.20	13	0.4	282	11	0.4	197
	0.25	18	0.4	222	. 12	0.4	148
	0.30	18	0.4	179	12	0.40	073
	0.35	24	0.3	812	16	0.3	797
	0.40	24	0.3	791	15	0.36	680
	0.45	24	0.3	690	15	0.35	599
	0.50	31	0.3	006	19	0.35	599
	0.55	31	0.2	901	15	0.29	900
	0.60	31	0.2	876	15	0.28	395
	0.65	31	0.2	66 L	15	0.28	300
	0.70	30	0.1	961	13	0.2	154
	0.75	29	0.1	946	13	0.2	154
	0.80	29	0.1	918	13	0.2	102
	0.85	25	0.1	156	13	0.2	102
	0.90	24	0.1	636	13	0.20	034
	0.95	24	0.1	036	13	0.20	034
	1.00	28	0.1	036	14	0.20	034
NURM R	RECALL		U.7	J24		0.49	920
	RECISIUN		1.0			1.00	
	ECALL		0.2			0.22	
	RECISION		0.3			0.34	

SYMBOL KEYS: NQ = NUMBER OF QUERIES USED IN THE AVERAGE NUT DEPENDENT ON ANY EXTRAPOLATION.

NORM = NGRMALIZED.

Below the recall-level averages the four overall averages are listed.

These are described more extensively in reference [3] (chapter 8) and are

briefly defined below: [7]

Normalized Recall = 1 -
$$\frac{\sum_{i=1}^{n} r_i - \sum_{i=1}^{n} i}{n(N-n)}$$

Normalized Precision = 1 -
$$\frac{\sum\limits_{i=1}^{n}\log r_{i} - \sum\limits_{i=1}^{n}\log i}{\log \frac{N}{(N-n)!n!}}$$

Rank Recall =
$$\frac{\sum_{i=1}^{n} i}{\sum_{i=1}^{n} r_{i}}$$

Log Precision =
$$\frac{\sum_{i=1}^{n} \log i}{\sum_{i=1}^{n} \log r_{i}}$$

where

n = number of relevant documents

N = number of documents in collection

r; = rank of ith relevant document

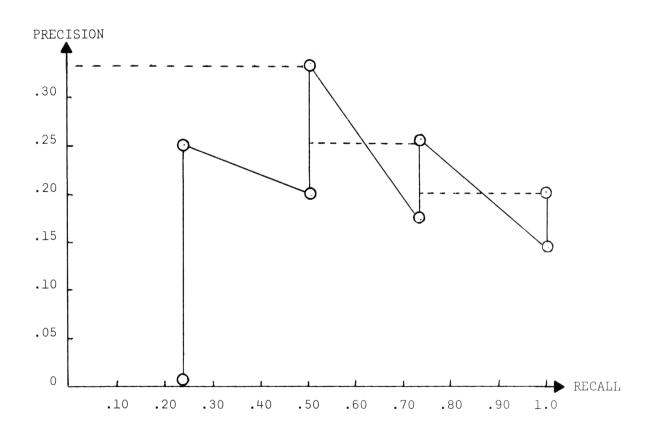
i = ideal rank positions for the ith relevant item.

Fig. 22 shows a computer-generated graph of the recall and precision averages previously given in Fig. 21.

In this type of graph, the precision is recorded for a given recall level.

Š	
S	
ITAT	
UMEN	
-00C	
IRT-	
SMA	

NELALL LEVE'L AVERAGES								•	0 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7000 0.2000E-01 THE X-AXIS INCREPTN
	 0006.0	0008*0	0.7000	0009*0	0.5000 0.00.00.00.00.00.00.00.00.00.00.00.0	0.4000	0.3000		0.130 THE Y-AXIS INC


Recal-Level Averages

For example, at a recall of 0.10 (10 percent of the relevant documents retrieved) run 0 shows a precision of 0.4948, and run 1 a precision of 0.4803. These precision values are the averages of the precision, at a given recall level, for all the queries searched. It should be noted that interpolation methods are needed to produce the averages, since all queries do not possess an exact precision value at each given recall level.

The graph of Fig. 23 shows the necessary interpolation for a hypothetical query with four relevant items. The relevant documents are assumed to be retrieved with ranks of 4, 6, 12 and 20. Thus, at 25 percent recall, the precision is 0.25; at 50 percent recall, the precision is 0.33, and so on. However, these values correspond actually to the highest possible precision points, since they are calculated just after a relevant document is retrieved. In this example, after 3 documents are retrieved, the precision is 0, after 5 documents, the precision is 0.20, and so on. This range of precision for each recall level is indicated by the top and bottom points in Fig. 23 at 25%, 50%, 75%, and 100% recall. The solid sawtooth line connecting these points is not used for interpolation; it is intended to indicate the drop in precision between the actual recall levels for this query, as more nonrelevant documents are retrieved.

The interpolation method actually used by the SMART system is based on the dashed lines shown in Fig. 23 where a horizontal line is led left-ward from each peak point of precision, up to a point where a higher point of precision is encountered. This new curve (the dashed line in Fig. 23) does <u>not</u> lie above the sawtooth curve at all points. When the precision drops from one recall level actually achieved to the next, an immediate drop in precision after the first point to the level of the next point is

----- sawtooth curve

An Illustration of the Interpolation Method Used by the "Neo-Cleverdon" Recall-Precision Averages

Fig. 23

indicated. For example, in Fig. 23 the precision value at 0.50 recall is 0.33; but at 0.55 recall, the interpolated value used for the new averages is 0.25 precision. When the precision rises from one recall level to the next, however, the first precision point actually achieved is ignored for purposes of interpolation. The achieved precision of 0.25 at 0.25 recall in the example of Fig. 23 is ignored, and an interpolated precision of 0.33 is used for the averages for all recall levels from 0 to 0.50.

The second kind of average graph also generated is shown in Figs.

24 and 25. In this graph, the recall and precision are recorded and averaged after the retrieval of a given number of documents. For example, after one document has been retrieved in run 0, the average recall (over all the queries) is 0.0903, and the average precision is 0.3714. The recall and precision are averaged for 24 different cutoff points, and for 6 different percentage points, such as after 10 percent of the collection has been retrieved, etc. Three other statistics (besides the recall and precision) are measured and listed for each cutoff point. The first (NR) is the number of relevant documents retrieved at the given cutoff, and the second (CNP) is the cumulative number of relevant documents retrieved by this point. These values are included to aid in the proper evaluation of runs, since the document-level averages are not plotted at equal levels of recall for each query (as are the recall-level graphs). Also listed is the number of queries used to obtain the average at each point.

The final part of the evaluation process consists of tests of the significance of the differences between runs. Three basic statistical tests, the sign test, the T-test, and the Wilcoxon signed rank test, are calculated for each pair of search runs. All three statistical tests indicate whether

DUCUMENT -- LEVEL AVERAGES

~ 11

LEGEND:	RUN	Ö	 35	QUERIES	(PLUS	O NULLS)	 SMART FULL	SCF:
			 	NIE OF E			DOCUMENTATION	
	RUN	. 1	 35	OUEKIE2	(PLUS	O NULLS)	 SMART CENT DOCUMENTATION	

			К	UN O				R	UN 1	
RANK	ŃR	CNR	Nu	KECALL	PRECISION	NK	CNK	NQ	RECALL	PRECISION
1	13	13	35	0.0903	0.3714	13	13	24	0.0903	0.3714
2	11	24	35	0.1927	0.3429	11	24	24	0.1927	0.3429
3	7	31	33	0.2265	0.3095	7	31	21	0.2265	0.3095
4	4	35	33	0.2389	0.2714	4	35	21	0.2389	0.2714
5	7	42	33	0.2831	0.2657	7	42	21	0.2831	0.2051
6	4	40	33	0.2977	0.2476	5	47	19	0.2986	0.2524
7	4	50	33	0.3170	0.2347	5	52	18	0.3236	0.2429
8	3	53	33	0.3258	0.2214	2	54	17	0.3315	0.2275
9	L	54	33	0.3315	0.2048	3	57	17	0.3417	0.2188
10	1	55	33	0.3324	0.1914	2	59	17	0.3457	0.2090
11	6	61	33	0.3074	0.1935	7	66	17	0.3887	0.2139
12	1	62	32	0.3710	0.1853	3	00	13	0.4086	0.2117
13	2	64	32	0.3783	0.1805	3	72	11	0.4247	0.2103
14	5	69	32	0.4018	0.1826	4	76	11	0.4397	0.2111
15	4	73	32	0.4336	0.1824	4	80	10	0.4556	0.2124
16	2	75	31	0.4717	0.1791	4	84	9	0.4692	0.2141
17	4	79	30	0.4950	0.1796	1	85	7	0.4739	0.2105
18	2	81	29	0.5015	0.1774	3	86	6	0.4918	0.2105
19	4	85	29	0.5238	0.1784	\mathbf{G}	88	4	0.4918	0.2009
20	1	86	28	0.5286	0.1752	2	90	4	0.4997	0.2050
30	20	106	24	0.6571	0.1657	3	93	O	0.5243	0.1953
50	28	134	13	0.8120	0.1626	0	93	Ü	0.5243	0.1335
7 5	21	155	4	0.9430	0.1603	16	105	J	0.5434	0.1837
100		170	U	1.0000	0.1636	61	170	Ú	1.0000	0.2034
	0	170				0	170			
10.0%	53	53	33	0.3258	0.2214	54	54	17	0.3315	0.2270
25.0%	33	86	28	0.5286	0.1752	36	90	4	0.4997	0.2066
20.06	38	124	16	0.7576	0.1643	3	93	J	0.5243	0.1874
75.0%	22	146	0	0.8862	0.1619	0	93	()	0.5243	0.1303
90.0%	7	153	2	0.9145	0.1601	12	105	\mathcal{O}	0.5364	0.1926
100.06	17	170	U	1.0000	0.1636	65	170	U	1.0000	0.2034

SYMBOL KEYS: NR = NUMBER OF RELEVANT.

CNR = CUMULATIVE NUMBER OF RELEVANT.

NQ = NUMBER OF QUERIES USED IN THE AVERAGE

NUT DEPENDENT ON ANY EXTRAPOLATION.

4 = PERCENT OF TUTAL NUMBER OF ITEMS IN COLLECTION.

06/16/69 14:19:10.73 163.2900

PAGE 131

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1											,			•	
0.0 0.100 0.2000 0.3000 0.300) 0.7000 0.4000	1.0000	•		:	:	:	:	:	:	•	•	•	•	,	· ·
0.000.0 0.000.					•			•					•	•	
0.5000 0.		•			•			•		•			• •	• (
0.5000 0.														•	
0.5000 0.	0.9000	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0.0000 0.0000 0.2000 0.2000 0.100 0.2000 0.100 0.20		•			•		•	•					•	•	
0.5000 0.5000 0.4000 1.10 0.5000 0.4000 1.11 0.2000 1.11 0.2000 0.4000 0.4000 1.11 0.2000 0.4		•		•	•			•		•			•	•	
0.5000 0.		•	•	•	•			•						•	
0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				•	•			•		•				•	
0.5000 0.				•	•	•	•	•	•	•	•	•	•	•	•
0.5000 0.5000 0.2000 0.1000 0.								•		•		• (• •	• •	
0.5000 0.															
0.5000 0.5000 0.2000 0.2000 0.11 0.2000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.1		•			•			•				. •	•	•	
0.5000 0.	0.1000	•		•	•	•	•	•	•	•	•	•	•	•	•
0.5000 0.5000 0.2000 0.1000 0.		•			•			•		•		• •	•	•	•
0.5000 0.5000 0.5000 0.2000 0.		•			•			•						•	
0.5000 0.		•	•		•			•		•				•	
0.5000 0.5000 0.5000 0.1000 0.2000 0.1000 0.1000 0.2000		•			•			•						•	
0.5000 0.0000 0.0000 0.1000 0.	0000	•		•	•	•	•	:	:	:	:	:	•	•	:
0.5000 0.4000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	•	•	•		•	•		•	1	•	•	•	
0.5000 0.4000 1.1 0.2000 1.1 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000		•	•		•			•		•			•	•	
0.4000 0.4000 1.1 0.2000 0.1000 0.1000 0.200		•	•		•			•		•			•	•	,
0.4000 1	000	•	•	•	•			•		•				•	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0.4000 0.2000 0.2000 0.2000 0.1000 0.2000								•		•			•	•	
0.3000 0.3000 0.1000 0.		•			•		· •			•	,				
0.2000 0.2000 0.1000 0.1000 0.1000 0.2000 0.2000 0.2000 0.3000 0.3000 0.5000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000		•			•			•		•					
0.2000 0.2000 0.1000 0.2000 0.	0.400	•	•	•	•	:	•	•	•	•	•	•	•	•	•
0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000 0.		•	•		•		•	•					•	•	
0.2000 0.1000 0.2000 0.		•	•	•	•			•		•			•	•	
0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000 0.		1	•	•	• ,			•		•			•	•	
0.1000 0.1000 0.1000 0.1000 0.2000 0.2000 0.3000 0.3000 0.5000 0.5000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000	0000	•	•	• •	•			•		•			•	•	
0.2000 0.1000 0.1000 0.2000 0.2000 0.3000 0.5000 0.5000 0.5000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000			•	· : -	•	•	•	•	•	•	•	•	•	•	•
0.2000 0.1000 0.1000 0.2000 0.3000		•			-			•		•			•	•	
0.0000 0.0000 0.1000 0.1000 0.2000 0.		•			0			•					•	•	
0.0000 0.0000 0.0000 0.0000 0.2000 0.		•			•	1 1	1 11.	11 1.		•			•	•	
0.0000 0.0000 0.0000 0.0000 0.0000 0.2000 0.	0002.0		•	•	•	0.1.0	•	77.	•	•	•	:	•	•	•
0.0000 0.0000 0.0000 0.1000 0.1000 0.2000 0.		•			•	00	0	၀၀	101	•			•	•	
0.0000 0.2000 0.2000 0.2000 0.5000 0.5000 0.7000 0.		•	•		•			•		•	0		<u>.</u>	0.0	0
0.0000 0.2000 0.2000 0.4.30 0.5000 0.7000 0.		•		•	•			•					•	•	
0.0000 0.2000 0.3000 0.3000 0.3000 0.2000	0001		•	•	•			•		•			•	•	
0.0 0.1000 0.3000 0.500 0.500 0.500 0.500 0.7000 0.		•	•	•	•	•	•	•	•	•	•	•	•	•	•
0.0000 0.2000 0.3000 0.500) 0.5000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000		. •			, •			•						•	
0.0 0.1000 0.3000 0.500 0.500 0.500 0.7000 0		•			•			•					• (• •	
0.0 0.2000 0.3000 0.500) 0.5000 0.5000 0.5000 0.5000 0.700		•			•			•		•				• •	
0.0 0.2000 0.3000 0.5000 0.5000 0.5000 0.5000 0.5000 0.700	0.0000	•		•	•	•	•	•	•	•	•	•		•	,
0.3000 0.3000 0.7000 0.1000 0.1000 0.1000 0.1000 0.2000t-01 0.2000				0007.0		7	60(50			0.09.0		•	0.800C	•	1.000
INT IS 0.2000k-01 INCREMENT IS INCREMENT IS X-AXIS INCREMENT IS X-AXIS # FECALE.		Ó	.1000		0.300	00		0.5	101		_	0001.			000
INTERPRETATION OF THE VERY STREET INTERP		THE WARF		2	10000										
		T-AXIS		^	- 40000	10.						s,	NC 2 FME V		-10001-
										•	_	- VIXV-	アント		

Document-Level Averages

a given difference in two averages is likely to have occurred by chance.

A one-sided test is designed to compare a supposedly better sample B, with a given standard sample A. Specifically, one proposes two hypotheses H_0 and H_1 . H_0 states that two samples A and B are produced by the same distribution; H_1 states that sample B is statistically better than sample A. H_1 is accepted if it is unlikely, under H_0 , that a difference between samples as great as, or greater than, that observed would occur by chance.

A two-sided test similarly compares two samples under the same $\rm H_0$, but with the alternate hypothesis $\rm H_1$ being that samples A and B are from different distributions. Here again $\rm H_1$ is accepted if the probability, under $\rm H_0$, is low that a difference between two samples is as great as, or greater than, that observed would occur by chance.

The T-test assumes that the differences d_i between the two measures, a_i and b_i , are distributed normally. Explicitly, it is assumed that d_i has mean \overline{d} , and standard deviation σ_d . Note that \overline{d} and σ_d are computable for any distribution, including also the normal distribution. In particular, it is known that many sets of differences are not normally distributed. (For further discussion of the T-test and sign test, see reference [7], page 12, also [3] chapter 8).

The sign test assumes that a result is equally likely to favor either sample A or sample B. Thus, it measures the probability of a more extreme distribution favoring B, or favoring either A or B.

The Wilcoxon signed rank test postulates that a greater difference between paired samples is more significant, but only as the numbers affect the ranking of the differences. For example, differences of -1, 2, -3, 4, and 20 are equivalent to differences of -1, 2, -3, 4, and 5 since only the rank

of the ordered differences favoring a sample is important (not the actual values of the differences). The Wilcoxon test assumes that the two samples come from the same family of distributions, i.e., either two normal distributions, or two binomials, etc.

The three tests are performed for eleven points of the recall-level averages, and for the four overall measures of recall and precision of the document level averages; in addition, the tests are also performed for the 17 cost statistics. The three listings for the three different test procedures (Fig. 26 - 28) cover only the first option (eleven points of the recall-level averages plus the four overall measures).

For the T-test (Fig. 26), the following values are given for each of the fifteen statistics: the mean and standard deviation of the statistic for each of the two searches (A and B); the mean and standard deviation of the differences between the statistics for A and B; and a value T, which is defined as

$$T = \frac{(\overline{A} - \overline{B}) \div \sqrt{N}}{\sigma_{A - B}}$$

where N is the number of degrees of freedom (which is one less than the number of queries being tested). The one-sided and two-sided probabilities (indicating whether a difference between the two samples as great as, or greater than, that observed would occur by chance) is also listed. Finally, the fifteen one-sided tests are statistically combined into a single measure also listed.

The sign test (Fig. 27) gives the number of queries favoring search A, favoring search B, and tied; the normal deviate ignoring ties (computed by using the binomial normal approximation); and the one-sided and two-sided

87.0200

T T E S T

TESTING COLLECTION B FOR PERFURMANCE BETTER THAN COLLECTION A (1-SIDED) OR UNEQUAL TO COLLECTION A (2-SIDED)

A (FILE 0), 42 QUERIES: CRN2ST FULL FEEDBACK SEARCHES ON CRANFIELD 200 COMBINATION OF WORDFORM AND THESAURUS

B (FILE 1), 42 QUERIES: CRN2ST FEEDI FEEDBACK SEARCHES ON CRANFIELD 200 COMBINATION OF WORDFORM AND THESAURUS

ON OPTION 1, 15 MEASUKES -- RANK RECALL, LOG PRECISION, NORMALIZEU RECALL, NORMALIZED PRECISION, AND RECALL LEVEL AVERAGES

ΕÒ	1	3	9	6	9	9	7	7	0	2	9	7	-	0	4
2-SIDE	0.0007	0.000	0.011	0.002	0.042	0.042	0.026	0.005	0.004	0.003	00000	0.038	0.075	0.009	0.008
1-SIDED PROB	0.0003	0.0001	0.0058	0.0015	0.0213	0.0213	0.0133	0.0029	0.0020	0.0016	0.0003	0.0193	0.0376	0.0045	0.0042
-	-3.3437	-3.4713	-2.5273	-3.0063	-2.0238	-2.0238	-2.2116	-2.7820	-2.9061	-2.9829	-3.8414	-2.0633	-1.7787	-2.6205	-2.6461
SD A-B	0.0788	0.0771	0.1348	0.0739	0.0434	0.0434	0.0583	0.0758	0.0805	7660 0	0.1483	0.1569	0.1462	0.1288	0.1299
MEAN A-B	-0.0407	-0.0413	-0.0526	-0.0343	-0.0135	-0.0135	-0.0199	-0.0325	-0.0361	-0.0458	-0.0879	-0.0499	-0.0401	-0.0521	-0.0530
SD B	0.1142	0.2026	0.3046	0.2618	0.3622	0.3622	0.3563	0.3550	0.3509	0.3372	0.3245	0.3222	0.3022	0.3041	0.3041
MEAN B	0.9184	0.7448	0.3757	0.5304	0.6676	0.6676	0.6330	0.5952	0.5800	0.5486	765.0	0.4190	0.3551	0.3305	0.3305
SD A	0.1358	0.2168	0.3233	0.2647	0.3735	0.3735	0.3678	0.3697	0.3668	0.3612	0.3481	0.3386	0.3198	0.3202	0.3205
MEAN A	0.8778	0.7035	0.3231	0.4961	1459.0	0.6541	0.6131	0.5626	0.5439	0.5028	0.4095	0.3690	0.3150	0.2784	0.2774
STATISTICS	RANK R	L06 P	NORM R	NORM P	R-L-A .0	REC 0.1	0.2	0.3	4.0	0.5	9.0	0.7	0.8	6.0	1.0

COMBINED SIGNIFICANCE -- TOTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 170.5000 IS 0.0000

SYMBOL KEYS: SD -- STANDARD DEVIATION

Test

 \vdash

Fig. 26

ATTISTICS FAVORING FAVORING	FAVORING FAVORING FAVORING FROMELY, LOG PRECISION, NORMALIZED RECALL, NORMALIZED PRECISION, AND RECALL LEVEL (FAVORING FAVORING F	### RESURES RANK RECALL, LOG PRECISION, NORMALIZED RECALL, NORMALIZED PRECISION, AND RECALL LEYEL ### AVORING FAVORING TED 10 16 2.3534 0.0153 0.0306 0.0165 0.7070 0.0306 0.07070	STICS #	MEASURES AVORING AVORING 7 7 7 1 1				פון					
FAVORLING FAVORLING	FAVORING FAVORING FAVORING ITED NORM DEV 1-SIDED 2-SIDED NORM DEV 151CS METHOD A HETHOD B TIED 1GN TIES PRUB PRUB DISHGETIES 1 1 19 16 2.3534 0.0153 0.0306 -0.6172 0.0153 0.03074 -0.9258 0.0153 0.0306 0.05172 0.0153 0.0306 0.05172 0.0153 0.0306 0.05172 0.0153 0.0306 0.05172 0.0153 0.0306 0.03174 0.0153 0.0306 0.03174 0.0153 0.0306 0.03174 0.0153 0.0306 0.03174 0.0305 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.0011 0.12344 0.0306 0.0011 0.12344 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03077 0.03174 0.0306 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.0306 0.03174 0.03	The color of the	STICS	AVOKING T T T T T T T T T T T			PRECISION	MALIZED RE			AND		
8 18 16 2.3534 0.0153 0.0306 -0.6172 8 18 16 1.9612 0.0387 0.0374 -0.6172 9 8 18 16 1.9612 0.0367 -0.6172 10 1 7 34 2.1213 0.0387 0.0774 -0.9258 3.1 7 34 2.1213 0.0385 0.0774 -0.9258 3.2 1 7 34 2.1213 0.0385 0.0770 -4.3205 3.2 1 34 2.1213 0.0385 0.0770 -4.3205 3.5 1 34 2.1213 0.0385 0.0770 -4.3205 3.5 1 34 2.1213 0.0385 0.0770 -4.3205 3.5 2 3.2071 0.0018 0.0071 -1.2344 3.5 3 3.5447 0.0004 0.0001 -1.2344 3.6 1 1 1.5689 0.0351	The color of the	1		L 80 L 80 1	FAVORING METHOD B	TIED	NORM DEV IGN TIES	1-510ED PROB	2-SIDED PRUB	NORM DEV USING TIES	1-\$10ED PROB		
8 18 16 1.9612 0.0387 0.0774 -0.9258 9 8 18 16 2.3534 0.0153 0.0306 -0.6172 0 1 7 34 2.1213 0.0387 0.0774 -0.9258 3.0 1 7 34 2.1213 0.0387 0.0774 -0.9258 3.1 1 34 2.1213 0.0385 0.0770 -4.3205 3.2 1 1 34 2.1213 0.0385 0.0770 -4.3205 3.5 1 1 34 2.1213 0.0385 0.0770 -4.3205 3.5 1 1 34 2.3333 0.0226 0.0451 -4.3205 3.5 2 3 2 3.5000 0.0016 0.0036 -2.4689 3.5 4 2 3.5412 0.0006 0.0014 -1.8516 3.5 8 16 1.5689 0.0851 0.1702 -1.2	1	## 18 16 1.9512 0.01387 0.0174 -0.9258 ## 18 16 1.9512 0.01887 0.0170 -4.3205 ## 18 16 1.9512 0.0387 0.0770 -4.3205 ## 18 16 1.9512 0.0385 0.0770 -4.3205 ## 18 15 26 3.5207 0.00385 0.0770 -4.3205 ## 2.1213 0.0385 0.0770 -4.3205 ## 2.1213 0.0385 0.0770 -4.3205 ## 2.1213 0.0385 0.0770 -4.3205 ## 2.1213 0.0385 0.0770 -4.3205 ## 2.1213 0.0385 0.0770 -4.3205 ## 3.3 2.233 3.5207 0.0006 0.0011 -1.8516 ## 3.4 2.1213 0.0385 0.0014 -1.8516 ## 3.5 2.5 2.5 3.5007 0.0007 0.0007 -1.8516 ## 3.5 2.5 2.5 2.5 0.0007 0.0007 -1.8516 ## 3.5 2.5 2.5 2.5 0.0007 0.0007 -1.8516 ## 3.5 2.5 2.5 2.5 0.0007 0.0007 -0.3066 ## 3.5 2.5 2.5 2.5 0.0007 0.0007 -0.3066 ## 3.5 2.5 2.5 2.5 0.0007 0.0007 -0.3066 ## 3.5 2.5 2.5 2.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 ## 3.5 2.5 2.5 2.5 ## 3.5 2.5 2.5 ## 3.5 2.5 2.5 ## 3.5 2.5 2.5 ## 3.5 2.5 2.5 ## 3.5 2.		∞ ~ ∞ →	19	16	2.3534	0.0153	0.0306	-0.6172	0-7800		
R 7 19 16 2.3534 0.0153 0.0306 -0.6172 N. 0 1 18 16 1.9612 0.0387 0.0774 -0.6258 0.1 1 7 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 1 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 1 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 34 2.1213 0.0385 0.0770 -4.3205 0.4 1 13 28 3.2071 0.0385 0.0770 -4.0119 0.5 2 1 23 3.5071 0.0016 0.0036 -2.4689 0.6 3 2 3.5000 0.0004 0.0001 -1.8516 0.7 8 16 18 1.6589 0.0767 0.1702 -1.5344 0.8 18 16 1.9612 0.0387	Name	P	-	r 8 1	18	16	1.9612	0.0387	0.0774	-0.9258	0.8598		
No. 18 16 1.9612 0.0387 0.0774 -0.9258 0.1 1 7 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 7 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 3 2.1213 0.0385 0.0770 -4.3205 0.2 1 3 2.3333 0.0226 0.0451 -4.019 0.4 1 13 26 3.2071 0.0018 0.0036 -2.4689 0.5 2 17 23 3.500 0.0006 0.0014 -1.8516 0.6 3 2 19 3.5447 0.0004 0.0004 -1.5344 0.8 16 18 16 1.5689 0.0851 0.1702 -1.2344 0.0 8 18 16 1.9612 0.0387 0.0774 -0.9258 1.0 8 18 16 1.9612 0.0387	P B 18 16 1.9612 0.0387 0.0774 -0.9258 0.1 1 7 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 1 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 1 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 3 2 2.3333 0.0226 0.0757 -4.0119 0.4 1 13 28 3.2071 0.0036 -2.4689 0.5 2 1 26 3.2071 0.0016 -1.2344 0.6 3 2 1 3.4412 0.0006 0.0011 -1.2344 0.6 9 16 18 1.6589 0.0767 0.1702 -1.5344 0.9 9 17 16 1.9612 0.0004 0.0007 0.0074 0.0074 0.0074 0.0076 0.00774 0.0354 1	1	•	30 →	16	16	2,3534	0.0153	0.0306	-0.6172	0.7800	_	
0.1 1 7 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 7 34 2.1213 0.0385 0.0770 -4.3205 0.2 1 13 28 3.2071 0.0018 0.0056 -2.4689 0.4 1 15 26 3.500 0.0006 0.0036 -2.4689 0.5 2 17 23 3.5447 0.0007 0.0014 -1.8516 0.6 3 20 19 3.5447 0.0007 0.0014 -1.8516 0.7 8 16 1.5689 0.0767 0.1534 -1.5344 0.9 8 18 16 1.9612 0.0387 0.0774 -0.9258 1.0 8 18 16 1.9612 0.0387 0.0774 -0.9258 1.0 8 18 16 1.9612 0.0387 0.0774 -0.9258 1.0 8 18 16 0.096<	1	1		•	18	91	1.9612	0.0387	0.0774	-0.9258	0.8598	-	
0.2 1 8 33 2.3333 0.0226 0.0451 -4.0119 0.3 1 13 2.8 3.2071 0.0016 0.0036 -2.4689 0.4 1 15 2.6 3.5000 0.0006 0.0031 -1.8516 0.5 2 17 23 3.4412 0.0007 0.0014 -1.8516 0.6 3 20 19 3.5447 0.0007 0.0014 -1.2344 0.7 8 16 1.5689 0.0767 0.1702 -1.2344 0.9 8 18 16 1.9612 0.0387 0.0774 -0.9258 1.0 8 18 16 1.9612 0.0387 0.0774 -0.9258 BINED 73 230 327 9.0194 0.0000 0.0000 -0.0000	1	1 8 33 2.3333 0.0226 0.0451 -4.0119 1 15 26 3.2071 0.0018 0.0036 -2.4689 1 15 26 3.5070 0.0004 0.0001 -1.2344 2 17 23 3.4412 0.0007 0.0011 -1.2344 3 20 19 3.447 0.0007 0.0007 -1.2344 4 16 18 16 1.6340 0.0767 0.1702 -1.2344 5 18 16 1.6340 0.0037 0.0774 -0.9258 73 230 327 9.0194 0.0038 0.0774 -0.9258 18 16 1.9612 0.0387 0.0774 -0.9258 19 17 16 1.9612 0.0387 0.0774 -0.9258 19 18 16 1.9612 0.0387 0.0774 -0.9258 19 18 16 1.9612 0.0387 0.0774 -0.9258 19 18 16 1.9612 0.0387 0.0774 -0.9258 19 18 16 1.9612 0.0387 0.0774 -0.9258 19 18 16 1.9612 0.0387 0.0774 -0.9258 19 18 16 1.9612 0.0387 0.0774 -0.9258 19 18 16 1.9612 0.0387 0.0000 -6.7730 10 18 18 18 18 18 18 18	•		7	34	2 1 2 1 3	0.0385	0.0170	-4.3205	1.0000		
1 13 28 3.2071 0.0018 0.0036 -2.4689 2 17 23 3.4412 0.0006 0.0014 -1.8516 3 20 19 3.5447 0.0007 0.0014 -1.2344 9 17 16 1.5430 0.0767 0.1534 -1.5430 9 18 16 1.5689 0.0851 0.1702 -1.5430 1 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730	1 13 28 3.2071 0.0018 0.0036 -2.4689 1 15 26 3.5000 0.0006 0.0011 -1.8516 2 17 23 3.4412 0.0007 0.0014 -1.2344 3 20 19 3.547 0.0007 0.0007 -1.2344 8 16 1.6330 0.0757 0.1534 -1.2344 9 17 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 9 17 230 327 9.0194 0.0000 0.0000 -6.7730 15	1 13 28 3.2071 0.0018 0.0036 -2.4689 2		٠,	- oc	33	2,3333	0.0226	0.0451	-4-0119	0000		
1 15 26 3.5000 0.0006 0.0011 -1.8516 2 17 23 3.4412 0.0007 0.0014 -1.2344 3 20 19 3.5447 0.0004 0.0007 -0.3086 9 17 16 1.5330 0.0767 0.1534 -1.5430 8 18 16 1.9612 0.0387 0.0774 -0.9258 9 10 10 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730	1 15 26 3.5000 0.0006 0.0011 -1.8516 2	1 15 26 3.5000 0.0006 0.0011 -1.8516 2	0.3	•	13	28	3.2071	0.0018	0.0036	-2.4689	0.9955		
2 17 23 3.4412 0.0007 0.0014 -1.2344 3 20 19 3.5447 0.0004 0.0007 -0.3086 9 17 16 1.5689 0.0767 0.1534 -1.5430 8 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730	2 17 23 3.4412 0.0007 0.0014 -1.2344 -1.2344 3.5447 0.0004 0.0007 -0.3086 -0.3086 9 17 16 18 1.6330 0.0767 0.1534 -1.5430 9 17 16 1.6330 0.0767 0.1534 -1.5430 9 17 16 1.9612 0.0851 0.1702 -1.2344 9 18 16 1.9612 0.0387 0.0774 -0.9258 9 18 18 16 1.9612 0.0387 0.0774 -0.9258 9 18 18 16 1.9612 0.0387 0.0774 -0.9258 9 18 1.8 16 1.9612 0.0387 0.0774 -0.9258 9 18 1.8 16 1.9612 0.0387 0.0774 -0.9258 9 18 1.8 16 1.9612 0.0387 0.00774 -0.9258 9 18 1.8 16 1.9612 0.0090 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000	2 17 23 3.4412 0.0007 0.0014 -1.2344 3 20 19 3.547 0.0004 0.0007 -0.3086 8 16 18 1.6330 0.0767 0.1534 -1.5340 9 17 16 1.5689 0.0767 0.1534 -1.5340 1 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 0.15012 0.0387 0.0774 -0.9258 8 18 16 0.15012 0.0387 0.0774 -0.9258 8 18 16 0.15012 0.0387 0.0774 -0.9258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0387 0.0774 0.09258 8 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0387 0.0774 0.09258 8 18 18 16 0.15012 0.0928	4.0	-	12	56	3.5000	900000	0.0011	-1.8516	0.9778		
3 20 19 3.5447 0.0004 0.0007 -0.3086 8 16 18 1.6330 0.0767 0.1534 -1.5430 9 17 16 1.5689 0.0851 0.1702 -1.2344 8 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730	3 20 19 3.5447 0.0004 0.0007 -0.3086 8 16 18 1.6330 0.0767 0.1534 -1.5430 9 17 16 18 1.6330 0.0767 0.1534 -1.5430 8 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 6 TIES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS 0.0000 15. NORM DEV 1GN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES	3 20 19 3.5447 0.0004 0.0007 -0.3086 9 16 18 1.6330 0.0057 0.1534 -1.55430 9 17 16 18 1.6899 0.00851 0.1702 -1.53430 18 18 16 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730 SIGNIFICANCE TUTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM 0.0000 -6.7730 155 THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS 0.0000 753 NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES Sign Test Fig. 27	0.5	7	17	23	3.4412	0.0007	0.0014	-1.2344	0.9174		
8 16 18 1,6330 0,0767 0,1534 -1,5430 9 17 16 1,5689 0,0851 0,1702 -1,2344 8 18 16 1,9612 0,0387 0,0774 -0,9258 8 18 16 1,9612 0,0387 0,0774 -0,9258 73 230 327 9,0194 0,0000 0,0000 -6,7730	16 18 1.6330 0.0767 0.1534 -1.5430 17 16 1.5689 0.0851 0.1702 -1.2344 8 18 16 1.9612 0.0387 0.0774 -0.9258 18 16 1.9612 0.0387 0.0774 -0.9258 19 16 1.9612 0.0387 0.0774 -0.9258 19 16 1.9612 0.0387 0.0774 -0.9258 18 16 1.9612 0.0387 0.0774 -0.9258 19 16 1.9612 0.0387 0.0774 -0.9258 19 16 1.9612 0.0387 0.0774 -0.9258 19 16 1.9612 0.0387 0.0774 -0.9258 19 16 1.9612 0.0387 0.0774 -0.9258 19 16 1.9618 1.9618 1.0000 -6.7730 10 16 16 16 16 16 16 16	16 18 1.6330 0.0767 0.1534 -1.5430 1.5689 0.0851 0.1702 -1.5344 1.5689 0.0851 0.1702 -1.5344 0.0387 0.0774 -0.9258 0.0387 0.0774 -0.9258 0.0387 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 -0.9258 0.0774 0.0074 0.	9.0	6	50	61	3.5447	0.0004	0.0007	-0.3086	0.6784		
9 17 16 1.5689 0.0851 0.1702 -1.2344 8 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730	9 17 16 1.5689 0.0851 0.1702 -1.2344 8 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730 SIGNIFICANCE TUTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM 1ES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS 0.0000 YS: NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES	9 17 16 1.5689 0.0851 0.1702 -1.2344 8 18 16 1.9912 0.0387 0.0774 -0.9258 8 18 16 1.9912 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730 SIGNIFICANCE TUTAL CHI SQUARE NITH 30 DEGREES OF FREEDOM G TIES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 3.4689 IS 1.0000 YS: NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES FIG. 27	0.7	30	16	18	1.6330	0.0767	0.1534	-1.5430	0.9552		
8 18 16 1.9612 0.0387 0.0774 -0.9258 8 18 16 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730	18	## 18	8.0	6	11	16	1.5689	0.0851	0.1702	-1.2344	0.9174		
8 1.9612 0.0387 0.0774 -0.9258 73 230 327 9.0194 0.0000 0.0000 -6.7730	1.9612 0.0387 0.0774 -0.9258	SIGNIFICANCE TUTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM G TIES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS 0.0000 YS: NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES Right Test Eig. 27	6.0	80	18	16	1.9612	0.0387	0.0774	-0.9258	0.8598		
73 230 327 9.0194 0.0000 0.0000 -6.7730 1	SIGNIFICANCE TUTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM G TIES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS 0.0000 IES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 3.4689 IS 1.0000 YS: NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES	SIGNIFICANCE TUTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM G TIES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS 0.0000 1ESS THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 3.4689 IS 1.0000 YS: NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES Sign Test Fig. 27	1.0	00	81	91	1.9612	0.0387	0.0774	-0.9258	0.8598		
	SIGNIFICANCE TOTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM G TIES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS IES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 3.4689 IS YS: NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES	SIGNIFICANCE TOTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM G TIES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 131.4126 IS IES THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 3.4689 IS YS: NORM DEV IGN TIES STANDARD NORMAL DEVIATE CALCULATED IGNORING TIES NORM DEV USING TIES STANDARD NORMAL DEVIATE CALCULATED USING TIES Sign Test Fig. 27	OMB INED	73	230	32.7	9.0194	0.0000	0.0000	-6.7730	1.0000		
		19.					Sigi						
- E	E G						•-		- X				
# # # # # # # # # # # # # # # # # # #	eg .t		man of the second contract of the second cont										
g i e	80 •Cl												

probabilities for the test ignoring ties. The normal deviate and the one-sided probability using ties (based on a method developed by Cathy May [8]) are also computed and listed. The one-sided tests are again statistically combined into overall figures.

The Wilcoxon signed rank test (Fig. 28) gives the sum of ranks favoring search A and favoring search B; the number of degrees of freedom (specifically, the number of untied pairs); the normal deviate (computed using the Wilcoxon-normal approximation); and the resulting one-sided and two-sided probabilities. A statistically combined significance value is also listed.

3. Access to the SMART System

The SMART system exists at Cornell as a private library system, located on a disk, which is accessible by reading in sets of control cards.

When the SMART programs are loaded, a routine called EXEC receives control. This routine interrogates control cards in the data stream to ascertain which routines are desired and transfers control of those routines in the sequence requested.

A typical deck setup for the system is reproduced as follows:

```
. . . . . (parameters). . . . . .
initiates SMART
routines
                        /*SMART
                                . . . . (parameters). . . . . .
sets up
                        CLUSTR
document
                                . . . . . (parameters). . . . . .
groups for a
collection already
on file
performs retrieval
                        SEARCH . . . . (parameters). . . . .
runs using methods
                               . . . . . (parameters). . .
called for by the
parameter cards
```

SMART -- FEEDBACK SEAKCHES ON CRANFIELD 200 WURDFURM

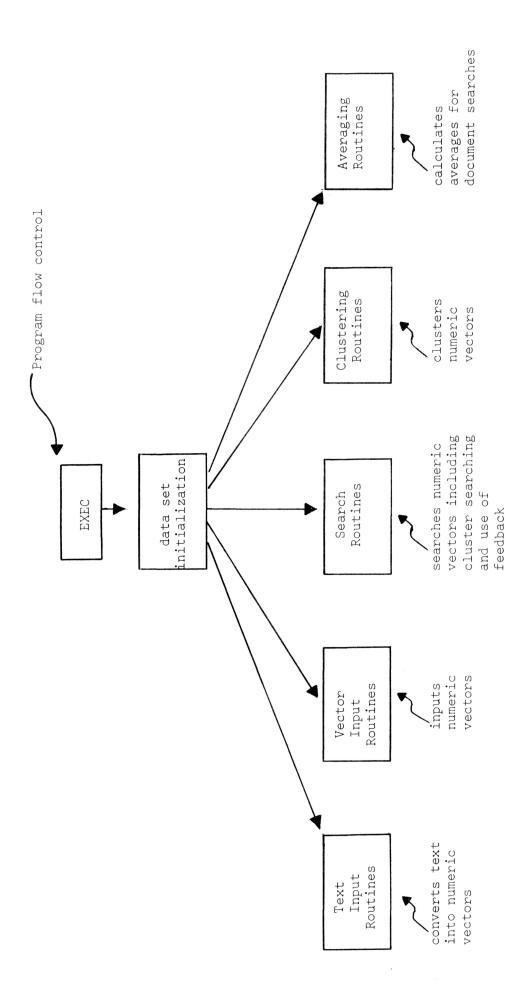
TESTING COLLECTION B FOR PERFORMANCE BETTER THAN COLLECTION A (1-SIDED) OR UNEQUAL TO COLLECTION A (2-SIDED)

A (FILE 0), 42 QUERILS: CRN2ST FULL FEEDBACK SEARCHES ON CRANFIELD 200 COMBINATION OF WORDFORM AND THESAURUS

B (FILE 1), 42 QUERIES: CRN2ST FEEDI FEEDI FEEDBACK SEARCHES ON CRANFIELD 200 COMBINATION OF WORDFORM AND THESAURUS

ON UPTION 1, 15 MEASURES -- RANK RECALL, LOG PRECISION, NORMALIZED RECALL, NORMALIZED PRECISION, AND RECALL LEVEL AVERAGES

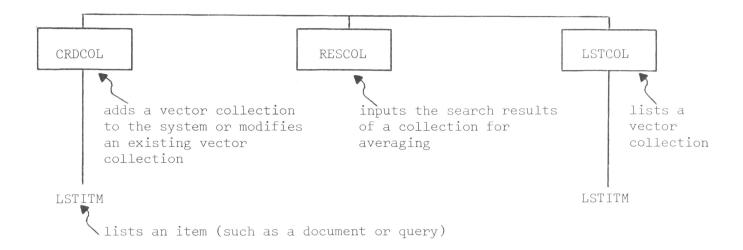
STATISTICS	SUM OF KANKS FAVORING A	SUM OF RANKS FAVORING B	NDF	NORMAL	1-SIDED PROB	2-SIDED PROB	
RANK R	51.5	299.5	26	3.1494	0.0009	0.0019	
L 06 P	55.0	296.0	56	3.0605	0.0013	0.0026	
NOR R	72.0	279.0	56	2.6287	0.0045	0.0091	
NORM P	57.0	294.0	56	3.0097	0.0015	0.0030	
R-L-A .0	4.5	31.5	0 0	1.8904	0.0342	0.0685	
REC 0.1	4.5	31.5	90	1.8904	0.0342	0.0685	
0.2	4.5	40.5	6	2.1325	0.0189	0.0378	
0.3	10.0	95.0	14	2.6680	0.0043	0.0086	į
4.0	12.0	124.0	16	2.8957	0.0022	0.0045	
0.5	73.0	167.0	16	2.8974	0.0022	0.0044	
9.0	23.0	253.0	23	3.4977	0.0001	0.0002	
0.1	93.0	207.0	24	1.6286	0.0533	0.1066	
0.8	108.0	243.0	56	1.7144	0.0444	0.0888	
6.0	0.08	271.0	26	2.4255	0.0079	0.0157	i
1.0	90.08	271.0	96	2.4255	0.0079	0.0157	


CUMBINED SIGNIFICANCE -- TOTAL CHI SQUARE WITH 30 DEGREES OF FREEDOM
THE PROBABILITY OF A CHI SQUARE LARGER THAN THE OBSERVED 157.3448 IS 0.0000

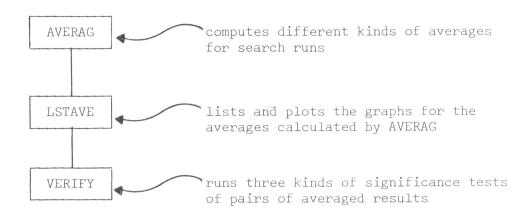
FREEDOM -- NUMBER OF DEGREES OF SYMBOL KEYS: NUF

Signed-Rank Test Wilcoxon

4. Basic SMART System Flowchart


The SMART routines fall into two categories: routines that can be called with control cards, and routines that can only be called by other routines. The latter set in interconnected by means of complex internal vectors, designed to make the most efficient use of in-core storage. A flowchart is produced in Figs. 29-33. The routines which can be called by control cards are enclosed by boxes.

SMART Systems Chart


Fig. 29

SMART System Chart — Text Input Routines

SMART Systems Chart — Vector Handling Routines

Fig. 31

SMART System Chart — Averaging Routines

Fig. 32

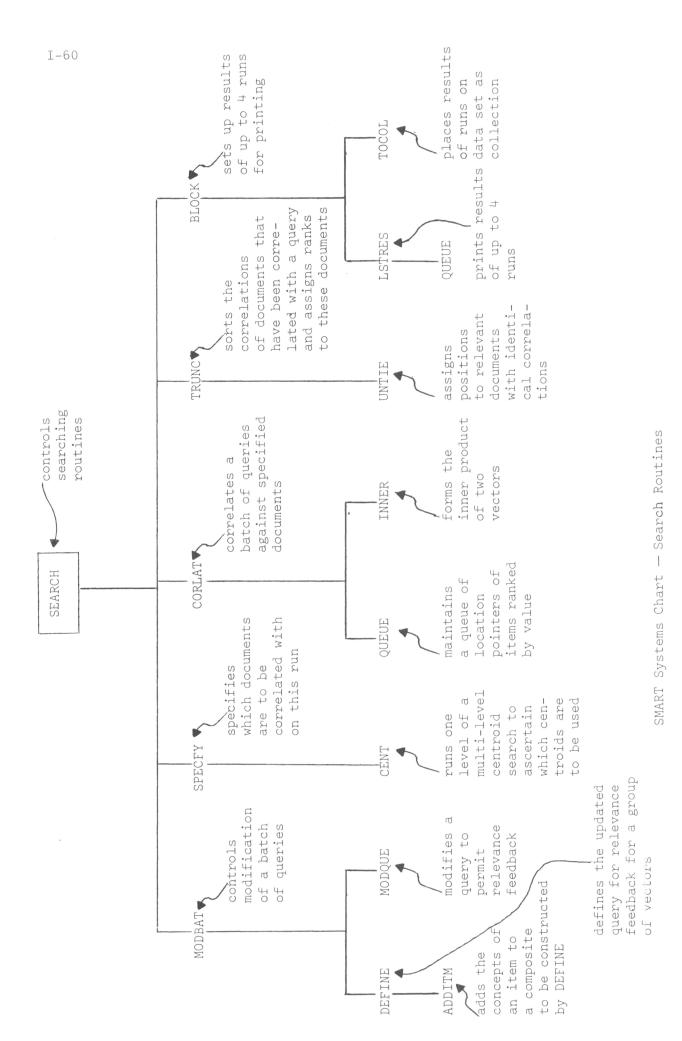
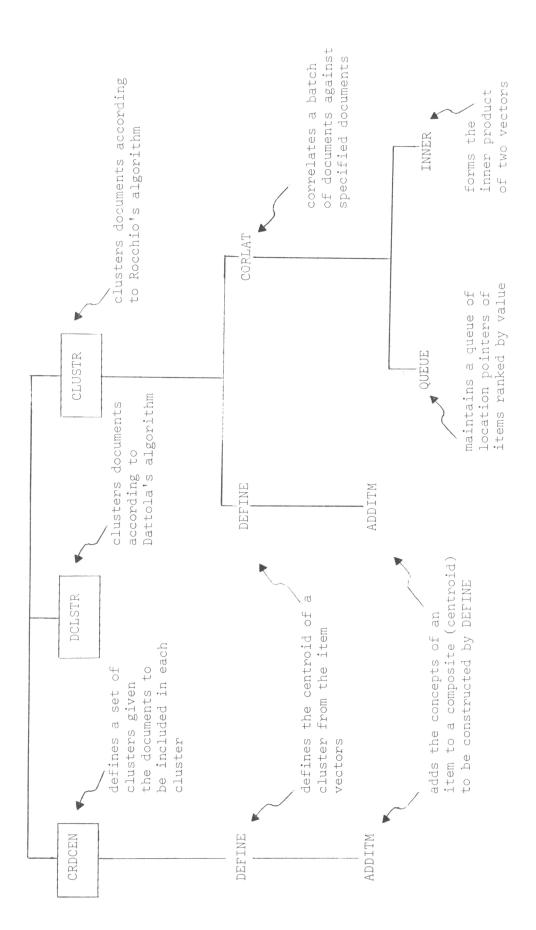



Fig. 33

SMART Systems Chart — Clustering Routines

Fig. 34

References

- [1] E. Ide, R. Williamson, and D. Williamson, The Cornell Programs for Cluster Searching and Relevance Feedback, Information Storage and Retrieval, Report ISR-12 to the National Science Foundation, Section IV, Department of Computer Science, Cornell University, June 1967.
- [2] D. Williamson, The Cornell Implementation of the SMART System, Information Storage and Retrieval, Report ISR-14 to the National Science Foundation, Section II, Department of Computer Science, Cornell University, October 1968.
- [3] G. Salton, Automatic Information Organization and Retrieval, McGraw Hill Book, Co., New York, 1968, chapter 3.
- [4] J. J. Rocchio, Jr., Document Retrieval Systems Optimization and Evaluation, Harvard Doctoral Thesis, Information Storage and Retrieval, Report ISR-10 to the National Science Foundation, Harvard Computation Laboratory, Cambridge, March 1966.
- [5] R. T. Dattola, A Fast Algorithm for Automatic Classification, Information Storage and Retrieval, Report ISR-14 to the National Science Foundation, Section V, Department of Computer Science, October 1968.
- [6] R. Williamson, Centroid Searching (Tree Searching), unpublished paper, May 1968.
- [7] G. Salton and M. E. Lesk, Computer Evaluation of Indexing and Text Processing, Information Storage and Retrieval, Report ISR-12 To the National Science Foundation, Section III, Department of Computer Science, Cornell University, June 1967.
- [8] Cathy May, Evaluation of Search Methods in an Information Retrieval System, Term Report written for Computer Science 435, Cornell University, May 1968.