
V-l

V. A Fast Algorithm for Automatic Classification

R. T. Dattola

Abstract

Several different methods exist for classifying the elements of a

file into groups based on similarities in the attributes of the elements.

In information retrieval, the elements are frequently documents, and the

attributes are words or concepts characterizing the documents.

Most known procedures are based on the construction of similarity

matrices specifying the pairwise similarities between each pair of elements.

Such n-square procedures (for n elements) are expensive to carry out in

terms of time and memory space. In the present study, a classification

process of order n log n (for n elements) is described, and convergence

proofs are given. Possible applications to information retrieval are

discussed.

1. Introduction

Many methods exist for ordering or classifying the elements of

a file. The elements are usually clustered into groups based on the

similarities of the attributes of the elements. In information retrieval,

the elements are frequently documents, and the attributes are words or

concepts characterizing the documents. Classification of document files may

be divided into two basic categories:

a) an a priori classification already exists and each document

is placed into the cluster whose centroid is most similar to

that document;

V-2

b) no a priori classification is specified and clusters are formed

only on the basis of similarities among documents.

Classification schemes that fall into the first class are very

common and often involve manual methods. For example, new acquisitions

of a library are classified by placing them into the clusters of a standard,

a priori classification. Problems of the second type are usually more

difficult to handle, and automatic or semi-automatic methods are often used.

Methods of this type are widely used in statistical programs, but the number

of elements in the file is limited to several hundred, or at most, a few

thousand items. In information retrieval applications, the number of

elements may approach several hundred thousand or even a million documents,

as in the case of a large library. In the present study, a method is

described which is suitable for classification of very large document

collections.

2
2. The N Problem

Current methods of automatic document classification usually

require the calculation of a similarity matrix. This matrix specifies

the correlation, or similarity, between every pair of documents in the

2
collection. Thus, if the collection contains N documents, N computations

are required for calculation of the similarity matrix.* This immediately

*
Very often, the similarity matrix is symmetric, so the number of
computations is reduced to N^/2.

V-3

poses two serious problems: the storage space necessary to store the

matrix increases as the square of the number of documents, and the

time required to calculate the matrix also increases quadratically.

Fortunately, document-document similarity matrices are normally only

about ten percent dense, and only the non-zero elements need be

stored [1] « However, as N increases, auxiliary storage must eventually

be used, and although this solves the space problem, it also magnifies

the time problem.

To illustrate the magnitude of this problem, suppose that it

takes one hour of computer time to classify a one thousand document

4
collection. Then for N = 10 , the time is approximately one hundred

hours, and for N • 10 , the time needed is about 120 years! The

classification scheme described in this paper is an adaptation of the

one proposed by Doyle, and the time required is of the order of

N log N [2]. For example, assuming the logrithm has base 10, and the

time required for a one thousand document collection is again one hour,

4 6
then for N = 10 the time is 13 hours, and for N = 10 , the time required

is about 83 days.

3. Doyle's Algorithm

2
The N problem is avoided in this classification scheme, because

a similarity matrix is never computed. Assume the document set is

arbitrarily partitioned into m clusters, where S. is the set of documents

in cluster j. Associated with each set S. a corresponding concept vector

C. and frequency vector F, are associated. The concept vector consists

V-4

of all the concepts occurring in the documents of S,, and the frequency

vector specifies the number of documents in S, in which each concept occurs*

Every concept in C. is assigned a rank according to its frequency;

i.e., concepts with the highest frequency have a rank of 1, concepts with

the next highest frequency receive a rank of 2, etc. Given an integer b

(base value), every concept in C. is assigned a rank value equal to the

base value minus the rank of that concept. The vector of rank values is

called the profile P. of the set S.. Fig. 1 illustrates the concept and

frequency vectors, and the corresponding profiles for a sample document

collection.

Starting from a partition of the document set into m clusters, the

profiles are generated as described. Every document d, in the document

space is now scored against each of the m profiles by a scoring function g,

where g(d.,P.) = the sum of the rank values of all the concepts from d.

which occur in C,. Fig. 2 shows the results of scoring the documents in

the sample collection against the profiles from Fig. 1.

Given a cut-off value T, a new partition of the document set into

m+1 clusters is made by the following formula:

S\ = <d.|g(d.,P.)> g(d. ,P,) and g (d. ,P.)> T, for k = 1,. .. ,m > .
j ^ i1* l j - ' i k i D ~ J

Thus, S'. consists of all the documents that score highest against profile

P., provided that the score is at least as great as T. In cases where a

document scores highest against two or more profiles, say P ,...,P ,
JT_ XT

1 n
the following tie-breaking rule is used:

V-5

d l

c l
C2

I5

d2

Cl
C2

C4

C5

d3

Cl

C7

C8

d4

Cl
C2

C3

C5

d5

Cl

C8

d6

C3

d7

C6

C8

a) Documents

k cl Fl pl
d l c l 3 5

d3 c2 1 3

dr cr 1 3
5 5

! c? 1 3

c8 2 4

1 S2 C2 F2 P2

d2 Cl 2 5

d4 c2 2 5

c3 1 4

c4 1 4

c5 2 5

S3 C3 F3 P3

d6 C3 1 M
d7 C6 1 M

C8 X 5

b) Initial Clusters, Profiles, and Frequencies

Construction of Profiles from Document Partition
(base value = 6)

Fig. 1

V-6

Document

d i
d2

d3

d4

d5

d6

^

Profile of Highest

2

2

1

2

1

3

3

Score Score

15

19

12

19

9

5

10

a) Document Scoring

fl ^ S_i k
d3 dl d7 d5

b) Resulting Clusters

One Iteration of Classification Algorithm
(cut-off = 10)

Fig. 2

V-7

i f d. e S . a n d ,
i D

a) j = r , l < k < n , t h e n d. i s a s s i g n e d t o S * ;
K — — 1 r

k
b) j ^ r for ! ^ k ^ n / then d. is arbitrarily assigned to S1 .

Those documents which do not fall into any of the m clusters S! are called

loose documents, and they are assigned to a special class L. The process

is now repeated after replacing P. by P'.. The iteration continues

until P, satisfies the termination condition, which states that P! = P. j 3 3

for j = l,...,m; i.e., the profiles are unchanged after two consecutive

iterations.

4. Satisfaction of Termination Condition

A) Non-convergence of Doyle'o Algorithm

Doyle's algorithm as described is not guaranteed to terminate.

To illustrate this, consider the following document collection:

d l

1
2
3
4
5
11

d2

1
5
6
11
12

d3

3
7
8
9
12

d4

3
4
7
8

d5

1
5
6
7

d6

2
3
4
9

d7

2
3
4
7
8
9

d8

2
4
5
6
7
8

d9

1
2
4
5
6
7

10 10 10

Let S = /d - d \ , S = /d - d \ , and let P = profile

of S , and P = profile of S . The two profiles are as follows (base

value = 7):

Concept Frequency Profile Concept Frequency

1
2
3
4
5
6
7
8
9
10
11
12
13

3
2
4
3
3
2
3
2
2
0
2
2
0

5
4
6
5
5
4
5
4
4

4
4

1
2
3
4
5
6
7
8
9
10
11
12
13

1
3
1
3
2
2
3
2
1
3
0
0
1

Now assume that T = 0, and partition the document set

Si = |di|g(di,P1)>.g(d.,P2)| and s} - |d.| gCd^P^l gCd.^)

The results are summarized in the following table:

g (d i ' p l)

29

22

23

20

19

19

28

27

28

g(d.,P_) :L 2
25

14

19

21

20

20

37

39

42

Therefore, S' = and { = < d„ - d.

V-9

According to Doyle's algorithm, P is replaced by P' and p by P'. The

profiles are:

new

Goncept

1
2
3
4
5
6
7
8
9
10
11
12
13

d 1 - d 3

Frequency

2
1
2
1
2
1
1
1
1
0
2
2
0

Profile

6
5
6
5
6
5
5
5
5
-
6
6
-

Concept

1
2
3
4
5
6
7
8
9

10
11
12
13

d4 ~ d 9

Frequency

2
4
3
5
3
3
5
3
2
3
0
0
1

Profile

3
5
4
6
4
4
6
4
3
4
-
-
2

Now the document set is again partitioned and the results are:

g(di|Pl) g(d.,P2)

d 34 22

d2 29 11

d3 2 7 1 7

d4 21 20

d5 22 17

d, 21 18

d? 31 32

dQ 31 33
O

dg 32 34

,.{, Therefore, S" = (dn - d^) and S' = <d - d / . These are the

original sets, so that the algorithm will never terminate for this example.

V-10

B) Termination of Modified Algorithm

Although Doyle's algorithm is not guaranteed to terminate, Needham

proved that similar types of iterative methods are guaranteed to terminate

in a finite number of steps [3]. A small change in Doyle's method produces

an algorithm that is guaranteed to terminate. The modification occurs

after the calculation of the S!. Instead of automatically replacing the

old P. by P'., the following condition must also be satisfied:

ieS', ieS'.

If the above condition is not satisfied, P, is left unchanged.

Before proving that this new algorithm is guaranteed to terminate,

it is desirable first to make the algorithm more general by allowing overlap

between the clusters. The following theorem proves the termination of a

method which allows overlapping clusters.

Theorem: Let the subscript n designate the nth iteration. Let D repre

sent the document space and let P^ . ,. . . , P_ represent m
^ 0,1 0,m ^

initial profiles corresponding to an arbitrary distribution

S^ . , . . . , S^ of documents in D.
0,1 0,m

Given a cut-off value T, the nth iteration is defined as follows:

1. Generate the sets S _,..., S and L by
n,1 n,m n

S ,-jd, |g(d. ,P . .) > T)

L = / loose documents ̂

V-ll

2. Let P .

f ' , i i f E9(di'p-j' *E
j ieS . ies

g(d.,p . .)
i n-l,]

V

P _ . otherwise
n-l, 3

This algorithm is guaranteed to terminate in a finite number of iterations,

where termination occurs when P . m P n . for all j.
n,D n-l,j

Proof: Extend the document space D to a new document space D# containing

m distinguishable copies of every document in D. Also, add the

condition that S , can never contain more than one copy of each n/D
document. Clearly, any S . defined on D# in this manner can also

n,j

be represented on D as defined in the theorem. Conversely, any

S . defined on D can also be represented on D# as defined above.

Thus, it suffices to prove the theorem on D# under the added

condition.

Define a tunction F , which will be shown to be monotone increasing
n

in n, by the following:

F =) F .+ T-Z , where
n ^/^ n,j n

) g(d.,p n F . =) g(d. ,P . .) and
n,j / i n-lo

ieS
n,D

Z = number of documents in L .
n n

After step 2 of the iteration, F is replaced by F', where

F' . =
n,D E gCd.,p ,;

i n,D

ie.S
n,D

V-12

If for any j, P . ± P - ., then F1 . > F .* and therefore Ff > F . y J' n,: T n-1,] n,D n,j n n

If termination occurs; i.e., P . =» P . . for all j; then F1 = F .
n,j n-1,3 n n

For the n+lth iteration,

rn

n+1 E F , , + T-
n+l,D

Z „, where
n+1'

j-l

n+l,j E g(d.,P .) .
i n,:

n+1, j

Consider the relation between the contribution of d, to F' and F ,,
1 n n+1

and note that each d. (where copies of a document are distinct) contributes

once and only once to both F1 and F - This relation is summarized in the 2 n n+1

following table:

document d.
1

relation between contribution
of d, to F , and F'

i n+1 n

a) was assigned to S . and now
n,D

1. to S _ . (d. did not
n+1, j l

change clusters)

to S _ . , k ± j
n+l,k

change clusters)

2' to Sn+l,k' k ' j (di did

to L
n+1

> (g(d. ,P .) < T; other-
i n, j

wise d, would be in S - ..
l n+1,j

Also, g(d. ,P _) > T)
i n, K,

> (g(d. ,P .) < T. Now
i n, j

d. contributes 1-T = T to

b) was assigned to L and now

1. to L
n+1

n+1, j

= (contributes T to both).

>_ (gave T for F' , and now

gives g(d., P .) > T for
I n,u -

F ,) n+1

This statement is not necessarily true in Doyle's algorithm.

V-13

Therefore, F > F'. If P . = P . . for all j, then from
n+1 — n n,j n-1,] J

a) 1 and b)1 F _ = F1. Therefore, if the termination condition is
n+1 n

satisfied, then F , . = F . On the other hand, if F , = F , then F = F1,
n+1 n n+1 n n n

which occurs only when termination occurs.

Thus, F is a monotone increasing function, where F , = F if the
n ^ n+1 n

termination condition is satisfied. Given m and Tf F depends only on the

distribution of the documents of D# in S_,...,S * Since there are only
1 m

a finite number of distributions, there are only a finite number of values

for F. Therefore, at some iteration n, F _ must equal F .
n+1 ^ n

5. Implementation

The algorithm described in the preceding section is not implemented.

Instead, experiments are performed using an algorithm which differs from

the preceding one in four important respects:

1. the extra condition necessary for convergence that is mentioned

in section 4B is not implemented; i.e., P. is always replaced

by P';

2. termination occurs when S* , = S* , for all j, where S* , is
n,j n+1,j n,j

the subset of S . consisting of all those documents that score
n,D

highest against profile P .;

3. let H , = max. (g(d.,P .)), and define S . as
n , i * l n , j n , j

l£j<m .
S . = / d I g l d . / P n / .) > T . > , where

n , j \ i ' y v i ' n - l ' D - n - l , i (

I H , - a- (H . - T) , i f H . . > T,

' J T o t h e r w i s e

where 0<a<l

V-14

4) if any S . contains fewer than 2 documents, then S , is elimi-

nated, thereby reducing the number of clusters by one.

The advantages of this method over the one defined in the theorem

are discussed in the present section? the disadvantage is, of course, that

termination is not guaranteed. To show this, note that conditions 1 and 2

above are equivalent to the termination condition in Doyle's algorithm,

since in Doyle's method P . always corresponds to the new partition S .,

and S . = S* . (no overlap is allowed). Also, if a = 0 in condition 3,

then T , . = H , .. Thus, only those documents d. that score highest
n-l,i n-l,i 2 l

against P _ ., where H _ . > T, are assigned to S ,. Therefore, with
n-i,] n-l,i — n,j

a = 0 this method is equivalent to Doyle's algorithm.

The first two modifications are implemented to improve the efficiency

of the program. Although convergence is no longer guaranteed, all the

experiments tried so far have in fact always terminated. Programs without

these two modifications run about twice as slow. Also, in cases where the

overlap is not too high (£>* . ~ S .) , the new termination condition is
n,j n,D

usually equivalent to the one used in the theorem. That is, when S* . =

S* _, . , then very often S . = S n .. n+l,D J n,j n+1,3

The third modification does not improve efficiency, but it allows a

more flexible, and intuitively, a more desirable method for creating overlap.

The algorithm described in the theorem assigns a document d. to a cluster

S . iff g(d,, P _ .) > T. This has two major disadvantages: n'J i n-l,j —

V-15

1) the overlap cannot be increased independently of the

number of loose documents; increasing the overlap by

lowering T in general decreases the percentage of loose

documents;

2) the difference between d.'s highest score and d.'s second
1 i

highest score is ignored; e.g., if T = 50, g(d,,P) = 200,

and g(d.,P) = 50, then d.is assigned to both S„ and S^.
^ l 2 i * 1 2

The first problem decreases the flexibility of the algorithm,

since the amount of overlap and percentage of loose documents cannot be

varied independently. The example in the second part illustrates the

other problem. It seems desirable that a document should be assignable

to two or more clusters when it scores equally (or almost equally) as

high against all of them. The previous method does not take this fact

into account. In the new algorithm, documents are assigned to more than

one cluster on the basis of how close the score is to the highest score,

relative to the cut-off value T. The parameter a determines how close to

the highest score the other scores must be. When a = 0, no overlap occurs,

while a = 1 generates the maximum amount of overlap.*

The last modification increases the efficiency of the program, and

also avoids forming clusters around documents which should be classified

as loose. When S . contains only one document, and that document is

contained in no other clusters, then it has the same status as a loose

document.

Ik

With a = 1/ the formula reduces to T , = T; hence, it is the same
definition of S .as in the theorem.

V-16

6. Experimental Results

The algorithm described in section 5 is used to cluster the 82

document ADI collection and the 200 document Cranfield word stem collection.

The results of the classification indicate three important problems:

a) the scoring function g tends to give higher scores to

documents containing a larger number of concepts; thus,

many of the documents containing very few concepts are

classified as loose;

b) the documents do not move freely enough from one profile

to another; i.e., the final clusters are quite similar

to the initial ones;

c) the initial clusters cannot be chosen arbitrarily.

A) The Scoring Function

The first problem is due to the fact that g scores a document d,

against a profile P, by simply adding up the rank values of all the

concepts in d. which appear in P.. If d. contains a larger number of

concepts than d , the chances are greater for d, to receive a higher

score. Fig. 3 is a plot of the score of the document against its final

profile vs. the number of concepts in the document for one of the ADI runs.

Although there are a few exceptions, the graph indicates that the documents

with a larger number of concepts generally receive higher scores. In

fact, the average number of concepts in a loose document is 11, while the

average number of concepts per document for the entire collection is 20.

The solution to this problem is to weight the score inversely by

the number of concepts in the document. The obvious answer is to divide

V-17

CO

0>
w

C
Z3

0)
o o

8

7

6

5

4

3

2i
•
l

r •

k. _ /Cluster 1
Cluster 3 \ /

* ! ^ c , U 8 t e r 4

y ^ ^ — C l u s t e r 2

• /J - #

1 1 I 1 l
0 10 20 30 40 50

No. of concepts/document

Illustration of Initial Scoring Function

Fig.

V-18

the score by the number of concepts, but this overcompensates and gives

many of the smaller documents the highest scores. Dividing by the square

root of the number of concepts in the document does not solve the original

problem; i.e., larger documents give higher scores. Satisfactory results

7/8
are obtained when the score is divided by (# of concepts per document) .

Fig. 4 represents the same ADI sample as Fig. 3, except that the new

scoring function h = g (# concepts per document).' is used. Unlike the

function g, h seems to be independent of the number of concepts in the

document.

B) Movement of Documents

The second problem is clearly indicated by examination of the

results of the classification. Table 1 shows the initial and final

clusters for the ADI collection. The problem occurs because the documents

tend to "stick" to the clusters that they are already in. This problem

is solved by a method similar to that used by Doyle.

During the first few iterations, documents should be allowed to

move freely from cluster to cluster, until a nucleus is formed within

each cluster. The nucleus consists of those documents that are most

highly correlated to one another. Once the nucleus is formed, these

documents will probably not move from their present clusters. Clusters

can be forced to contain only very highly correlated documents by raising

the cut-off value T, assuming that documents with the highest scores are

most similar to the other documents in the cluster. This assumption is

investigated later. However, raising the cut-off value results in a

larger number of loose documents. This is resolved by repeating the

V-19

30

25

20
o>
o 15
o
<o

10

Cluster 3

Cluster 4
Cluster I

• • • . • * ! • • •
'Cluster 2

J . x X X
0 10 20 30 40 50

No. of concepts/document

Illustration of Modified Scoring Function

Fig. 4

20

•f> • • •"•• •' " "• •

Cluster

1

2

3

4

5

6

7

Loose

Initial

1

13

25

37

49

61

72

Documents

- 12

- 24

- 36

- 48

- 60

- 71

- 82

—

Final Documents

1 - 11, 13, 21, 30, 33, 34,
40, 43, 51, 68

3, 10, 13 - 24, 26, 33, 34,
53, 69, 79

9, 11, 13, 20, 22, 23, 25 -
28, 30 - 34, 36, 47, 51,
55, 65, 75

4, 7 - 9, 14, 20, 30, 37 -
48, 51, 69

1, 5, 7, 20, 30, 32, 45, 47,
51 - 53, 55 - 59, 79, 80

2, 9, 27, 30, 47, 51, 61,
62, 64 - 71

10, 40, 51, 72 - 75, 7 7 - 8 1

12, 29, 35, 49, 50, 54, 60,
63, 76, 82

Final Results of ADI Classification

Table 1

V-21

classification for a lower value of T, but using the clusters from

the first classification as the initial clusters.

This creates the problem of how to determine the initial value

of T, and how much to decrement it when the classification is repeated

using as initial clusters the results of the first classification. The

initial value of T should be high enough so that only those documents

which score very highly against profile P. are assigned to S,. One

method of achieving this is to pick T so that the clusters after the first

iteration average q documents, where q is small compared to the total

number of documents* In the experiments run so far, q is arbitrarily

set at 4. After termination of the first classification, a nucleus is

formed within each cluster, T is now chosen so that a certain percentage

of the loose documents are assigned to clusters after the first iteration

of the second classification. Assuming it is desirable to have approxi

mately x percent of the documents loose after the final clusters are

formed, two approaches are possible:

a) T is lowered far enough so that only x percent of the

documents remain loose after the first iteration; thus,

after termination of the second classification, the

clusters represent the final results;

b) T is lowered just enough to allow a certain percentage of

the loose documents to be assigned to clusters after the

first iteration; thus, the classification is repeated until

approximately x percent of the documents remain loose.

Experiments performed using both methods indicate that the second

approach allows greater control of the loose documents, with only slightly

V-22

greater execution times. After the first classification/ a large proportion

of the documents still remain loose. Therefore, if x is not too high, method

a decreases T by a large amount. This injects many new documents into the

clusters, and several iterations are necessary before termination occurs.

Also, T is chosen so that the percentage of loose documents is x at the

end of the first iteration, but it is impossible to know beforehand the

percentage of loose documents after the final iteration. In general, the

more iterations, the more the final percent varies from the percent after

the first iteration. In method b, T is lowered just enough to allow a

fairly small percentage (20% in the present experiments) of the loose

documents to be assigned to clusters. This normally results in only a few

iterations before termination occurs; therefore, the final percent of

loose documents does not vary much from the percent loose after the first

iteration.

The ADI collection is reclassified using the procedures described

above, where it is desired that about 25% of the documents remain loose.

Once again seven initial clusters are used, and the initial value of T is

calculated to be 28.2 so that the clusters after the first iteration average

four documents. However, in this case cluster 3 is assigned ten documents,

while clusters 1,5, and 6 contain only one document. Thus, these three

clusters are eliminated, and the documents within them become loose. After

termination occurs, the final clusters are used as initial clusters for the

next classification, where T is set to 19.1. The process is repeated again

for T = 16.8, and after termination 17% of the documents remain loose.

Table 2 shows the final results of this classification. Compared with Table 1,

many more of the documents have moved from their initial clusters.

V-23

1 —

Cluster

1

2

3

4

5

6

7

Loose

Initial

1

13

25

37

49

61

72

Documents

- 12

- 24

- 36

- 48

- 60

- 71

- 82

—

Final Documents

3, 5, 9, 10, 14 - 17, 20 -
28, 30, 34, 37, 43, 45, 48,
53, 57 - 59, 64, 68, 69, 72,
79, 80

1, 2, 5, 6, 8, 11, 13, 20,
21, 24, 27, 28, 30, 36, 39,
41, 43, 47, 51, 53, 55, 56,
58, 61, 62, 65 - 68, 70, 71
79, 80

7, 31, 42, 44, 46

4, 9, 19, 32, 40, 51, 73 -
75, 78, 81

12, 18, 29, 35, 38, 49, 50,
52, 54, 60, 63, 76, 77, 82

Final Results of New ADI Classification

Table 2

V-24

C) Initial Clusters

In the present study, the initial clusters are determined by assigning

the first p (or possibly p+1) documents to cluster 1, the next p (p+1) to

cluster 2,..., and the final p to cluster m, where p = (total number of

documents) / m. Since the nucleus of each cluster depends quite strongly

on the initial clusters, it is not surprising that different initial

clusters lead to different results. If the initial clusters are chosen

at random, it is unlikely that the documents within each cluster are

very similar. Thus, the nucleus of each cluster might not be very tight.

This problem is solved by insuring that the initial clusters

contain at least a few documents that are highly correlated. In the ADI

and Cranfield collections, the order of the documents is such that many

adjacent documents are quite similar; therefore, most of the initial

clusters contain a few highly correlated documents. In collections where

the order of the documents is random, a simple, fast clustering scheme

can be used to determine the initial clusters. This type of an algorithm

need only perform document-document correlations within a fraction of the

document space, and therefore, should not take up much time.

D) Evaluation of Results

The assumption was made earlier that those documents of a cluster

S. that score highest against the corresponding profile P, are most

similar to the other docuntents in the cluster. The phrase "most similar"

is used to mean "correlate most highly", where a standard correlation

function is used. Table 3 compares the score of each document to the

average correlation (unweighted cosine function) of each document with

V-25

Document

25
5

64
23
27
34
15
3 7

48
58
28
53
20
68
80
57
59
14
16
79
43
24
69
26
17
72
21
3
9

30
22
45
10

Document

31
46
44
7

42

Cluster

Score

19.1
19.6
20.1
20.2
20.3
20.6
20.6
20.7
20.8
20.9
21.0
21.0
21.0
21.1
21.2
21.2
21.3
21.4
21.5
21.5
21.6
21.6
21.7
21.7
21.8
21.8
22.0
22.0
22.1
22.2
22.3
22.4
22.4

Cluster

Score

31.0
31.2
31.3
31.8
33.2

1

Avg. Corr.

.08

.12

.10

.13

.10

.11

.11

.14

.12

.12

.12

.14

.14

.12

.14

.13

.15

.13

.13

.15

.16

.15

.14

.16

.15

.17

.17

.17

.17

.17

.17

.18

.17

3

Avg. Corr.

.21

.05

.14

.24

.28

Document

8
| 5

20
68
2
70

1 39
28
58
36
61

| 56
1 66

67
80
43
33
21
11
65
27
71
41
79
24
13
51
53
6

62
55
1
30

Document

32
51
74
4
75
9
19
73
78
40
81

Cluster

Score

18.7
18.8
18.8
18.9
19.2
19.2
19.2
19.3
19.4
19.5
19.6
19.6
19.7
19.9
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.1
20.2
20.4
20.4
20.5
20.6
20.7
21,0
21.4
21.5
21.7
21.8

Cluster

Score

24.5
25.0
26.0
26.3
26.4
26.5
26.9
27.0
27.1
27.4
27.6

2

Avg. Corr.

.09

.12

.12

.10

.12

.13

.14

.11

.12

.14

.11

.14

.12

.12

.14

.14

.15

.15

.14

.15

.13

.14

.15

.16

.15

.15

.12

.16

.18

.18

.17

.20

.18

4

Avg. Corr.

.10

.15

.16

.18

.16

.19

.17

.19

.18

.24

.21

Score vs. Average Correlation for ADI Classification

Table 3

V-26

every other document in the cluster. The documents are arranged in

ascending order by scores, and hopefully, the correlations will also appear

in ascending order. As the table indicates, there is a strong tendency

for the higher scores to correspond to the higher correlations. Table 4

illustrates the same results for three out of seven final clusters from

the Cranfield collection.

So far nothing has been said about how to choose the base value

(section 3) that is used to compute rank values. This integer has an

important effect on the type of clusters produced. Recall that the rank

value of a concept equals the base value b, minus its rank. Suppose a

cluster S. contains four documents d - d , and a total of twenty

different concepts. The lowest possible rank value for any concept =

b - 4, since 4 is the lowest possible rank. If b = 20, then the lowest

rank value is 16, while if b = 5, the lowest rank value is 1. Consider

a document d.. which is the same as d except for one concept, and

assume this concept does not occur in P.. With b = 20, g(d.,P.) is

between 16 and 20 points less than g(d ,P.); with b = 5, g(d.,P.) is

only 1 - 5 points less.

Since large clusters have profiles containing many concepts, the

chances of a random document d. having concepts in the profile of a

large cluster are greater than the chances of d, having concepts in the

profile of a small cluster. Therefore, if b is high, d. will score much

lower against the profile of the small cluster, and large clusters will

tend to capture all the remaining loose documents at the expense of the

smaller clusters. Experimental results support this hypothesis, i.e., a

large base value produces a few clusters with many documents, and many

clusters with only a few documents.

V

Document

26
6
7

117
2

121
13
19
60
23
18
44

183
116
128
61
9

197
16

198
3

25
28

115
58

181
56

160

Cluster

Score

22.0
22.3
22.4
23.0
23.1
23.2
23.3
23.4
23.7
23.8
23.8
24.1
24.2
24.3
24.5
24.6
24.6
24.7
24.7
24.7
24.8
24.9
25.0
25.1
25,6
25.6
25.9
26.6

1

Avg. Corr.

.12

.13

.13

.14

.14

.15

.15

.16

.15

.17

.17

.18

.17

.18

.18

.18

.18

.19

.20

.17

.18

.20

.21

.21

.21

.20

.21

.23

Document

179
154
79
133
134
77
132
78
76
74
75

Document

3b
97
15
1

34
145

i 171

172
30
4

140
72

138
143
141
27
36
157
59
156
200
32

137
29
148
57
128
44
31

139
56

160
58

Cluster 3

Cluster

Score

19.9
20.2
20.3
20.3
20.4
20.4
20.8
20.9
20.9
21.1
21.1
21.2
21.3
21.3
21.3
21.6
21.7
21.7
21.8
21.8
21.9
22.0
22.4
22.5
22.5
22.8
22.8
23.1
23.2
23.9
23.4
24.3
25.3

Score Avg. Corr.

31.4 .19
32.5 .24
32.8 .27
32.9 .29
33.4 .28
33.7 .27
33.8 .32
34.1 .30
34.3 .34
34.4 .34
34.5 .36

2

Avg. Corr.

.12

.13

.11

.13

.13

.14

.12

.13

.14

.15

.15

.15

.15

.15

.14

.13

.13

.17

.16

.16

.16

.18

.15

.19

.17

.18

.15

.19

.19

.19

.18

.18

.21

Score vs.. Average Correlation for Cranfield Classification

Table 4

V-28

If, on the other hand, b is set so that the lowest rank value in an

average cluster is 1, then there is a tendency for small clusters to get

larger and large clusters to get smaller. In smaller than average clusters,

all the rank, values are high, since there are only a few different ranks.

In larger than average clusters, the rank value as defined might become zero

or even less than zero. In these cases, it is redefined to be 1, but then

it is possible for many concepts to have a rank value of 1. Thus, a document

often scores higher against the profiles of smaller clusters.

The results of the Cranfield classification clearly indicate the

ability of a. document to score higher against profiles of smaller clusters.

During the classification, nine clusters are generated, and cluster 9

starts to grow much larger than average (average = 22 documents). It

keeps growing until it contains 27 documents, and then it starts to

oscillate. The following numbers indicate the number of documents in cluster

9 on successive iterations: 27, 21, 34, 17, 56, 01 Thus, cluster 9 is

eliminated. The same thing happens to cluster 8 on the next few iterations.

Although this tends to keep the size of the clusters somewhat uniform, it

is not desirable to throw away a cluster which might contain many highly

correlated documents. One solution which might be implemented is to split

up large clusters into several smaller ones; i.e., classify the documents

within a single cluster. If the number of documents in the cluster is not

2
too large, it might be practicable to use an N algorithm to do this.

7. Conclusion

The classification algorithm that has been described in sections 5

and 6 requires the following parameters as input:

V-29

a) maximum number of clusters desired;

b). approximate percentage of loose documents desired;

c) decision on whether or not loose documents should be

"blended" into the nearest cluster at the end of the

classification;

d) amount of overlap desired.

The first parameter specifies the number of initial clusters

that are formed. If no clusters are eliminated during the evaluation,

then the maximum number are actually generated. The experiments run so

far indicate that the number of clusters produced is usually only about

60% of the maximum.

The next two parameters determine the "tightness" of the final

clusters; the higher the percentage of loose documents/ the tighter the

clusters. If no loose documents are desired, parameter b can be set to 0,

but very low percentages increase the running time of the program. Almost

identical results are obtained in less time by specifying about 15% loose,

and then asking for all loose documents to be assigned to the cluster to

which they score highest.

The last parameter determines the amount of overlap. This number

corresponds to a in the formula

H _ . - a • (H . , - T) , if H _ . > T
T n-l,i n-l,i n-l,i
n-l,i

T otherwise

which was mentioned in section 5. When a = 0, no overlap is produced, and

with a = 1, the maximum amount of overlap is produced. The actual percentage

of overlap for a given value of a depends on the collection, but results in

dicate that 10% overlap for a = .4, and about 20% for a = .6.

V-30

Although the algorithm is not guaranteed to terminate, convergence

has always been obtained in practice. In order to prevent the program from

looping in cases of non-convergence, the algorithm can be modified to

permit a maximum of n iterations, whether or not convergence is obtained.

The results indicate that clusters change very little after about four or

five iterations, so that this modification would not make much difference

in the final clusters*

The true evaluation of the final clusters can only be made by

actually performing two-level searches on the clustered document space.

However, the algorithm is sufficiently general to allow for the evaluation

of many different types of clusters.

V-31

References

[1] K. S. Jones, D. Jackson, Current Approaches to Classification
and Clump - Finding at the Cambridge Language Research Unit,
The Computer Journal, Vol. 10, May 1967.

[2] L. B. Doyle, Breaking the Cost Barrier in Automatic Classi
fication, SDC paper SP-2516, July 1966.

[3] R. M. Needham, The Termination of Certain Iterative Processes,
The Rand Corporation memorandum RM-5188-PR, November 1966,

