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V. A Fast Algorithm for Automatic Classification 

R. T. Dattola 

Abstract 

Several different methods exist for classifying the elements of a 

file into groups based on similarities in the attributes of the elements. 

In information retrieval, the elements are frequently documents, and the 

attributes are words or concepts characterizing the documents. 

Most known procedures are based on the construction of similarity 

matrices specifying the pairwise similarities between each pair of elements. 

Such n-square procedures (for n elements) are expensive to carry out in 

terms of time and memory space. In the present study, a classification 

process of order n log n (for n elements) is described, and convergence 

proofs are given. Possible applications to information retrieval are 

discussed. 

1. Introduction 

Many methods exist for ordering or classifying the elements of 

a file. The elements are usually clustered into groups based on the 

similarities of the attributes of the elements. In information retrieval, 

the elements are frequently documents, and the attributes are words or 

concepts characterizing the documents. Classification of document files may 

be divided into two basic categories: 

a) an a priori classification already exists and each document 

is placed into the cluster whose centroid is most similar to 

that document; 
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b) no a priori classification is specified and clusters are formed 

only on the basis of similarities among documents. 

Classification schemes that fall into the first class are very 

common and often involve manual methods. For example, new acquisitions 

of a library are classified by placing them into the clusters of a standard, 

a priori classification. Problems of the second type are usually more 

difficult to handle, and automatic or semi-automatic methods are often used. 

Methods of this type are widely used in statistical programs, but the number 

of elements in the file is limited to several hundred, or at most, a few 

thousand items. In information retrieval applications, the number of 

elements may approach several hundred thousand or even a million documents, 

as in the case of a large library. In the present study, a method is 

described which is suitable for classification of very large document 

collections. 

2 
2. The N Problem 

Current methods of automatic document classification usually 

require the calculation of a similarity matrix. This matrix specifies 

the correlation, or similarity, between every pair of documents in the 

2 
collection. Thus, if the collection contains N documents, N computations 

are required for calculation of the similarity matrix.* This immediately 

* 
Very often, the similarity matrix is symmetric, so the number of 
computations is reduced to N^/2. 
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poses two serious problems: the storage space necessary to store the 

matrix increases as the square of the number of documents, and the 

time required to calculate the matrix also increases quadratically. 

Fortunately, document-document similarity matrices are normally only 

about ten percent dense, and only the non-zero elements need be 

stored [1] « However, as N increases, auxiliary storage must eventually 

be used, and although this solves the space problem, it also magnifies 

the time problem. 

To illustrate the magnitude of this problem, suppose that it 

takes one hour of computer time to classify a one thousand document 

4 
collection. Then for N = 10 , the time is approximately one hundred 

hours, and for N • 10 , the time needed is about 120 years! The 

classification scheme described in this paper is an adaptation of the 

one proposed by Doyle, and the time required is of the order of 

N log N [2]. For example, assuming the logrithm has base 10, and the 

time required for a one thousand document collection is again one hour, 

4 6 
then for N = 10 the time is 13 hours, and for N = 10 , the time required 

is about 83 days. 

3. Doyle's Algorithm 

2 
The N problem is avoided in this classification scheme, because 

a similarity matrix is never computed. Assume the document set is 

arbitrarily partitioned into m clusters, where S. is the set of documents 

in cluster j. Associated with each set S. a corresponding concept vector 

C. and frequency vector F, are associated. The concept vector consists 
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of all the concepts occurring in the documents of S,, and the frequency 

vector specifies the number of documents in S, in which each concept occurs* 

Every concept in C. is assigned a rank according to its frequency; 

i.e., concepts with the highest frequency have a rank of 1, concepts with 

the next highest frequency receive a rank of 2, etc. Given an integer b 

(base value), every concept in C. is assigned a rank value equal to the 

base value minus the rank of that concept. The vector of rank values is 

called the profile P. of the set S.. Fig. 1 illustrates the concept and 

frequency vectors, and the corresponding profiles for a sample document 

collection. 

Starting from a partition of the document set into m clusters, the 

profiles are generated as described. Every document d, in the document 

space is now scored against each of the m profiles by a scoring function g, 

where g(d.,P.) = the sum of the rank values of all the concepts from d. 

which occur in C,. Fig. 2 shows the results of scoring the documents in 

the sample collection against the profiles from Fig. 1. 

Given a cut-off value T, a new partition of the document set into 

m+1 clusters is made by the following formula: 

S\ = <d.|g(d.,P.)> g(d. ,P, ) and g (d. ,P.)> T, for k = 1,. .. ,m > . 
j ^ i1* l j - ' i k i D ~ J 

Thus, S'. consists of all the documents that score highest against profile 

P., provided that the score is at least as great as T. In cases where a 

document scores highest against two or more profiles, say P ,...,P , 
JT_ XT 

1 n 
the following tie-breaking rule is used: 
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i f d. e S . a n d , 
i D 

a) j = r , l < k < n , t h e n d. i s a s s i g n e d t o S * ; 
K — — 1 r 

k 
b) j ^ r for ! ^ k ^ n / then d. is arbitrarily assigned to S1 . 

Those documents which do not fall into any of the m clusters S! are called 

loose documents, and they are assigned to a special class L. The process 

is now repeated after replacing P. by P'.. The iteration continues 

until P, satisfies the termination condition, which states that P! = P. j 3 3 

for j = l,...,m; i.e., the profiles are unchanged after two consecutive 

iterations. 

4. Satisfaction of Termination Condition 

A) Non-convergence of Doyle'o Algorithm 

Doyle's algorithm as described is not guaranteed to terminate. 

To illustrate this, consider the following document collection: 

d l 

1 
2 
3 
4 
5 
11 

d2 

1 
5 
6 
11 
12 

d3 

3 
7 
8 
9 
12 

d4 

3 
4 
7 
8 

d5 

1 
5 
6 
7 

d6 

2 
3 
4 
9 

d7 

2 
3 
4 
7 
8 
9 

d8 

2 
4 
5 
6 
7 
8 

d9 

1 
2 
4 
5 
6 
7 

10 10 10 

Let S = /d - d \ , S = /d - d \ , and let P = profile 

of S , and P = profile of S . The two profiles are as follows (base 

value = 7): 



Concept Frequency Profile Concept Frequency 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3 
2 
4 
3 
3 
2 
3 
2 
2 
0 
2 
2 
0 

5 
4 
6 
5 
5 
4 
5 
4 
4 

4 
4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1 
3 
1 
3 
2 
2 
3 
2 
1 
3 
0 
0 
1 

Now assume that T = 0, and partition the document set 

Si = |di|g(di,P1)>.g(d.,P2)| and s} - |d.| gCd^P^l gCd.^) 

The results are summarized in the following table: 

g ( d i ' p l ) 

29 

22 

23 

20 

19 

19 

28 

27 

28 

g( d.,P_) :L 2 
25 

14 

19 

21 

20 

20 

37 

39 

42 

Therefore, S' = and { = < d„ - d. 
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According to Doyle's algorithm, P is replaced by P' and p by P'. The 

profiles are: 

new 

Goncept 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

d 1 - d 3 

Frequency 

2 
1 
2 
1 
2 
1 
1 
1 
1 
0 
2 
2 
0 

Profile 

6 
5 
6 
5 
6 
5 
5 
5 
5 
-
6 
6 
-

Concept 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

d4 ~ d 9 

Frequency 

2 
4 
3 
5 
3 
3 
5 
3 
2 
3 
0 
0 
1 

Profile 

3 
5 
4 
6 
4 
4 
6 
4 
3 
4 
-
-
2 

Now the document set is again partitioned and the results are: 

g(di|Pl) g(d.,P2) 

d 34 22 

d2 29 11 

d3 2 7 1 7 

d4 21 20 

d5 22 17 

d, 21 18 

d? 31 32 

dQ 31 33 
O 

dg 32 34 

,.{, Therefore, S" = ( dn - d^ ) and S' = <d - d / . These are the 

original sets, so that the algorithm will never terminate for this example. 
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B) Termination of Modified Algorithm 

Although Doyle's algorithm is not guaranteed to terminate, Needham 

proved that similar types of iterative methods are guaranteed to terminate 

in a finite number of steps [3]. A small change in Doyle's method produces 

an algorithm that is guaranteed to terminate. The modification occurs 

after the calculation of the S!. Instead of automatically replacing the 

old P. by P'., the following condition must also be satisfied: 

ieS', ieS'. 

If the above condition is not satisfied, P, is left unchanged. 

Before proving that this new algorithm is guaranteed to terminate, 

it is desirable first to make the algorithm more general by allowing overlap 

between the clusters. The following theorem proves the termination of a 

method which allows overlapping clusters. 

Theorem: Let the subscript n designate the nth iteration. Let D repre

sent the document space and let P^ . ,. . . , P_ represent m 
^ 0,1 0,m ^ 

initial profiles corresponding to an arbitrary distribution 

S^ . , . . . , S^ of documents in D. 
0,1 0,m 

Given a cut-off value T, the nth iteration is defined as follows: 

1. Generate the sets S _,..., S and L by 
n,1 n,m n 

S ,-jd, |g(d. ,P . .) > T) 

L = / loose documents ̂  
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2. Let P . 

f ' , i i f E9(di'p-j' *E 
j ieS . ies 

g(d.,p . .) 
i n-l,] 

V 

P _ . otherwise 
n-l, 3 

This algorithm is guaranteed to terminate in a finite number of iterations, 

where termination occurs when P . m P n . for all j. 
n,D n-l,j 

Proof: Extend the document space D to a new document space D# containing 

m distinguishable copies of every document in D. Also, add the 

condition that S , can never contain more than one copy of each n/D 
document. Clearly, any S . defined on D# in this manner can also 

n,j 

be represented on D as defined in the theorem. Conversely, any 

S . defined on D can also be represented on D# as defined above. 

Thus, it suffices to prove the theorem on D# under the added 

condition. 

Define a tunction F , which will be shown to be monotone increasing 
n 

in n, by the following: 

F = ) F .+ T-Z , where 
n ^/^ n,j n 

) g(d.,p n F . = ) g(d. ,P . .) and 
n,j / i n-lo 

ieS 
n,D 

Z = number of documents in L . 
n n 

After step 2 of the iteration, F is replaced by F', where 

F' . = 
n,D E gCd.,p ,; 

i n,D 

ie.S 
n,D 
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If for any j, P . ± P - ., then F1 . > F .* and therefore Ff > F . y J' n,: T n-1,] n,D n,j n n 

If termination occurs; i.e., P . =» P . . for all j; then F1 = F . 
n,j n-1,3 n n 

For the n+lth iteration, 

rn 

n+1 E F , , + T-
n+l,D 

Z „, where 
n+1' 

j-l 

n+l,j E g(d.,P . ) . 
i n,: 

n+1, j 

Consider the relation between the contribution of d, to F' and F ,, 
1 n n+1 

and note that each d. (where copies of a document are distinct) contributes 

once and only once to both F1 and F - This relation is summarized in the 2 n n+1 

following table: 

document d. 
1 

relation between contribution 
of d, to F , and F' 

i n+1 n 

a) was assigned to S . and now 
n,D 

1. to S _ . (d. did not 
n+1, j l 

change clusters) 

to S _ . , k ± j 
n+l,k 

change clusters) 

2' to Sn+l,k' k ' j (di did 

to L 
n+1 

> (g(d. ,P .) < T; other-
i n, j 

wise d, would be in S - .. 
l n+1,j 

Also, g(d. ,P _) > T) 
i n, K, 

> (g(d. ,P .) < T. Now 
i n, j 

d. contributes 1-T = T to 

b) was assigned to L and now 

1. to L 
n+1 

n+1, j 

= (contributes T to both). 

>_ (gave T for F' , and now 

gives g(d., P .) > T for 
I n,u -

F ,) n+1 

This statement is not necessarily true in Doyle's algorithm. 
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Therefore, F > F'. If P . = P . . for all j, then from 
n+1 — n n,j n-1,] J 

a) 1 and b)1 F _ = F1. Therefore, if the termination condition is 
n+1 n 

satisfied, then F , . = F . On the other hand, if F , = F , then F = F1, 
n+1 n n+1 n n n 

which occurs only when termination occurs. 

Thus, F is a monotone increasing function, where F , = F if the 
n ^ n+1 n 

termination condition is satisfied. Given m and Tf F depends only on the 

distribution of the documents of D# in S_,...,S * Since there are only 
1 m 

a finite number of distributions, there are only a finite number of values 

for F. Therefore, at some iteration n, F _ must equal F . 
n+1 ^ n 

5. Implementation 

The algorithm described in the preceding section is not implemented. 

Instead, experiments are performed using an algorithm which differs from 

the preceding one in four important respects: 

1. the extra condition necessary for convergence that is mentioned 

in section 4B is not implemented; i.e., P. is always replaced 

by P'; 

2. termination occurs when S* , = S* , for all j, where S* , is 
n,j n+1,j n,j 

the subset of S . consisting of all those documents that score 
n,D 

highest against profile P .; 

3. let H , = max. (g(d.,P .)), and define S . as 
n , i * l n , j n , j 

l£j<m . 
S . = / d I g l d . / P n / . ) > T . > , where 

n , j \ i ' y v i ' n - l ' D - n - l , i ( 

I H , - a- (H . - T) , i f H . . > T, 

' J T o t h e r w i s e 

where 0<a<l 
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4) if any S . contains fewer than 2 documents, then S , is elimi-

nated, thereby reducing the number of clusters by one. 

The advantages of this method over the one defined in the theorem 

are discussed in the present section? the disadvantage is, of course, that 

termination is not guaranteed. To show this, note that conditions 1 and 2 

above are equivalent to the termination condition in Doyle's algorithm, 

since in Doyle's method P . always corresponds to the new partition S ., 

and S . = S* . (no overlap is allowed). Also, if a = 0 in condition 3, 

then T , . = H , .. Thus, only those documents d. that score highest 
n-l,i n-l,i 2 l 

against P _ ., where H _ . > T, are assigned to S ,. Therefore, with 
n-i,] n-l,i — n,j 

a = 0 this method is equivalent to Doyle's algorithm. 

The first two modifications are implemented to improve the efficiency 

of the program. Although convergence is no longer guaranteed, all the 

experiments tried so far have in fact always terminated. Programs without 

these two modifications run about twice as slow. Also, in cases where the 

overlap is not too high (£>* . ~ S . ) , the new termination condition is 
n,j n,D 

usually equivalent to the one used in the theorem. That is, when S* . = 

S* _, . , then very often S . = S n .. n+l,D J n,j n+1,3 

The third modification does not improve efficiency, but it allows a 

more flexible, and intuitively, a more desirable method for creating overlap. 

The algorithm described in the theorem assigns a document d. to a cluster 

S . iff g(d,, P _ .) > T. This has two major disadvantages: n'J i n-l,j — 
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1) the overlap cannot be increased independently of the 

number of loose documents; increasing the overlap by 

lowering T in general decreases the percentage of loose 

documents; 

2) the difference between d.'s highest score and d.'s second 
1 i 

highest score is ignored; e.g., if T = 50, g(d,,P ) = 200, 

and g(d.,P) = 50, then d.is assigned to both S„ and S^. 
^ l 2 i * 1 2 

The first problem decreases the flexibility of the algorithm, 

since the amount of overlap and percentage of loose documents cannot be 

varied independently. The example in the second part illustrates the 

other problem. It seems desirable that a document should be assignable 

to two or more clusters when it scores equally (or almost equally) as 

high against all of them. The previous method does not take this fact 

into account. In the new algorithm, documents are assigned to more than 

one cluster on the basis of how close the score is to the highest score, 

relative to the cut-off value T. The parameter a determines how close to 

the highest score the other scores must be. When a = 0, no overlap occurs, 

while a = 1 generates the maximum amount of overlap.* 

The last modification increases the efficiency of the program, and 

also avoids forming clusters around documents which should be classified 

as loose. When S . contains only one document, and that document is 

contained in no other clusters, then it has the same status as a loose 

document. 

Ik 

With a = 1/ the formula reduces to T , = T; hence, it is the same 
definition of S .as in the theorem. 
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6. Experimental Results 

The algorithm described in section 5 is used to cluster the 82 

document ADI collection and the 200 document Cranfield word stem collection. 

The results of the classification indicate three important problems: 

a) the scoring function g tends to give higher scores to 

documents containing a larger number of concepts; thus, 

many of the documents containing very few concepts are 

classified as loose; 

b) the documents do not move freely enough from one profile 

to another; i.e., the final clusters are quite similar 

to the initial ones; 

c) the initial clusters cannot be chosen arbitrarily. 

A) The Scoring Function 

The first problem is due to the fact that g scores a document d, 

against a profile P, by simply adding up the rank values of all the 

concepts in d. which appear in P.. If d. contains a larger number of 

concepts than d , the chances are greater for d, to receive a higher 

score. Fig. 3 is a plot of the score of the document against its final 

profile vs. the number of concepts in the document for one of the ADI runs. 

Although there are a few exceptions, the graph indicates that the documents 

with a larger number of concepts generally receive higher scores. In 

fact, the average number of concepts in a loose document is 11, while the 

average number of concepts per document for the entire collection is 20. 

The solution to this problem is to weight the score inversely by 

the number of concepts in the document. The obvious answer is to divide 
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the score by the number of concepts, but this overcompensates and gives 

many of the smaller documents the highest scores. Dividing by the square 

root of the number of concepts in the document does not solve the original 

problem; i.e., larger documents give higher scores. Satisfactory results 

7/8 
are obtained when the score is divided by (# of concepts per document) . 

Fig. 4 represents the same ADI sample as Fig. 3, except that the new 

scoring function h = g (# concepts per document).' is used. Unlike the 

function g, h seems to be independent of the number of concepts in the 

document. 

B) Movement of Documents 

The second problem is clearly indicated by examination of the 

results of the classification. Table 1 shows the initial and final 

clusters for the ADI collection. The problem occurs because the documents 

tend to "stick" to the clusters that they are already in. This problem 

is solved by a method similar to that used by Doyle. 

During the first few iterations, documents should be allowed to 

move freely from cluster to cluster, until a nucleus is formed within 

each cluster. The nucleus consists of those documents that are most 

highly correlated to one another. Once the nucleus is formed, these 

documents will probably not move from their present clusters. Clusters 

can be forced to contain only very highly correlated documents by raising 

the cut-off value T, assuming that documents with the highest scores are 

most similar to the other documents in the cluster. This assumption is 

investigated later. However, raising the cut-off value results in a 

larger number of loose documents. This is resolved by repeating the 
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Cluster 

1 

2 

3 

4 

5 

6 

7 

Loose 

Initial 

1 

13 

25 

37 

49 

61 

72 

Documents 

- 12 

- 24 

- 36 

- 48 

- 60 

- 71 

- 82 

— 

Final Documents 

1 - 11, 13, 21, 30, 33, 34, 
40, 43, 51, 68 

3, 10, 13 - 24, 26, 33, 34, 
53, 69, 79 

9, 11, 13, 20, 22, 23, 25 -
28, 30 - 34, 36, 47, 51, 
55, 65, 75 

4, 7 - 9, 14, 20, 30, 37 -
48, 51, 69 

1, 5, 7, 20, 30, 32, 45, 47, 
51 - 53, 55 - 59, 79, 80 

2, 9, 27, 30, 47, 51, 61, 
62, 64 - 71 

10, 40, 51, 72 - 75, 7 7 - 8 1 

12, 29, 35, 49, 50, 54, 60, 
63, 76, 82 

Final Results of ADI Classification 

Table 1 
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classification for a lower value of T, but using the clusters from 

the first classification as the initial clusters. 

This creates the problem of how to determine the initial value 

of T, and how much to decrement it when the classification is repeated 

using as initial clusters the results of the first classification. The 

initial value of T should be high enough so that only those documents 

which score very highly against profile P. are assigned to S,. One 

method of achieving this is to pick T so that the clusters after the first 

iteration average q documents, where q is small compared to the total 

number of documents* In the experiments run so far, q is arbitrarily 

set at 4. After termination of the first classification, a nucleus is 

formed within each cluster, T is now chosen so that a certain percentage 

of the loose documents are assigned to clusters after the first iteration 

of the second classification. Assuming it is desirable to have approxi

mately x percent of the documents loose after the final clusters are 

formed, two approaches are possible: 

a) T is lowered far enough so that only x percent of the 

documents remain loose after the first iteration; thus, 

after termination of the second classification, the 

clusters represent the final results; 

b) T is lowered just enough to allow a certain percentage of 

the loose documents to be assigned to clusters after the 

first iteration; thus, the classification is repeated until 

approximately x percent of the documents remain loose. 

Experiments performed using both methods indicate that the second 

approach allows greater control of the loose documents, with only slightly 
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greater execution times. After the first classification/ a large proportion 

of the documents still remain loose. Therefore, if x is not too high, method 

a decreases T by a large amount. This injects many new documents into the 

clusters, and several iterations are necessary before termination occurs. 

Also, T is chosen so that the percentage of loose documents is x at the 

end of the first iteration, but it is impossible to know beforehand the 

percentage of loose documents after the final iteration. In general, the 

more iterations, the more the final percent varies from the percent after 

the first iteration. In method b, T is lowered just enough to allow a 

fairly small percentage (20% in the present experiments) of the loose 

documents to be assigned to clusters. This normally results in only a few 

iterations before termination occurs; therefore, the final percent of 

loose documents does not vary much from the percent loose after the first 

iteration. 

The ADI collection is reclassified using the procedures described 

above, where it is desired that about 25% of the documents remain loose. 

Once again seven initial clusters are used, and the initial value of T is 

calculated to be 28.2 so that the clusters after the first iteration average 

four documents. However, in this case cluster 3 is assigned ten documents, 

while clusters 1,5, and 6 contain only one document. Thus, these three 

clusters are eliminated, and the documents within them become loose. After 

termination occurs, the final clusters are used as initial clusters for the 

next classification, where T is set to 19.1. The process is repeated again 

for T = 16.8, and after termination 17% of the documents remain loose. 

Table 2 shows the final results of this classification. Compared with Table 1, 

many more of the documents have moved from their initial clusters. 
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1 — 

Cluster 

1 

2 

3 

4 

5 

6 

7 

Loose 

Initial 

1 

13 

25 

37 

49 

61 

72 

Documents 

- 12 

- 24 

- 36 

- 48 

- 60 

- 71 

- 82 

— 

Final Documents 

3, 5, 9, 10, 14 - 17, 20 -
28, 30, 34, 37, 43, 45, 48, 
53, 57 - 59, 64, 68, 69, 72, 
79, 80 

1, 2, 5, 6, 8, 11, 13, 20, 
21, 24, 27, 28, 30, 36, 39, 
41, 43, 47, 51, 53, 55, 56, 
58, 61, 62, 65 - 68, 70, 71 
79, 80 

7, 31, 42, 44, 46 

4, 9, 19, 32, 40, 51, 73 -
75, 78, 81 

12, 18, 29, 35, 38, 49, 50, 
52, 54, 60, 63, 76, 77, 82 

Final Results of New ADI Classification 

Table 2 
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C) Initial Clusters 

In the present study, the initial clusters are determined by assigning 

the first p (or possibly p+1) documents to cluster 1, the next p (p+1) to 

cluster 2,..., and the final p to cluster m, where p = (total number of 

documents) / m. Since the nucleus of each cluster depends quite strongly 

on the initial clusters, it is not surprising that different initial 

clusters lead to different results. If the initial clusters are chosen 

at random, it is unlikely that the documents within each cluster are 

very similar. Thus, the nucleus of each cluster might not be very tight. 

This problem is solved by insuring that the initial clusters 

contain at least a few documents that are highly correlated. In the ADI 

and Cranfield collections, the order of the documents is such that many 

adjacent documents are quite similar; therefore, most of the initial 

clusters contain a few highly correlated documents. In collections where 

the order of the documents is random, a simple, fast clustering scheme 

can be used to determine the initial clusters. This type of an algorithm 

need only perform document-document correlations within a fraction of the 

document space, and therefore, should not take up much time. 

D) Evaluation of Results 

The assumption was made earlier that those documents of a cluster 

S. that score highest against the corresponding profile P, are most 

similar to the other docuntents in the cluster. The phrase "most similar" 

is used to mean "correlate most highly", where a standard correlation 

function is used. Table 3 compares the score of each document to the 

average correlation (unweighted cosine function) of each document with 
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Document 

25 
5 

64 
23 
27 
34 
15 
3 7 

48 
58 
28 
53 
20 
68 
80 
57 
59 
14 
16 
79 
43 
24 
69 
26 
17 
72 
21 
3 
9 

30 
22 
45 
10 

Document 

31 
46 
44 
7 

42 

Cluster 

Score 

19.1 
19.6 
20.1 
20.2 
20.3 
20.6 
20.6 
20.7 
20.8 
20.9 
21.0 
21.0 
21.0 
21.1 
21.2 
21.2 
21.3 
21.4 
21.5 
21.5 
21.6 
21.6 
21.7 
21.7 
21.8 
21.8 
22.0 
22.0 
22.1 
22.2 
22.3 
22.4 
22.4 

Cluster 

Score 

31.0 
31.2 
31.3 
31.8 
33.2 

1 

Avg. Corr. 

.08 

.12 

.10 

.13 

.10 

.11 

.11 

.14 

.12 

.12 

.12 

.14 

.14 

.12 

.14 

.13 

.15 

.13 

.13 

.15 

.16 

.15 

.14 

.16 

.15 

.17 

.17 

.17 

.17 

.17 

.17 

.18 

.17 

3 

Avg. Corr. 

.21 

.05 

.14 

.24 

.28 

Document 

8 
| 5 

20 
68 
2 
70 

1 39 
28 
58 
36 
61 

| 56 
1 66 

67 
80 
43 
33 
21 
11 
65 
27 
71 
41 
79 
24 
13 
51 
53 
6 

62 
55 
1 
30 

Document 

32 
51 
74 
4 
75 
9 
19 
73 
78 
40 
81 

Cluster 

Score 

18.7 
18.8 
18.8 
18.9 
19.2 
19.2 
19.2 
19.3 
19.4 
19.5 
19.6 
19.6 
19.7 
19.9 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.1 
20.2 
20.4 
20.4 
20.5 
20.6 
20.7 
21,0 
21.4 
21.5 
21.7 
21.8 

Cluster 

Score 

24.5 
25.0 
26.0 
26.3 
26.4 
26.5 
26.9 
27.0 
27.1 
27.4 
27.6 

2 

Avg. Corr. 

.09 

.12 

.12 

.10 

.12 

.13 

.14 

.11 

.12 

.14 

.11 

.14 

.12 

.12 

.14 

.14 

.15 

.15 

.14 

.15 

.13 

.14 

.15 

.16 

.15 

.15 

.12 

.16 

.18 

.18 

.17 

.20 

.18 

4 

Avg. Corr. 

.10 

.15 

.16 

.18 

.16 

.19 

.17 

.19 

.18 

.24 

.21 

Score vs. Average Correlation for ADI Classification 

Table 3 
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every other document in the cluster. The documents are arranged in 

ascending order by scores, and hopefully, the correlations will also appear 

in ascending order. As the table indicates, there is a strong tendency 

for the higher scores to correspond to the higher correlations. Table 4 

illustrates the same results for three out of seven final clusters from 

the Cranfield collection. 

So far nothing has been said about how to choose the base value 

(section 3) that is used to compute rank values. This integer has an 

important effect on the type of clusters produced. Recall that the rank 

value of a concept equals the base value b, minus its rank. Suppose a 

cluster S. contains four documents d - d , and a total of twenty 

different concepts. The lowest possible rank value for any concept = 

b - 4, since 4 is the lowest possible rank. If b = 20, then the lowest 

rank value is 16, while if b = 5, the lowest rank value is 1. Consider 

a document d.. which is the same as d except for one concept, and 

assume this concept does not occur in P.. With b = 20, g(d.,P.) is 

between 16 and 20 points less than g(d ,P.); with b = 5, g(d.,P.) is 

only 1 - 5 points less. 

Since large clusters have profiles containing many concepts, the 

chances of a random document d. having concepts in the profile of a 

large cluster are greater than the chances of d, having concepts in the 

profile of a small cluster. Therefore, if b is high, d. will score much 

lower against the profile of the small cluster, and large clusters will 

tend to capture all the remaining loose documents at the expense of the 

smaller clusters. Experimental results support this hypothesis, i.e., a 

large base value produces a few clusters with many documents, and many 

clusters with only a few documents. 
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Document 

26 
6 
7 

117 
2 

121 
13 
19 
60 
23 
18 
44 

183 
116 
128 
61 
9 

197 
16 

198 
3 

25 
28 

115 
58 

181 
56 

160 

Cluster 

Score 

22.0 
22.3 
22.4 
23.0 
23.1 
23.2 
23.3 
23.4 
23.7 
23.8 
23.8 
24.1 
24.2 
24.3 
24.5 
24.6 
24.6 
24.7 
24.7 
24.7 
24.8 
24.9 
25.0 
25.1 
25,6 
25.6 
25.9 
26.6 

1 

Avg. Corr. 

.12 

.13 

.13 

.14 

.14 

.15 

.15 

.16 

.15 

.17 

.17 

.18 

.17 

.18 

.18 

.18 

.18 

.19 

.20 

.17 

.18 

.20 

.21 

.21 

.21 

.20 

.21 

.23 

Document 

179 
154 
79 
133 
134 
77 
132 
78 
76 
74 
75 

Document 

3b 
97 
15 
1 

34 
145 

i 171 

172 
30 
4 

140 
72 

138 
143 
141 
27 
36 
157 
59 
156 
200 
32 

137 
29 
148 
57 
128 
44 
31 

139 
56 

160 
58 

Cluster 3 

Cluster 

Score 

19.9 
20.2 
20.3 
20.3 
20.4 
20.4 
20.8 
20.9 
20.9 
21.1 
21.1 
21.2 
21.3 
21.3 
21.3 
21.6 
21.7 
21.7 
21.8 
21.8 
21.9 
22.0 
22.4 
22.5 
22.5 
22.8 
22.8 
23.1 
23.2 
23.9 
23.4 
24.3 
25.3 

Score Avg. Corr. 

31.4 .19 
32.5 .24 
32.8 .27 
32.9 .29 
33.4 .28 
33.7 .27 
33.8 .32 
34.1 .30 
34.3 .34 
34.4 .34 
34.5 .36 

2 

Avg. Corr. 

.12 

.13 

.11 

.13 

.13 

.14 

.12 

.13 

.14 

.15 

.15 

.15 

.15 

.15 

.14 

.13 

.13 

.17 

.16 

.16 

.16 

.18 

.15 

.19 

.17 

.18 

.15 

.19 

.19 

.19 

.18 

.18 

.21 

Score vs.. Average Correlation for Cranfield Classification 

Table 4 
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If, on the other hand, b is set so that the lowest rank value in an 

average cluster is 1, then there is a tendency for small clusters to get 

larger and large clusters to get smaller. In smaller than average clusters, 

all the rank, values are high, since there are only a few different ranks. 

In larger than average clusters, the rank value as defined might become zero 

or even less than zero. In these cases, it is redefined to be 1, but then 

it is possible for many concepts to have a rank value of 1. Thus, a document 

often scores higher against the profiles of smaller clusters. 

The results of the Cranfield classification clearly indicate the 

ability of a. document to score higher against profiles of smaller clusters. 

During the classification, nine clusters are generated, and cluster 9 

starts to grow much larger than average (average = 22 documents). It 

keeps growing until it contains 27 documents, and then it starts to 

oscillate. The following numbers indicate the number of documents in cluster 

9 on successive iterations: 27, 21, 34, 17, 56, 01 Thus, cluster 9 is 

eliminated. The same thing happens to cluster 8 on the next few iterations. 

Although this tends to keep the size of the clusters somewhat uniform, it 

is not desirable to throw away a cluster which might contain many highly 

correlated documents. One solution which might be implemented is to split 

up large clusters into several smaller ones; i.e., classify the documents 

within a single cluster. If the number of documents in the cluster is not 

2 
too large, it might be practicable to use an N algorithm to do this. 

7. Conclusion 

The classification algorithm that has been described in sections 5 

and 6 requires the following parameters as input: 
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a) maximum number of clusters desired; 

b). approximate percentage of loose documents desired; 

c) decision on whether or not loose documents should be 

"blended" into the nearest cluster at the end of the 

classification; 

d) amount of overlap desired. 

The first parameter specifies the number of initial clusters 

that are formed. If no clusters are eliminated during the evaluation, 

then the maximum number are actually generated. The experiments run so 

far indicate that the number of clusters produced is usually only about 

60% of the maximum. 

The next two parameters determine the "tightness" of the final 

clusters; the higher the percentage of loose documents/ the tighter the 

clusters. If no loose documents are desired, parameter b can be set to 0, 

but very low percentages increase the running time of the program. Almost 

identical results are obtained in less time by specifying about 15% loose, 

and then asking for all loose documents to be assigned to the cluster to 

which they score highest. 

The last parameter determines the amount of overlap. This number 

corresponds to a in the formula 

H _ . - a • (H . , - T) , if H _ . > T 
T n-l,i n-l,i n-l,i 
n-l,i 

T otherwise 

which was mentioned in section 5. When a = 0, no overlap is produced, and 

with a = 1, the maximum amount of overlap is produced. The actual percentage 

of overlap for a given value of a depends on the collection, but results in

dicate that 10% overlap for a = .4, and about 20% for a = .6. 
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Although the algorithm is not guaranteed to terminate, convergence 

has always been obtained in practice. In order to prevent the program from 

looping in cases of non-convergence, the algorithm can be modified to 

permit a maximum of n iterations, whether or not convergence is obtained. 

The results indicate that clusters change very little after about four or 

five iterations, so that this modification would not make much difference 

in the final clusters* 

The true evaluation of the final clusters can only be made by 

actually performing two-level searches on the clustered document space. 

However, the algorithm is sufficiently general to allow for the evaluation 

of many different types of clusters. 
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