
I. Design of a Revised On-Line Information
Retrieval System

M. E. Lesk

1. Introduction

Experience gained with the existing SMART

retrieval system under experimental conditions justifies

an attempt to expand the automatic search and analysis

methodology to operational environments. A revised SMART

system is proposed for this purpose, and a practical

design for a flexible, powerful retrieval system on the

IBM 3 60 series computer is accordingly submitted.

The goals for the new SMART system are threefold.

First, to investigate retrieval procedures for systems

of operational size. This includes analysis and search

procedures suitable for large systems, file organizations,

dictionary handling, and the provision of a reasonable

number of options and output procedures to permit a study

of the final system and its evaluation. Second, to in­

vestigate user interaction with real-time systems, since

this may be expected to be a major requirement for future

information retrieval systems. User interaction, of course,

must be based on a system with console facilities and

real-time speed. Third, to provide the programming frame­

work for a truly operational system with real users.

1-2

In addition to the proposed design, it will be necessary

to provide only a very large data base and additional

consoles in order to generate a complete, operational

retrieval center.

The specific capabilities demanded from the pro­

posed system include the ability to deal with collections

of many thousands of documents. Eventually, collections

of up to 250, 000 documents may be processed with the

programs. However, the basic storage options chosen for

a first implementation accommodate collections of about

25,000 documents. A maximum of five on-line consoles

is initially anticipated. The first system may be

expected to use one disk pack as a bulk storage medium.

Neither data cell nor drums are needed initially. The

system must be flexible in its use of memory, so as to

run on almost any configuration. Thus, storage space

must be allocated efficiently, for allocations ranging

from 50,00 0 bytes upward to the complete memory. Most

of the space allocation is done automatically by the

supervisor. It is believed that 50K bytes would still

permit a 25,0 00 document system to run economically.

Later versions of the system will use a disk

pack plus a data cell for storage, and operate with a

larger number of consoles (up to 50). Overall organi­

zation may not change, however. In addition, the

1-3

updating of the document collection and the dictionaries

can proceed simultaneously with the processing of re­

quests; the batch-processing type "background" work is

handled efficiently and forms a useful adjunct to the

foreground request work.

The file organization of the system strikes a

balance between ease of updating and efficiency of

running. No massive sorts or merges are required to

prepare or update files, nor are special "new material"

files kept. These requirements minimize programming

and overhead time and avoid inconvenience for the system

operators.

The user interaction process requires rapid

response times and flexible commands. The system

design goal was a response time of ten seconds. A

variety of analysis processes can be specified by the

user as in the present system, and the flexible system

design enables easy introduction of new procedures. In

addition, provision is made for user-oriented system

responses in which the processing algorithms depend on

the individual user's past history. This user adaptation

feature offers the equivalent of an individual retrieval

system for every user.

The third requirement, that the system serve as

the programming framework for an operation center, implies

1-4

that the system must be designed to accept a variety of input

documents, in several languages, and of several types. The

system handles multi-lingual input by a mult-lingual thes­

aurus, and uses a flexible document representation well

suited to the problems of an operational system. The ease

of updating and the user adaption features also simplify the

conversion to actual documentation operations with real

users.

The most serious demand placed on the system is the

flexibility required by its dual function either as a

batch processing system or as a real-time request

answering system. Both systems are necessary because the

task of adding new documents to a retrieval data base must

remain a batch task, while request answering is inherently

a real-time time-sharing operation. Furthermore, in the

early stages of system development, batch processing must

be relied upon if interactive consoles should not be

available on time.

2. Supervisor Organization

The problem of designing a system to meet the

criteria specified in.the Introduction, including in

particular the one requiring that the system be used both

as the framework for operational retrieval and for experi­

mental work, demands not only fast, convenient algorithms,

1-5

but also a supervisory organization and scheduling methods

suitable for both purposes. In additionf since the system

is to be improved as it is used, the supervisor must

allow the simple introduction of new algorithms and

procedures into the system.

Ideally, the scheduling problem might be solved

by turning it over to an operating system monitor of

the time-sharing type. In practice, such monitors are

not available with systems of the size and capacity

needed for retrieval purposes, and their overhead

requirements are such as to make it impossible to

perform efficient production runs. For this reason,

a small-scale scheduler is provided as the heart of

the new system. This scheduler is designed to

a) reconcile the needs for batch processing

and console interaction;

b) provide for easy substitution of programs

and data files and data processing steps

in the retrieval procedures;

c) provide efficient machine utilization.

It is assumed that the system monitor used is such that

control is given to the SMART programs only once, and that

the computer cannot be relinquished with the expectation

of getting control back within a short period of time.

1-6

The supervisor operates by maintaining two basic

files, a list of processing tasks and a list of data items

needed for these tasks. A dictionary which relates

retrieval procedures to the specific tasks and data

items needed is used to make entries into this table.

For example, the addition of an input text to the main

data file might proceed as follows:

a) user types: "addtext 5B465"

b) program looks up "addtext" in procedure

dictionary, breaks it into tasks:

i) accept input of text from console;

ii) perform dictionary lookup;

iii) print out words not found;

iv) compare text with existing file

arrangement;

v) place text in file.

c) for each of these steps, which are entered

in the processing task list, certain

corresponding items are placed in the data

list. In the example, the data list might

appear as follows:

i) —

ii) dictionary sections; input text

iii) list of words not found

iv) file arrangement keys

v) main file section (generated in step iv)

1-7

d) the supervisor could now proceed to

execute the appropriate initial steps.

Note that a processing task may add to the

processing task and data lists; it may also generate

data files needed by the later steps. This permits

the execution of powerful procedures. For example, the

program might include criteria specifying that if

only 2 words, or fewer, are not in the dictionary, these

are printed out, but nothing else is done unless requested

by the user; if more than 2 words are not found, the user

is asked to supply synonyms or alternatives for the un­

known words. The existence of a "dictionary" explaining

the system commands, and the ability of the programs

under execution to add or delete from the command structure,

permit easy alteration of the retrieval procedures with full

facility for the use of sophisticated,highly-optimized

retrieval algorithms.

Normally, the supervisor controls several different

retrieval procedures under way at once, each of which is

represented by a set of entries in the task and data lists.

In order to determine what is to be done next, the super­

visor computes a parameter called "priority" for each

processing task, and a parameter called "accessibility"

for each data item needed. The priority of a task depends

1-8

on whether this task originated with a user at a console

or with a background job; whether the user in question

possesses any special priority relative to other users;

and how long the task has been waiting.

The "accessibility" of the data items is somewhat

more difficult to define. The supervisor maintains lists

of the location of all needed items in terms of tape drive

and disk addresses. Programs within the system are only

allowed to use symbolic references to data files. This

permits the easy adaptation of the system to operations

with one disk or two disks and to changes in the unit on

which a tape is normally mounted. The symbolic addressing

also generally eases the job of an operator of a multi-

programmed computer for which it is not always known what

tape or disk drives will be empty at any given time. As

items are brought into core memory, this fact is also

noted in the supervisor tables. When a request for a data

item is made through the data list, the supervisor deter­

mines how "accessible" the item in question is. The

accessibility may be thought of as the ease of bringing

the item into memory. The accessibility of an item in core

is infinite. The accessibility of an item on a tape or disk

drive is given some number varying inversely with the time

needed to bring the item into core which in the final system

could actually be computed using the known tape or disk

1-9

addresses of the item and the present position of the

read head. The accessibility of an item on a tape or disk

pack not mounted on the computer is some very low

number; and the accessibility of an item which is to be

generated by a processing step not yet completed is zero

(representing complete inaccessibility).

The supervisor now computes for each task a

parameter called "importance", representing a weighted

combination of priority and accessibility. The weighting

is adjusted so that in a primarily batch-oriented system,

accessibility is much more important than priority, while

in a console-oriented system, priority is more important

than accessibility. Whenever there are conflicting demands

on either central processing unit or on any 1-0 unit,

preference is given to the task with the highest importance.

After a task is completed, it naturally is deleted

from the task file. When an 1-0 job is completed, any

transfer into the computer is noted in the supervisor's

table of data locations. This table includes a note of

the various memory locations used, (memory being divided

into standard-sized buffers) and of the importance of the

locations for the given task. Any transfer out of the

computer is also noted, indirectly, by the elimination of

any importance that was attached to the core area involved,

and therefore, by the release of the area for other use.

1-10

The core buffers are also used on the basis of "importance";

a more important task in need of buffer space may use core

space intended for a less important task. For example,

if a section of document vectors is brought into memory for

a search on a background query, and a high-priority console

query is suddenly submitted which demands buffer space for

the dictionary, this space would be taken from the space

used by the background jobs. When the supervisor later

returns to the background job, the data will be reaccessed

from bulk memory.

A flowchart of the supervisor is shown in Fig. 1.

Control is passed to the supervisor whenever a task is

finished, when an 1-0 unit has finished operation, or

whenever a console requests attention. At all such times,

the supervisor checks through the processing task file and

the data needed file. It makes the appropriate additions

or deletions, recomputes the priorities and accessibilities

of all tasks, and assigns all available units to the task

of highest importance presently in the files.

Normally, both the processing task and the data files

needed will have entries, and the supervisor will have no

difficulties in assigning the tasks. Occasionally, however,

one or both files may be empty. If both files are empty,

this implies that all work is finished, and unless further

console input is expected, the job is terminated. If the

1-11

processing file contains no executable jobs, but the 1-0

equipment is working, this implies that all work is waiting

for input-output, and the supervisor idles until the

necessary information is in core. If the processing file

contains tasks, but the 1-0 equipment is idle, this implies

that the most important task is not 1-0 limited. Normally,

the supervisor would continue to find additional data

necessary for less important tasks, but occasionally, all

buffers may be full. In this case, the 1-0 equipment

waits until some buffers are released by the processing

system.

Note that as long as importance is mostly determined

by accessibility, all material in core is used before extra

disk accesses are made, even if high priority tasks should

be slowed down. This permits the efficient batch pro­

cessing of lookups and searches. On the other hand, if

priority is set as the determining influence, the most im­

portant request is processed first, even at the expense of

extra disk accesses. Thus, by changing the relative weights

of priority and accessibility, the system changes from

batch-oriented to console-oriented-

3. System Procedures

A variety of procedures for retrieval are needed

in the operating system. The procedures outlined here are

not intended to be exhaustive; but they should provide a

1-12

flexible, useful retrieval system. All procedures need not

be implemented at once, of course; it is relatively easy to

expand the system with time. Only the basic input, lookup,

and searching parts need be programmed initially.

In order to facilitate programming, the data struc­

tures used in the system should be simple, easily read and

written, and few in number. The major files are:

a) the input text, in original English form.

This should be stored, if space is at a

premium, in the digram encipherment described

in the appendix;

b) input text in foreign languages, stored in

formats appropriate for each language;

c) the word stem dictionary for English (and

separate dictionaries for foreign languages);

these can also be stored in the digram

encipherment if space is needed;

d) automatic thesauri, referred to the stem

dictionaries rather than to word lists;

e) document vectors for looked-up documents;

f) cluster directories for the collection.

Each file is further described later in this report. The

major procedures used by the system are:

a) request and text input;

b) request and text lookup, stem dictionary;

c) automatic thesaurus processing;

1-13

phrase processing;

hierarchical operations;

concept vector formation and storage;

search of document collections or subcollections

(request-document comparison);

clustering of document collections;

relevance feedback;

dictionary displays;

citation searching;

class information (language, date, type of

article, etc.);

selective dissemination of information (SDI);

user information files.

These operations are discussed in the following sections.

A) Request and Text Input

This involves no special difficulties. The system

merely accepts input strings and stores them. Text may be

input from either a high-speed unit or a console. In

accordance with general system formats, console input would

be read into high speed memory and also stored on a slow-

speed unit. This permits the user to read out his original

question if after a series of modifications he wishes to

resume from scratch. It also protects the user against a

higher-priority user taking over high-speed memory; and it

permits the system managers, at the end of the day, to see

what queries have been submitted.

1-14

Actual input would involve either keypunching

followed by card-to-tape on offline equipment, or transmission,

from a teletype or other console unit. If extremely high

volumes of input are needed (as is true when acquiring the

data base for an operational system), optical character

recognition equipment could be considered. This would be

economical only if input costs were at least in the $50,000-

$100,000 range.

As a subsidiary part of the input process, a good

text editor should be available. Such editors are essential

in handling any large quantity of text. A new one should

be written if not available from program libraries.

The supervisor list entries for input commands consist

of the following:

Command Task List Data List 1-0 Unit Task

i) console input read console — disk storage writer query
core table enter query

ii) tape input read tape input text core table enter docu-
tape ment

The reading of queries previously placed on the disk (to be

processed in batching mode) follows the same pattern as tape

input except that a disk file is substituted for the input tape.

B) Request and Text Lookup

The lookup procedure is the first of the two major

operations of the retrieval system (the other being the

collection search). The basic properties cf the lookup

I

procedure must be:

a) high speed

b) minimal core requirements (the entire

dictionary is too big to fit into memory

c) ease of extension (new words must be added

constantly.

To obtain high speed, it is important that disk accesses

be minimized, because the random-access time of a disk

is about 100 msec, compared with microseconds for core

accesses. A solution to this problem can be derived

from Fig. 2, which represents a familiar frequency vs.

total occurrences chart for a sample of English text.

One percent of the distinct words represent 46% of all

word occurrences. This permits a high-speed lookup by

keeping a small, high-speed dictionary in memory and

putting all low-frequency words out on the disk pack.

Normally, dictionary lookups are based on lists

of words stored in an alphabetic representation. This

method suffers from several disadvantages, namely:

a) inserting a word into alphabetic order re­

quires a great deal of data handling;

b) if the words are not grouped by length,

space is wasted; if they are, the look­

up for suffixed words is complicated and

slow;

c) the high and low-frequency dictionaries

operate with completely different search

algorithms, and the time spent searching

the high-frequency dictionary is

1-16

(Start J

Is processing ^s^No ^S^
file empty? y^~ ^ S ^

i Yes < Are we awaiting ^X.

console imput? ^ S

)
Exit to
OS/360

initialize

Find next most
important item

in file

JLCL < Are its needed ^v.
data units in core^/r

Yes

Process item transfer
control to routines

needed

Y e s / ^ re data units needed
by o ther tasks ? >

No

Reduce their
importance

to zero

a) Main Routine

(Enter J

Is da
emp

ta list N^Yes^

P ty? ^y—•

No

< Are all I-(J) "N^Yes
units operating? ^ ?

i No Compute Accessibility
each data request

i Add accessibility to
corresponding task

priority , get
11importance"

Find most important
data request for

free unit

Is there a buffer
with less important

data or empty?

No

Yes

Assign least important
buffer and initiate

1-0 trans fer

Update tables of data
locations (if any 1-0

is completed)

(Return J

b) 1-0 Routine

Supervisor Organization

Fig. 1

Console interrupt

f Return J*

#j Read input item

r Determine Priority

i Determine tasks and
data needed

Add 1 to all previous
priorities

i Update task and
data lists

c) Input Sect ion

Input Task Data List Output

English
r eques t

Stem
vector

Cone ep t
vector

Concep t
vector

Lookup

Thesaurus
expans ion

Cen troid
search

Clus ter
s earches

Die tionary

Thes aurus

Centroid
vec tors

Document
vec tors

Words no t
found,
s tern vector

Concept
vec tor

Promising
clusters

Answer s

d) Sample Query Processing

Supervisor Organization

Fig. 1 (contd.)

1-18

lOOr

90f-

80h

70h

60

50

40h

30

20

10
J I I I L J L J I
10 20 30 40 50 60 70 80 90 100

% of distinct words

Word Occurrences in Sample Collection

Fig . 2

1-19

wasted when the word is not there;

d) complicated updating problems are created

unless concept numbers independent of the

words are stored with them, thereby wasting

more space.

This is not to say that a feasible lookup using alpha­

betic characters could not be devised; such a lookup

would probably involve a high-frequency dictionary in

core, stored by word length, with a low frequency

dictionary on the disk, stored alphabetically with

concept numbers. The digram encipherment of the

appendix would be used to save space. Such a system,

however, is believed to be inferior, for practical pur­

poses, to a scatter storage scheme devised by R. Williamson

and D. Murray, described elsewhere [2]. In this scheme,

each word is "hashed" into an arbitrary 32-bit number in

such a way that it is extremely unlikely that any two

words will generate the same number. The actual probability

32 is on the order of N/2 , where N is the number of words

in the dictionary. For collections of practical size, this

implies that about 1 conflict is expected for a collection

of 100,000 distinct words. This rate is well below other

error rates associated with keypunching, data transmission,

and so forth. The 32-bit hash is then divided into a

"major" and a "minor" part. The major part is used to

access a table kept in memory, which indicates the most

1-20

probable minor part for that major, and the location of a

table of other minor parts. The hash scheme requires the

following tables:

a) a table of initial minors and addresses for them;

this table, constituting the high-frequency

dictionary, must remain in core at all times;

b) various tables of minors and further addresses;

these are ordered to permit the most frequent

of the words still remaining on the low-

frequency list to be kept in memory if extra

space is available. Depending on the demands

placed on the supervisor, some of these extra

tables might thus still be placed in memory

at all times.

This process offers a significant advantage over the

alphabetic lookup. In the alphabetic lookup, with two distinct

forms of the dictionary, no substantial speed is possible

by bringing small portions of the low-frequency dictionary

into core from the disk.

Trading memory for lookup time is very important

in a system in which bulk lookups can be done at night

with large amounts of memory, but small lookups must be

done during the request searching, taking place during

the day when there is competition for memory.

A glowchart of the lookup program is shown in Fig. 3.

Each word is first searched in its original form. If this

1-21

(Start J

(fy *\ Take next word

£
^E) *\ Compute hash

r Take major part
of hash

Look in tables
find address

of minor

(Is there any "^No ^/T\
minor? J *\L/

Yes

I
Is minor table ^

in core ? J

No

Yes

Add call for
correct minor
table to data

list. Flag word

Ge t nex t it em
from minor table

C I I s t h i s l a s t i t e m ?

i
3—0

(D o e s t h i s m a t c h " \
m o n o r o f w o r d ? J

T -
No

Yes Form concept number
equal to minor count

plus maj or

Increase minor
count by 1

\j* C Are there more words? } * \ D V

Dictionary Look-up Routines

Fig. 3

1-22

1 Apply s u f f i x i n g r u l e s

i ©^ /Was suffix removed or A
V^ adjusted? J

No

List word as not found

i Add to disk dictionary

c
i

Are any words flagged?

i
>

No Return to supervisor

Yes

(Has data for any such ^
words arrived in memory?y

No i Define processing task
as "finish look-up"

Yes

Dictionary Look-up Routines

Fig. 3 (contd.)

1-23

fails to produce a dictionary entry, new searches are

made as follows: the right end of the word is

checked against a suffix list. If a suffix is removed, and

the potential stem ends in a double consonant, that consonant

is changed to a single consonant. If the potential stem

ends with a single consonant, and the possible suffix

begins with a vowel, the final "e" is added to the stem.

If the potential stem ends in "i", it is changed to "y"

(if the suffix begins with a vowel). This new stem, the

"most probable" stem, is then searched. Should this fail,

the search is repeated without the stem modification. If

the stem is still not found, further suffixing is attempted

and the searches continue.

Each search is performed by computing the hash

for the word, followed by addressing a table to find the

minor list corresponding to the major for the hash. Minor

lists not in the dictionary blocks already in memory are

accessed from the disk storage. Words which require disk

fetches are temporarily bypassed by the processor until

the necessary disk records are brought into high speed

memory.

When a word cannot be found in the dictionary,

two options are available:

a) the word can be typed on the console, where

the user has the option of typing a sub­

stitute. This is the normal procedure for

console input.

1-24

b) the word can be used as is, and entered into

the dictionary. A note is made in a special

file used by the system managers, giving them

all the new words entered during this lookup.

This list is then perused and the words are

categorized as

i) spelling errors; such words are re­

moved from the dictionary and the

original documents are fixed.

ii) new useful words; these words are

placed into their proper thesaurus

categories and retained in the

dictionary.

Each word retained in the dictionary is also stored

in a file giving the English forms of the words preferably

in digram form. These English forms of the words are used

for thesaurus printouts, for the compilation of frequency

lists, and so forth. They are arranged by hash concept

numbers.

The operation of the hash procedure follows that

designed by Murray [2]. Each hash is split into a thirteen-

bit major and a twenty-five bit minor part. The thirteen bit

majors are used to address a table of 8192 items, noting the

beginning location of a table of minor parts for each major.

The table of minor parts contains 25-bit minors, and flags

indicating whether or not the word in question is common,

and whether this minor part is the last entry in the minor

table, or whether this 25-bit code is an address in a new

block for the continuation of the list of minors. The minor

1-25

tables are distributed among blocks in such a way that

the first block of minors contains all frequent words;

except for compromises required by storage efficiency,

the most frequent words of those remaining are stored

in the next few blocks, and the least frequent words

in the last blocks. This permits the system to trade

memory space for lookup time.

Under normal circumstances, words are not

checked against their English forms, since the table of

English forms would be rather bulky. At periodic

intervals, however, a list of words obtained from con­

cordances of the input documents should be looked up

and checked against the originals. This indicates

whether any two different words were assigned the same

concept number, and permits the insertion of an error flag

at that minor table entry, thus catching and correcting

the error in the future. If a dictionary of 100,000

words is considered (probably larger than the actual size

needed for several years) a total storage requirement of:

16,384 bytes (13-bit major tables) and 400,000 bytes (25-

bit minor tables plus flags) would be expected. The 400,000

byte table would be divided into twenty 20,000 byte blocks,

each containing 5,000 different word stems. The system

could operate with 3 6,000 bytes in memory permanently and

one 20,000 byte storage area; alternatively, more memory

could be utilized to speed up the lookup. In particular,

1-26

bulk lookups could be done using an LCS module (presumably

at night)* This would permit very fast lookups.

For comparison, if an English dictionary, averaging

eight characters per word, were used, 800,000 bytes would be

received in a word-length array, with concept numbers, using

digram encipherment. This would produce a much slower

search, because the high-frequency dictionary and the low-

frequency dictionary would both have to be binary searched,

and no way exists for arranging the low-frequency dictionary

in frequency order. Furthermore, the dictionary would be

difficult to update.

The time required to search the dictionary depends on

the number of blocks which could be kept in memory at once

and the total size of the dictionary. Imagine a dictionary

of 25,000 words, representing 4 blocks. In the minimum

space of 2 blocks, one block could be kept permanently in

memory. This represents over 90% of the words in the

average query, and leaves only about 3-5 words to be

searched in the disk file. At 100 msec per disk access,

about 0.3 to 0.5 seconds would be required to look up a

request.

The output of the lookup consists of an ordered list

of concept numbers and weights. The concept numbers could be

stored with the ordinal number (the number of passes through

minor tables) in the high-order bits, and the major part of

the hash as the low-order bits. In this way, the most common

1-27

words would have the lowest concept numbers. This

greatly simplifies such tasks as thesaurus expansion.

The supervisor list entries for lookups are shown below.

1 Command

lookup

Task List

compute hashes

search minors
(enter needed
in minors
data list)

finish concept
vector, write
out

Data List

major
table
hi-freq
minors

low-freq
minors

1-0 Units

disk

disk

disk

disk

Queues

major table
read in high-
frequency
minors

low-freq
minors

write concept
vector

C) Automatic Thesaurus Processing

Thesaurus processing makes use of simple numerical

tables corresponding to the hash concept numbers, and

giving thesaurus concept numbers for each hash (stem) con­

cept number. Because the thesaurus contains many fewer

concept numbers than the stem dictionary, a 16-bit

concept number should be adequate, instead of the 16-bit

plus ordinal number required by the hash stem concept. The

initial table of thesaurus concept numbers, used for the first

sequence of hash concepts, is simply an addressable table,

used for the lowest (and most frequent) concept numbers.

Since the highest concept numbers are more sparsely dis­

tributed, the lookup proceeds with a binary search rather

1-28

than by direct fetches. Thus, the size of the thesaurus,

for 100,000 null concepts, would be:

14
a) a table for the first (for example) 2

concepts, representing 32,000 bytes at

2 bytes per concept, resident in core.

b) a table for the remaining 84,000 concepts,

representing only those concepts which

exist and for which the stem concepts are

not adequate, involving about 40,000

concepts at 6 bytes per concept, or

160,00 0 bytes, probably broken down into

8 blocks of 20,000 bytes each.

For stem concepts not placed into thesaurus categories,

retrieval would be based entirely on the word stems. This

permits the thesaurus to be built up gradually.

The speed of the thesaurus process would be high,

since a greater fraction of the thesaurus is in memory than

of the original dictionary. For a practical-sized thesaurus

with 25,000 stems, it is not unlikely that the entire

thesaurus could be kept in about 50K bytes of memory during

the entire process, producing a lookup time per query (50

words) of about 500 usee. The high speed of the thesaurus look­

up (around 10 microseconds per word, since about 90% or more

of the words would require only one core access) permits an

entire collection, of 50,000 abstracts to be processed in

only about one minute. This implies that the thesaurus may

be revised frequently, and all documents reprocessed as often

1-29

as is necessary, without difficulty. This feature alone

provides a big advantage over manual systems in which it

is often impossible to revise an indexing scheme once it

has been used for a long period of time, because of the

huge labor involved in indexing the backlog.

An alternative worth considering is the use of

the thesaurus at search time, to expand documents and

queries immediately before they are matched. This saves

the disk space needed to store thesaurus vectors with

the collection. However, it causes a shortage of core

space at search time, when core space is in short

supply, and it slows down the search process, which is

not 1-0 limited at all times. Since it is inexpensive

to process the entire collection, it is recommended that

this be done in advance and the vectors stored.

The normal format of the thesaurus tables is a

two-byte entry for each stem concept. This provides

one thesaurus concept for a stem concept. If several

thesaurus concepts are needed, a special flag is set

and the 15-bit number is used to address a table in which

the several concepts are listed. This economizes on space

and eliminates restrictions on the number of thesaurus concepts

that can be associated with one stem concept.

Foreign language material is processed using

thesauri in which the same concepts are expressed by different

words. Separate stem dictionaries are used for the

foreign language material, and the foreign language

1-30

thesaurus concepts are defined in terms of appropriate stems.

Each concept number, however, has approximately the same

meaning as the corresponding concept in the English thesaurus,

A flowchart of the thesaurus process is shown in

Fig. 4. The task and data list entries are shown below:

Task List

thesaurus
translation

condense and
sort; form
vectors

Data List

thesaurus,
high-freq.
section

low-freq.
sections
as needed

write out
vector

1-0 Unit

disk

Queue

thesaurus, high
frequency section

D) Phrase Processing

This step is not in the minimal system. Phrase

processing could use an intermediate file, created by the stem

lookup, which preserves the stem concepts in sentence order.

A separate dictionary then lists the stem concepts used in

phrases, and would be brought in to process the intermediate

file. The resulting concepts could be added to the main concept

vector.

The entries in the task and data lists are shown below.

Possible flowcharts for the phrase processors are shown in

Fig. 5. The first flowchart represents a phrase system that

detects two adjoining word pairs, such as "information retrieval"

1-31

(Start J

Take next null
concept

i < Is it in high- " V No
frequency section? ^y^ ^~is table n

I Yes No

Look up corresponding
thesaurus concept

in tafrls
"T2

Add to
data list

eeded in core? ^^

^ Yes

S earch
table

for concep t

Add to concept vector

/ Place concep t\
r—I on special 1

V l l s t J

^ ^ Are there more
^v concept s ?

" i
^ ^ Are there concepts \.
\^on special list? ^/^

No

Return to supervisor

No
•^Is it thereT"^

Yes

Add thesaurus concepts
to vector

i Add task "finish
thesaurus"

Thesaurus Program

Fig. 4

1-32

(Start J

Take next word

Search pair list

i ^~ Is word present? ^ ^

i
No

Take next word

No i Does it match other
word in any pair or

first word ?

Yes

Add to concept
vector pair concepts

No

<
i f Is this las t

i
word? ^

Yes

yJR eturn to supervisor _)

a) Word Pair Phrase Generator

Phrase Generation

Fig. 5

1-33

Go to next
phrase

f Start)

initialize phrase
dictionary and
concept vector

s t em>

Yes I phrase

Are there
more phrases^

No

i i Compare stem
concept wi th

phrase concept

i

Go to nex
s t em

phrase>

s tern i
Get remaining

phras e concept s

<

KAre ther
ore s tern

Are they
in vec tor ?

Add phrase
concep t to
vector

Return to
superv is or

No

b) Unlinked Phrase Searcher

Phrase Generator

Fig. 5 (contd.)

1-34

but nothing else. The second flowchart represents a phrase

processor that searches for phrase components in a text.

This processor would accept constructions such as "information

and document retrieval". It does not use the intermediate,

sentence ordered file, but only the ordinary stem vector.

Task List

phrase search

write new vector

Data List

phrase dictionary
document vectors

document vector output

E) Hierarchical Processing

Previous experience with hierarchies has not led to

great success, and therefore it is not recommended that a

complete hierarchy be used [3]. Instead, an expansion

corresponding to the normal expansion to "parents" in a

full hierarchy is suggested. This option might be of

some use in a retrieval operation for poorly performing

queries. An example is shown in Fig. 6.

The operation of the hierarchy is very simple,

because the hierarchy table merely contains the parent

15 class of each concept, for a total of less than 2 concepts.

The hierarchy can thus be kept in memory. The thesaurus

concepts are used in preference to the stem concepts, of

course.

1-35

Query:

transformation

, document matching
! improved query

How are diodes and triodes |
used in IBM machines?

diode i . 7 j } -> vacuum tube triode

IBM -> computer

"vacuum tube computer"

Use of Hierarchy

Fig. 6

1-36

A more general use of the hierarchy is to resolve

ambiguities in the texts. This process is illustrated in

Fig. 7. Ambiguous words (those with more than one thesaurus

category for the stem concepts) can be resolved by the

following rule: when a word is assigned more than one possible

thesaurus concept, choose the concept category which belongs

to the hierarchy section with the largest number of members

in the text. That is, if "IR" is ambiguous as "information-

retrieval" or "infra-red", the remainder of the text is

examined, and if most of the words are about spectroscopy,

"infra-red" is selected. A special table of class

frequency is compiled to be used for this algorithm.

F) Concept Vector Formation and Storage

Concept vectors are generated from the concepts

produced in the lookup and from any phrase or hierarchy

expansions. The concepts are sorted in order, and then

condensed to 16 bit halfwords by indicating the higher-

order bits trhough a division of the concept vector into

segments. That is, a special flag is added to the concept

vector, and when this flag is reached, the computer re­

cognizes the beginning of a new concept number sequence.

The sequences include: high-frequency stems, low-frequency

stems, thesaurus concepts, and other information.

A sample concept vector is shown in Fig. 8. This

organization was devised by R. Williamson [4].

1-37

(Start J

Take next concept
in vec tor

Find parents to determine
hierarchy section

i Add to no. of occurrences
for that sect ion

Yes i ^ Are there more concepts^

I No

Find next ambiguous
concept

i Use that interpretation
which is in more
frequent section

Yes i \ A r e there more ambiguities^

^ No

Return to supervisor

Ambiguity Resolution

Fig. 7

1-38

stem
section

apple,
pear
watermelon

segment divider 1// / / / /71

rarer
stems

coconut
mango

segment divider I/////////

thesaurus
section

fruit

segment divider [///////// 1

t CACM £, 532 (1965)

citations)

segment divider [///////// [

class
data

(English
1965

article
<

end of vector 1 //////////

Sample Concept

Fig. 8

I

G) Searching of Document Collections

Previous experience confirms that the cosine corre­

lation is a fast, efficient request-document matching

algorithm [5]. The cosine correlation for request r and

document d is defined as

r. -d.
1 1

Crd

E-i Ea '
where r. is the weight of concept i in the request and

d. is the weight of concept i in the document.

Document vectors should be stored in document order,

rather than in an inverted file. The total storage re­

quired in each case is similar, but the number of disk

accesses for a clustered search is much smaller than the

number of disk accesses required for an inverted file.

Furthermore, the large sort needed to generate the in­

verted file represents a long and unattractive use of

computer time. In addition, the relevance feedback

process requires access to the complete vectors of each

document. Furthermore, when the system is expanded to

include information such as language, journal, etc.,

the overhead required to store this information with an

inverted file would be very large. It is shown later

1-40

in this report that the time required even for a full

search on a document file is perfectly reasonable, and thus

no good reason seems to exist for the use of an inverted

file.

The computation of the correlation coefficient is

straightforward. In order to save time in computing the

sums of the squares of the weights of each document, this

figure is computed at lookup time and added to the docu­

ment vector.

Facilities for clustered searches are provided in

order to save time with large collections. A flowchart

is reproduced in Fig. 9.

Each request is first matched against a set of

cluster centroids to determine which cluster should be

searched. The clusters bearing the closest similarity

to the query are then brought in from the disk and searched

in full. the total number of documents searched may only

include a small fraction of the collection. This saves

time and is particularly valuable for such operations as

the first search of a collection prior to the use of

relevance feedback. The total time required to perform

request document correlations with a clustered search

depends on the number of clusters generated and used.

Consider a document collection of 25,000 documents

separated into 100 clusters of 250 documents each

(Start)

Correlate query vs
cluster centroids

i Sort correlations, find
20 largest

i Add these 20 clusters
to data list

i As data arrives,
correlate query
with documents

i Sort out highest
cor rela tions

Print as output

Search With Clusters

1-41

Fig. 9

1-42

(slightly fewer clusters than the optimum). If 20% of

the collection, i.e. the 20 most promising clusters, are

to be searched, a request document comparison involves

about 100 compares, multiplications and additions. If

one allows 10 usee for each operation, request/document

correlations may be performed at a rate of 1000 per

second. Since 100 cluster centroids and 5000 documents

are to be searched, a total of 5100 correlations must

be made, representing about 5 seconds of time. The I-(|)

time involved, in the worst case (every cluster plus

the centroids requires a separate disk access) is 21

fetches or 2.1 seconds. Most of this work can be over­

lapped with processing. Note that, in sharp contrast

to text lookups, request-document correlations are not

I-(|) limited. The size of the various clusters would

be about 250 documents x 50 vector entries x 4 bytes per

entry equal to 50,000 bytes or 2-3 blocks of 20,000 bytes.

The 100 centroid vectors would require about 20,000 bytes and

could conveniently remain in memory during search operations.

Since the total lookup time is of the order of

1/2 second, and the total correlation and search time on

the order of 5 seconds, response times of 10 seconds should

be feasible for the final system using a clustered search.

A full search of the 25,000 document collection would take

1-43

about 25 seconds, which is not unreasonable. When collections

become larger (250,000 documents) they also become more

diverse, so that the total number of documents to be

searched may not increase.

H) Clustering of Document Collections

The most time-consuming program of the retrieval

system is likely to be the generation of the document

clusters. Fortunately, this need be done only at rare

intervals. These details of the clustering algorithm

are given by Brauen and Messier and are therefore not

repeated here [6]. This operation is independent of the

remainder of the retrieval system and could be pro­

grammed as a separate job.

I) Relevance Feedback

Increases in retrieval effectiveness are obtained

with the use of relevance feedback. This procedure is

suitable for use by untrained requestors and is ideally

adapted to conditions prevailing in an operational system.

Previous experiments with feedback have indicated that

the best strategy, called "decrement high", involves the

addition to the query vector of concepts derived from

retrieved relevant documents, and the subtraction from

the query of concepts from the highest ranking nonrele-

vant document [7].

1-44

In the actual system, the relevant material used

need not be retrieved through a search. Provision is made

for the introduction of previously known relevant material,

and for the adjustment of the query through feedback without

performing a normal retrieval run. This would permit

improved performance on the initial retrieval run. In fact,

an entire query could be defined using the feedback

algorithms together with a set of known relevant documents.

The feedback routines could extract the common concepts

from the known relevant documents and produce a query that

would retrieve them.

A flowchart for the feedback routines is shown in

Fig. 10. The additions to the processing and data list

are given below

Task List

ask user for known
relevant

retrieve known
relevant and
adjust query

Data List

console input

known relevant
document vectors

J) Dictionary Displays

Some users may wish to assist in the optimization of

their own queries. The most useful information the system

can provide might be a display of the thesaurus and

C start)

1-45

Request relevance
judgments from user

i Find relevant documents
and highest ranking

nonrelevant document

i Find concepts common
to relevant documents,

Add to query

Find concepts in non-
relevant document.
Remove from query

i Re-search query

i Print new output

Feedback Routines

Fig, 10

1-46

hierarchy categories pertaining to a given subject area [8]•

This is done by maintaining a reverse-sorted thesaurus, which

is easily generated when the original thesaurus is created.

The reverse-sorted thesaurus provides English stems corres­

ponding to the thesaurus categories. The user may type in

a word, which can then be looked up in the stem dictionary

and thesaurus. The reversed thesaurus is then used to

obtain the stem dictionary concepts in that category. The

corresponding words can also be printed out. If desired,

hierarchical expansion can be performed first to provide

access to even more words. In the initial versions of the

system, thesaurus display would not be included, saving

not only the associated programming but also the need to

store a reversed thesaurus and the English version of the

stem dictionary. Listings of the thesaurus could instead

be provided to interested users. As the system is developed,

however, it would probably be desirable to automate the

thesaurus. This would be especially desirable if a high­

speed, "soft-copy" output device (such as an oscilloscope

display) were available. Another useful facility would

be a procedure allowing the users to indicate changes that

should be made in the thesaurus. Users should not be

allowed to change the thesaurus themselves, since it is

doubtful that the average user has the ability or the

detailed knowledge needed for this rather delicate task,

1-47

but a file of "proposed changes", stored on the disk,

would be most useful in expanding the thesaurus.

A flowchart of a possible display and update

routine is shown in Fig. 11.

K) Citation Searching

The system as described could easily handle

citation information, if the citations were available

at the input end. It would only be necessary to

standardize reference formats, to introduce the citations

in some coded form, and to process them through the null

dictionary and add them to the concept vectors. For example,

the standard four-letter journal codes of Chemical Abstracts

could be combined with the volume number and page number

to provide a 12-14 character code uniquely identifying

literature references. This code could be hashed, but

a simpler system would require looking up the journal

code in a small table, translating the numbers to binary,

and producing a 30-bit code directly. This code could

be used as an entry in a separate set of tables, processed

in the same way as the hashed English words. The additional

"concepts" that would result could then be place in distinct

sections of the concept vector and used for retrieval. It

would not be necessary for the original query to use any

references, since the relevance feedback routines could

introduce them from retrieved documents. The value of such

information is being studied with the current SMART programs.

1-48

C Start J

Take input word
from console

i Perform lookup

< i Word found?

i
>

Find thesaurus class

i N o ^^ Does user want ^ ^
N w hierarchy? ^/^

_zTr Take parent of
class

i Find stem concepts
in clas s

Find English words
in class

i pr in t

No
Ask for synonym

i Lookup synonym

< T >
C^ Synonym found? ^-

Yes
Find thesaurus
class synonym

i Leave message for
system manager

about new word and
its class

Thesaurus Display Routine

Fig. 11

1-49

L) Class Information

Articles can also be characterized by various

external properties, such as language, date, journals,

etc. It is likely that many users would wish to request

specific languages that are of interest; or users may wish

to reject material published before a certain date; or

to specify certain types of articles (e.g. review articles).

The final system should, therefore, include facilities

for processing this type of information as well. This

information is normally used in an absolute sense, and it

is doubtful if the correlation coefficients would be

of much use. Characterization of the few main items

(language, date, type of publication, etc.) seems preferable

with simple tests to determine which documents are

acceptable.

M) Selective Information Dissemination

No special facilities are needed to add SDI.

If those documents which have just been added to the

system are identifiable, a standing file of SDI requests

could then be processed as a background job once a week

with a specification that only new documents should be

searched. Alternatively, all new documents could be

checked against the standing file as they are received.

It might be useful to maintain, for each SDI query, one

"nearly-but-not-quite-relevant" document. All new

1-50

documents correlating higher than that document would then

be retrieved.

N) User Information Files

When the system is eventually completed, and is being

used operationally by many users, each user might be allowed

to store a special file of information including his

peculiarities. It might contain SDI requests which the user

could activate from a console; special dictionary trans­

formations for this particular user's area of interest; or

specific date and language restrictions. Eventually, the

computer might also retain, for each user, records on re­

trieval methods used and resulting performance. It could

then automatically select the correct retrieval algorithms

upon recognizing the user's name thereby providing truly

personalized service.

4. Equipment

The computer system considered in this section is

an IBM 36 0/65. Both Cornell and Harvard University either

have or have ordered this machine, with bulk core. As

is demonstrated in part 3, the retrieval system could

operate efficiently (with one console only) using 50K bytes

of data storage space. Since both Cornell and Harvard have

ordered bulk core units, larger storage capacities should

be available. The programs, of course, could easily take

1-51

up an additional 100K of memory. If the programs do get

very large, a possible solution is to divide the programs

into blocks and bring them in and out of core as needed.

This could be done by the SMART supervisor, or through

OS 1360, but would be undesirable since it would lead

to competition for the disk unit and degrade response

time.

The recommended random-access unit is the disk

drive. For a collection of 25,000 documents with a

dictionary of 50,000 words, one might expect the following

total storage needs (8 bit/character):

a) 12,500,000 bytes for English text

b) 400,000 bytes for English dictionary

c) 200,000 bytes for hash dictionary

d) 5,000,000 bytes for looked-up null vectors

e) 4,000,000 bytes for thesaurus vectors.

The total storage requirements are thus about 22 million

bytes (with digram enciphermant, about 17 million bytes).

However, the English document text need not be kep on disk,

lowering the storage requirements to 10 million bytes.

There is thus no difficulty in storing the entire system

plus data on one disk pack, with a capacity of 29 million

bytes [9] .

1-52

The input-output consoles are initially planned either

as teletypes or selectric typewriters. Later improvements

might include oscilloscope screens for fast displays and

microfilm readers. The microfilm readers could even be

computer-driven, allowing the computer to display documents

directly. The initial operational console, however, might

simply be placed in or near a library.

Should the system be expanded by a factor of 10 or

so, the use of a data cell will probably become necessary.

The total capacity of a data cell is 400 million bytes [10]

which would be adequate to store vectors for 1,0 00,0 00

documents.

The only major additional programs needed for system

development would be a good text editor and a concordance

routine. Both will probably be available from program

libraries. Initial coding on the retrieval system should

concentrate on the basic routines, lookup, thesaurus, and

search. The remaining options can be added as time permits.

5. Summary

The design of an automatic retrieval system for

document collections of practical size with both interactive

and batch-processing capabilities is shown to be feasible since

previous experiments have indicated that fully-automatic

systems can provide retrieval performance equivalent to that

1-53

of existing systems, [11,12] it is believed that the con­

struction of a completely mechanized documentation center

should be initiated.

1-54

References

[1] G. Salton and M. E. Lesk, Computer Evaluation
of Indexing and Text Processing, Journal of
the Association for Computing Machinery,
Vol. 15, No. 1, 1968.

[2] D. Murray, A Scatter Storage Scheme for
Large Dictionaries, Term Project Report,
Computer Science 435, Cornell University,
Spring, 1968.

[3] E. M. Keen, Thesaurus,Phrase and Hierarchy
Dictionaries, Report ISR-13 to the National
Science Foundation, Section VII, Cornell
University, Dept. of Computer Science,
December 1967.

[4] R. Williamson, private communication.

[5] K. Reitsma and J. Sagalyn, Correlation Measures,
Report ISR-13 to the National Science Foundation,
Section IV, Deptc of Computer Science, Cornell
University, December 1967.

[6] R. T. Grauer and M. Messier, An Evaluation
of Rocchio's Clustering Algorithm, Report
ISR-12 to the National Science Foundation,
Section VI, Dept. of Computer Science, Cornell
University, June 1967.

[7] E. Ide, User Interaction With an Automated
Information Retrieval System, Report ISR-12
to the National Science Foundation, Section VIII,
Dept. of Computer Science, Cornell University,
June 1967.

[8] M. E. Lesk and G. Salton, Evaluation of Inter­
active Search and Retrieval Methods Using
Automatic Information Displays, Report ISR-14
to the National Science Foundation, Section IX,
Dept. of Computer Science, Cornell University,
October 1968.

I

References
(contd)

[9] IBM System/3 60 Component Descriptions —
2314 Direct Access Storage Facilityf
Publication No. A26-3599-2, IBM Corp.
112 East Post Road, White Plains, N. Y. 10601.

[10] IBM System/360 Component Descriptions —
2321 Data Cell Drive, Publication No. A26-
5988-3, IBM Corporation, 112 East Post Road,
White Plains, N. Y. 10601.

[11] G. Salton, Search and Retrieval Experiments
in Real-Time Information Retrieval, Proc.
IFIP Congress, 1968, Edinburgh, Scotland,
August 1968.

[12] G. Salton and D. K. Williamson, A Comparison
Between Manual and Automatic Indexing Methods,
Information Storage and Retrieval, Scientific
Report No. ISR-14 to the National Science
Foundation, Section VI, Cornell University,
Dept. of Computer Science, October 1968.

1-56

Appendix

Digram Encipherment of English Words

A simple way to economize on the space required

to store long lists of English words in a 3 60 computer with

8-bit bytes (without abandoning the byte structure as would

be necessary if 5-bit or 6-bit codes were used) is to store

two characters in each byte. This offers nearly twice

the efficiency in storage use and permits simple trans­

lation to and from the packed format.

To implement this scheme, the 256 possible 8-bit

codes are assigned to the 219 most frequent digrams

(two-letter pairs) in English, the 26 single letters,

the ten numerals, and the hyphen. Although there are 676

possible digrams in English, the list of the 219 most

frequent digrams includes all digrams occurring more than

o.05% of the time, and covers 97% of all digram occurrences.

(This, of course, comes about because several hundred digrams

are phonetically forbidden, e.g. VG, QB, LJ). For the IRE

collection used with the SMART system, the digram list

below would have packed the words with an average density of

4.12 bits per character. Whenever, in encoding, an illegal

digram occurs, the individual letter substitutes are used

for one letter. For example, the abbreviation AEC contains

1-57

the usually rare digram AE, and would be enciphered as

"A" + "EC". "Abbreviation", on the other hand, is en­

ciphered normally as "AB" + "BR" 4- "EV" + "IA" + "TI" + "ON".

It should be noted that the alphabetical order of

words enciphered in this way will not be exactly the same

as the normal one, but assignment of the digram codes in

order, with the single-letter codes near the most similar

digrams produces almost-alphabetical ordering (e.g. the

single letter code for I should be in the place of the

digram II, which is the most frequent digram beginning

with I not in the list attached, and between the digram

codes for IG and IL, IH, IJ, and IK are even rarer than

II).

In theory, even greater economies could be achieved

by the use of trigram or higher-order encipherment, but

the unit of data would no longer be a byte if any

significant number of trigrams were used, and the enciphering

and deciphering tables would be much longer. The advantages

of introducing a few trigrams or tetragrams (THE, THA, ION,

TIO, etc. or TION, MENT, etc.) into an otherwise digram

encipherment do not seem to outweigh the additional

complexity.

The 225 most frequent English digrams in the IRE

text are as follows in decreasing frequency order:

TH
IN
ON
TI
ER

j HE
TE
AN
RE
AT
OR
ES
CO
10
AL
OF
ED
IT
EN
RA
IS
AR
NG
NT
ND

ST
DE
RI
SI
SE
OM
ME
LE
TO
NS
UT
MA
NE
CH
PR
TR
MP
TA
DI
FO
CA
CT
EC
VE
ET

EM
LI
CE
EL
PE
OL
AC
PU
HI
LA
AS
BE
NC
SS
NI
NA
US
OD
TS
HA
UN
IM
EX
GE
CU

LO
RS
GI
MI
PL
IG
OU
UL
IR
QU
CI
IL
UR
EA
HO
IV
IE
FI
PO
OG
WI
LY
SO
IA
LL

SC
AP
AM
RY
SU
PP
RM
YS
OP
BL
PA
SY
AG
UI
IB
GR
VO
XT
AB
UA
OC
RC
CR
EQ
NO

EV
MU
MO
RT
OS
VA
EE
RR
UM
UC
IF
AI
VI
AD
UE
WH
OT
LU
MS
GN
DU
EF
BI
BY
TY

SP
TU
LT
OW
FF
EP
FU
MM
SH
DA
LS
NU
IZ
RD
OB
MB
WO
WE
TW
BO
DS
PT
SA
AY
RU

AV
EG
FR
BA
00
ZE
NV
TC
CL
SW
TT
GA
PH
FA
UP
CK
UD
RG
BR
EW
DO
WA
GU
BU
HN

LD
01
EI
EO
IQ
RN
GO
FL
XI
YN
CC
NN
NF
XP
KE
UB
RK
SL
RV
RP
DD
DR
CS
CY
PI

The recommended list of 219 digrams is the above list

except for the six least frequent digrams, RP, DD, DR,

CS, CY and PI.

