ISR-9 -
August, 1965 XV-1

XV. HIERARCHY SET-UP 4ND HIERARCHY aND CONCEPT-CONCEPT
EXPaNSION PROCEDURES

M. Razar and G. Shapiro

l. Introduction

The present section describes a system for setting up a concept
hierarchy and for expanding Aocument vectors using this hierarchy aznd
the concept-concept correlctions produced by link 9 of SMART.

The hierarchy consiste of a tree-like structure where, in
general, several related concepts appear under one item of greater
generality. Provision ic made for having a concept number appear in
several places by allowing any concept in the hierarchy to cross-refercuce
any other. Cross-referencing is unidirectional and implies no hier-
archical relstion. For a description of the considerations involved in
congbructing a hierarchy, the reader is referred to Sec. III of
Report ISR-7.

Instead of being based on a treelike structure in core, the
present version of SMART uses a hierarchy stored on tape in list format.
Though this format (described in part 2) is highly redundant, it does
permit hierarchies of unlimited size to be used. (Compare with the
restrictions to less than one core-load effective in Sec. V of ISR-7).

If hierarchy expansion is requested, link 10 of SMART adds the
appropriate entries to the Aocument vectors of each Aocument. There ure

four possible modes of expansion: by parents, brothers, sons and cross-

Xv-2

references, corresponding t» weight parameters ROOTWT, BRANWT, LEAFWT
and CROSWT. Any or all of these may be requested simultaneously. It
was thought to be more efficient to do concept-concept expansion at
the same time as hierarchical expansions, since this permits the
exeaution of one pass through the sorted document vector tape for both
expansions.

Partas 2 and 3 of this section describe the routines used for
generating the hierarchy file cn the SMART library tape. Part 4
describes the expansion programs. The production of the concept-concept

correlation tape and its format are described in Sec. XIV of this report.

20 Card and Tape Formats; Size Limitations

The SETUP program reads information punched on cards in a
special format, constructs a tree, and writes some information per=-
taining to each node on tape. In particular, the following information
is provided for each node: its concept number (i.e. node value) and
the concept numbers of its parent, sons, brothefs and cross-referencesg.
The individual nodes are not numbered as such but are referred to solely
by the concept numbers assigned to them.

The card format used by SETUP is fairly simple. The first
number on a card is the concept number of a node in the tree. All
succeeding numbers on the card are cross-references to it. The position
of the nods in the tree is determined by the positicn of the first

number or the card. The column in which the rightmost digit of this

XV-3

first number is punched is referred to as the level of the node. The
level of a node is compared with the levels of the nodes on preceding
cards until one is found with a lower level (i.e. punched further to
the left). The first such preceding node is its parent. In preparing
a deck of cards to be rocessed by SETUP, the most esthetic approach
is to punch the concept number of a card at the same level as its
brothers and at a certain fixed level higher than its parent. This

is not necessary, however. A4s long as the parent of & node is the
first preceding node punched to the left of it SETUP will handle it

properly. (See Fig. 1.)

The tree (a) can be punched in (a) &%
either of the following e
ecuivalent formats (as well as 24 3 L
others) . j
5 6’1 17
1 1
2 2
3 5 or 3
. 5
A
6 6
7 7

Sample Card Format
Figure 1
When punching extremely Aeep hierarchies or nodes with long
lists of cross-references, one card per node may not suffice. If
desired, a card may be continued to the following one by any punch

in column 72. On each successive continuation card the level is

LV-4

incremented by 70 sc that column k on the nth card represents an
effective level of 70(n~- 1) + k. Column 71 is always left blank.
Therefcre a concept number and its cross-references should be con-
fined to columns 1-70. A single blank card terminates a bush. Two
consecutive blanks terminate the whole tree and prevent any further
data from being read in. To insure proper functioning, all concept
numbers should be at & higher level than the root of the bush. Roots
have no parent. SETUP identifies roots by giving them the fictitilous
parent O,

SETUP is designed with two criteria in mind. First, the
relevant information concerning each node (i.e. parent, sons,
brothers,; cross-references) should be readily accessible by means of
a fast and efficient search. Second, the hierarchy in the tree
structure should be easy to update. Since each node is completely
described by a single card (with, perhaps, some continuation cards),
insertions and deletions can be made, without massive changes. To
insert a rode one merely adds a card in the right place. To delete a
node, one removes the card and all its descendants.

To meet the requirement of accessibility, SETUP writes
informatlion on tape scrted in order by increasing concept numbers.
The actual format used in preparing the tape is as follows. BEach
word on tape contains two numbers packeé into it, the first in bits
1-17; and the second in bits 19-35. The first word of each logical
record contains the concept number in its first half and the parent in

its second half. The second and third words of each logical record

XV-5

give information as to the number and nature of the succeeding words in
the record. The second word has, in its first half, the total number
of words which will contain brothers, sons and cross-references; in its
second half it contains the number of words of brothers and sons. The
third word contains the number of words containing brothers; its second
half is filled out with zeros. Thus if there are five brothers, four
sons and three cross-references we will have three words of brothers

and two words each of sons and cross-references. (See Fig. 2.)

This refers to the case when there are five brothers,
four sons and three cross-referencese.

Sample of Words é and 3

Figure 2

The remainder of each logical record (words 4 and after) con-
sists of the lists of brothers, sons and cross-references packed two
to a word. If nl, n2, n3 respectively represent the numbers packed
into words 2 and 3, then the next n3 words (4 to n3 + 3) contain the
brothers; the following n2 - n3 words (n3+ 4 to n2+ 3) the sons; the
next nl- n2 words (n2+ 4 to nl+ 3) the cross-references.

As an example, suppose that the node labeledq "3" in Fig. 1
had cross-references to 41, 42, 56, 71, 103. Then it would produce

the logical record indicated in Fige. 3 below.

=

3 [T]
2 |75 T 2]

Tl O——]

A

Lo L2 T e]
0.

A58

(-

5 [5 [o]
6 L 41 1 42 |
7ol 6 m]

g 103 [o0]

Sample Logical Record
Figure 3

Two facts about this format should be mentioned. First, any
extra half-words are simply filled out with zeros. Second, the order
of the lists of brothers, sons and cross-references is determined by
the order of the data cards. 4s nc attempt is made to sort these
lists, they may appear in any permutation (e.g., a list bl, b2, b3 of
brothers might appear in the order k2, bl, b3).

Finally, although each logical record consists of nl+ 3 words,
it is more efficient to have somewhat larger physical records on tape.
A physical record will contain up to 1000 words. As many logical
records as can flt within this limit will be contained in each physical
recerd. |

A word should be sald about the size limitations of SETUP. No

mcre than ten cross-references, twenty sons and twenty brothers can be

V-7

accommodated. Moreover, as each logical record is limited to 25 words,
only <2 words can be used for these lists. Hence the maximum total
number of sons, brothers, and cross-references must not exceed this
limit. If the totsal number of references never exceeds 42, no trouble
can arise.

Also, bushes of more than 100 nodes may cause difficulties
(in practice, much larger bushes usually can be handled adequately).
If more space is desired the first Aimension of each of the following
should be changed: IND(100), NC@N(100), LCR&(100), NCRE(100,10),
NS@N(100,20). Neither of these limitations bothers SMART as none of
the trees presently used is complex enough to require any additional

space e

3. Description of Algorithms Used by SETUP

Most of the work of SETUP is done by a subroutine TRESET,
whichi is Adccigned to determine all the required informetion about
the troe structure wod vrite it on tape without sorting it or com-
pressing it. THESET recads the data cards with a subroutine NEWCRD
which is described below.

NEWCRD hus five arguments: NCONC, LEVEL, LCR@S, NCRES,
LTEST. These are all used to return information to TRESET; they -
are never used to give NEWCRD information. The first argument gives
the concept number and the second its level. The third and fourth

arguments are the length of the cross-reference list and the list

Xv-8

itself. The fifth argument is a flag indicating whether or not the card
Just read was blank.

To determine LEVEL, NEWCRD reads a card (with A-format), charac-
ter by character, into a vector CARD of dimension 72. Then it looks for
nonblank characters in columns 1-70. If it finds one, it continues to
look until it finds the next blanﬁ'bolumn (say, column k). Then LEVEL
is set at k-1 to indicate the position of the last Aiglt of the concept
number. If CARD (1-70) is blank, NEWCRD checks column 72. If it too is
blank, then the card is considered blank und NEWCKD returns with LTEST = O.
If column 72 is not blank, it goes to the next card, adding 70(n- 1) to
the level (when it is on the nth card for this node).

On the nonblenk cards, once NENCRD determines LEVEL, it checks
column 72 for continustions and sets a flag to record the fact. Then it
callg « subroutine KEKEAD which causes the current card to be read again.
The numbers on the curd are then read into a vector NUMB (by means of
SAO0 G-format). NUMB(l) becomes NCENC and the vector NCROS of cross-
references is filled from the remaining nonzero entries in NUMB. A
count is kept in LCROS. If continuations are needed, subsequent cards
are read immedistely into NUMB and then transferred into NCRAS. After
reading all the continuation cards pertaining to the node, LTEST is set
equal to 1 and NEWCRD returns.

The operation of TRESET is cente?ed around two push-down stores.
One contains the concept number read in before the one that just came
back from NEWCRD. It is referred to as the current-node pushdown

store or P.DeS. 1. The other contains the concept number of the last

LV-9

node to qualify us u purent. It is culled the current parent push-down
store or simply P.D.S... Tue ulgoritim used oy TWESET can then be out-

lineAd &s follows:

(1) HRead in o new curd via NEWCKD. I ulunk, set LEVEL = O.
(2) 1Is it & son of *he lust node before it (i.e. the top
of P.D.S.1)"

(a) 1If so, jush Aown P.D.S.Z and o' tne top of
P.D.S.1 to it. Theu push down P.D.S.1 and put

the new node on top. Then o buck to(1).
(b) If not .o on to (3).
(3) Is it a son of the current parent (i.e. the top of
P.D.S.2)?%

(a) If so, push dovn P.D.S.1l and put *the new node

on top. Go back to (1).

(b) If not, we have the total cet of sons of the

current parent. Go on to (4) for processing.

(4) Set up @ list of sons for tne current parent. Choose
nodes from tnis list one at a time.

(5) Process each in turn, taking the remainder of the list
as its brothers. Nuuely, pack into a buffer the lengths
of the brother, son ani cross-reference lists, together
with the concept number and parent of the chosen node
and the actual lists. BEvery time the buffer is full,
write it onto *ape and, after clearing it, continue.

(6) When the whole lict of souc has been processed, determine

the status of the pointer to P.D.S.2.

XV-10

(a) If it has not hit the bottom of P.D.S.2, pop up one

level (i.e. lower the pointer) and return to step

(3).

(b) If we are at the bottom (i.e. no parents are left
in P.D.S.2), the root.of the bush must be processed.
To do so, its perent is set equal to zero, and
after lowering the pointer beneath the bottom of
P.D.S.2, one must go to step (5). (This will

only occur if & blank card was read in.)

(¢) If we have gone through the bottom (i.e. if the root
of the bush has been processed), another card is
read. If it is blank (the second consecutive onel)
the buffer is written on tape and one returns to the
program. If not, return is made to (1) to process
a new bushe

TRESET writes tapes in the following way: 250 words meke up &
physical record. Each physical record is subdivided into ten 25-word
logical records. Each logical record contains the information as
described in part 2 of this section and is then filled out with zeros.

After calling TRESET, SETUP calls a sorting routine SPECTR,
which breaks up the physical records into their logical components and
sorts them in ascending order according to the value of NCONC (which is
in the first half of the first word of the logical record).

A short subroutine, called SQUASH, then removes the extra
zeros at the end of each recofd (hence, the neme) and packs them into
physiceal records of under 1000 words. This is the final output of
SETUP .

Xv-11

The TRESET and NEWCRD programs are described in Flowcharts 1

and 2, respectively.

L. The Expansion Programs

The main program of link 10, XPaND, performe the hierarchy and
concept-concept expansions (either or both depending on the parameters
CONCON and HIER). The expansion part of the program assumes that the
document vector tape, the concept-concept correlation tape, and the
hierarchy file of the library tape are in order, sorted by concept
numbers. This is always true of the last two of the tapes mentioneAd.
Thus expansion is essentially a two or three-way merge along with some
format juggling.

The Adocument vector tape may mot have been sorted into concept
order before link 10 is called. If CONCON is on, then link 9 has to
sort the Adocument vector tape in order to calculate the correlations
(cf. Sec. XIV). In this case, the tape and its number are left for
XPAND, unless only requests are to be expanded. In this last case the
sorted tape produced by link 9 contains document vectors as well as
request vectors, and thus includes much extraneous information.
Therefore when this option is active, XPAND reads the request
(and "LIKE") files of tape Bl, and sorts them internally using the
routine SORTDC; this can be done since all the requests must fit into
core. This sorted information is then written out onto a tape which

is used as input for the expansions proper. If only documents are to

Xv-12

be expanded, the requests are saved on the end of tape A4, since it
would be quite time-consuming to redo the sort already done by
link 9. Note that this permits tape Bl to be used as a scratch
tape if necessary.

If only HIFR is on, Bl will not have been sorted. In this
case, XPAND used the trap-controlled tape sort, SPECTR, to sort the
appropriate files of Bl (unless, again, only requests are to be
expanded so that SORTDC may be used). Perhaps the following table

clarifies these considerations:

To be
panded REQS DACS ALL
Method o
Expansion
X X X
CONCON Bl (regs,docs) Y (docs) Y (regs,docs)
& (regs)
HIER Bl (regs,docs) Bl (regs,docs) Bl (regs,docs)
X X X
BOTH Bl (regs,docs) Y (docs) ' Y (regs,docs)
& (regs) |

The tapes in the boxes are those left by the previous link (except for
the library tape which is not mentioned as it is always available).
X stands for the concept-concept correlation tape and Y for the concept-

ordered vector tapes.

file:///Bxpanded

XV-13

Before proceeding to the expansion proper, XPAND must also
figure out what tape is to be used as (temporary) output tape. Be-
cause of the large number of possible combination of options, and
because it is impossible to determine on which tape SPECTR (either
in link 9 or 10)will leave its output, this is not a simple task.
XPAND in fact attempts, Auring expansion, to perform the Aifficult
feat of keeping 3 or 4 tapes (on two channels) in operation
simultaneously. To facilitate what overlap is possible, XPAND
picks the output tape in such a way that the tapes are divided as
evenly as possible between the two channels, either two on each, or
two on one and one on the other.

The following discussion assumes that both the HIER and
CONCON indicators are on; if one is off, the procedure is the same
except that the part relevant to the missing option is skipped. The
basic procedure is to read a half-buffer load of input (from the
sorted Adocument vector tape) and then to read in as much of the
hierarchy followed by the concept-corcept tape as is needed to expand
this buffer load. Output is accumulated in a buffer, supervised by
subroutine LAUGH, and is written out each time a half-buffer is
filled. All input-output is handleAd by the trap-controlled routine
INOUT (through several interfaces). Each of the four tape operations
involved uses two half-vuffers, and before switching half-buffers
and starting a new transmission, the IOEND entry to INOUT is called
to insure that the previous transmission on this particular unit
has been completed. In this way, as much overlap as is possible is

effected with a minimum of bookkeeping on XPAND's part.

XV-14

The item size on the output tape is two words. 500 items are

packed to a physical record. The format of the item is:

S12 3 17 18 - 20 21 35

Con No. { T WEIGHT

Doc No. FLAG

where Con. No. is the 18 bit concept number, Doc. No. is the document
number, WEIGHT is the weight of this concept in document Doc. No., and
FLAG is a bit which is on if and only if this item is a document
identifier. In this case, the rest of the entry is BCD and is merely
copied onto the output tape for later use in identification.

During expansion, the weight of an output item is set equal

to the weight of the input concept number which it is expanding. On

expansion
T =1 for a CONCON expansion
T=2 " " parent N
T=3 " " brother n
T=/, " " son]
T=5 " " orogs- "
reference

The input concept number is always copied onto the output
tape (with a tag of zeroc), except if the HIER option calls for
replacement of the items in the original vector by the expanded
items, and CONCON is off. These tags are used by programs in
link 8, when the program is called again so that it can weight

each different type of item correctly according to the values of

XV-14

(in order of tags) COCUWT, [OOTWT, BRaNWT, LEaFWT, znd CROSWT.

XPAND, at the start of the expansion code, initializes all
relevant input-output and the following pointers: INg which points
%o the next locction in input half-buffer number INL which 1s to be
used; IHg which jointes to tlie next location in the hierarchy half-buffer
number IHB which is to be used; ICq vhich points o the next locution
in the concept-concept huli-ouffer number ICB which is to be used; unA
I0q which pointe to btlie next location in the output holf-ouffer number
IO which it to be used. ali the counts sturt &t *heir maximum velue
and count down since FUuTHAN arrays are orderod invercely with respect
to *zpe order.

Control then pusses *o tae hierarchy expunsion section. The
current element of the input buffer is compare”d to the current element
of the hierarchy buffer. If the former is grecter, subroutine HIERN
is called. On return, IHY and IHB point to the czppropriate next item
of the hierarchy buffer. HIERN steps IHy (b, the amount required by
the pointer ovuilt into the nierarcny entry, as described in part 2)
and checks to see 1l the puffer has been exhuusted; if it has, it calls
I0END, switches IHBE and resets IHY, and starts another read.

If the two concepts match, each of the four possible hier-
archny expansion option weights is examined in turn, and for each one
that is nonzero, the appropriate entries are written onto the output
tape. The pointer to the input buffer is then advanced as described

in the next paragraph.

XV-16

If the input concept number is less than the hierarchy concept
number, INQ is stepped (down) and a test is made to see whether the
input buffer is finished. If not, the comparison mentioned above is
repeated.

When the input buffer has been exhausted by the hierarchy
expansion section of code, INQ is reset and a very similar process 1s
performed for the CONCON expansion. In thils case, the operations are
- somewhat simplified since there is but one type of expansion to be
performed, and since pointers don't have to be unpacked as they do in
the hierarchy case.

When both hierarchy and concept-concept expansion have been
performed for one input half-buffer, INB is switched, the next input
buffer 1s read, and processing continues.

If either the hierarchy or concept-concept tape 1s exhausted
before the input tape is exhausted, switches are set so that the
relevant sections of code are no longer executed. 4t any rate, any
excess on the input tape is copied onto the output tape (unless the
option is HIER replace only).

After the output tape has been completely written, it must be
sorted back into order according first to document number and then
concept number. This sort sends the document identifier to the end
of the expanded document vector, making it possible for MERVEC, in
link 8, to identify the document properly. Again, some care must be
taken in choosing the scratch tapes for the sort. The output tape

number of the sort is left in a CQMMON location for MERVEGC.

Xv-17

The mein subroutines called by XPAND are:

(1) INOUT routines +hrough interfuces sNIBIN, XOBIN,
WAITZ and WalT3.

(2) LAUGH(4,B) which enters 4 and 8 into the output
buffer ani controls output tape operation.

(3) HIERN which sets pointer IHY and IHB and controls
the hiercrchy tape operationse.

(4) CONIN wiich sets pointers ICY and ICB and controls
concept-concept tape operation.

(5) HUP(I,N,T) which writes onto the output tape (using
LaUGH) the expansion of the current item in the
input buffers by items in the hierarchy buffer,
starting at index I and proceeding through N packed
words, giving each output item a tag of T. This
routine is used for all hierarchy expansions, except
paerent expension, since the latter, in general,
require & list, rather than a single item, to be

addeA to the output tape.

Flowchart III describes XPaND. IEXPaN = 1, 2, or 3 wccording
as requeste, documents or all must be expanded. ITP is the input
tape number for the expansion proper. IY is the sorted tape number
left b, link 9. IX is the CONCON tape number. IBS = 10 is the
number of the library tape. INP, dimensioned 2 X 500 X 2 is the input

buffer; the lasst subscript determines which buffer half is being used.

Xv-18

NHIE is set to IHIER, the parameter which is 0,1,2 according as HIER
is off, expand or replace. Note that, if both HIER and CONCON are on
and NHIE = 1, the HIER section puts the input concept number out on
tape (but CONCON doesn't since it ought not to be written out twice).
If the hierarchy is exhausted before the concept-concept tape is
terminated, NHIE is set to zero so that CONCON will be forced to write
out these concept numbers. LCON, similarly, is set to CONCON originally.
If the CONCON tape is finished before the hiersrchy tape, LCON is set
to zero and NHIE to 1 so that the hierarchy section will continue
writing out the input concept numbers. Ll and L2 are switches corre-
sponding to FORTRAN assigned GO's. IHCNT, ICCNT and ICCNT are set
negative if and only if an end of file is read on the hierarchy,
concept-concept, or input tapes, respectively. INCNT negative will,
therefore terminate the expansion.

Note also that XISTF(N) masks out the low order IS bits of the

argument .

-~

(@)

ENTE

1

Kead in a carj
with &EWCRD.

. Y
Is card blank? -

Write buffer on
tape if it is
" not blank.
28

no
vyes

"> and P.D.S.2 by

RETURN

)
|
/]
Set up lists of sons '
and brothers:
LSON(I2)=I-1I2
LBRO=LSON(I2)
NPAR=NCON(I2)
NSON(I2,L)=NCON(I2+L)
NBRO(L)=NSON(I2,L)
(For L=1,...,LBRO)
N

T T ——

ii}?,tbé buffer fﬁii?;/r” —

{I=12
M=1
Process the node NpRO(IZ+M) |
by loading the lists and \
their lengths into the i
ibuffer. !

-

LRVEL = LTEST*LEVELw— -

y

! [Initislize P.D.S.1l

setting I=J=0. _

e

| INCRO(I,L)=NCROS(L)

IND(J)=I
I2=IND(J)

=
- "4 .

I=1+1

LEV(I)=LEVEL

NCON(I)=NCONC
LCRO(I)=LCROS

=

(For L=1,...,LCR(S)

. !, S b

LEVEL:LEV(I2)) =
a

3

Write buffer
onto tapee.
Clear buffer.

]

I2=0

IBRO=1

NPAR=0
NBRO(1)=NCON(1)

Program for TRESET

Flowchart 1

\

Note: Numbers refer
to the numbers of the
steps outlined on
page 9.

Xv-20

ENTER

ILX = OI

e
[READ (CARD(K),K=1,...,72)|

-

NCROS (LCROS+J)=

1
(" CARD(K):BLANK O
; e
(CARD(K):BLANK) #

LEVEL=LX+K-1
LCR@S=1
FLAGL=1

ALL
F

(__CARD(72 :B?L(ANK =

FLAG=

[READ (NUMB(J[),J=1, v00y20)]

FLAGL: 0 -

#

NCONC=NUMB (1)
J1=2

NUMB (J)

CNU}_&B(JY:O)

L
|LQE§=J-1+LCB@I

L
FLAGL=0
J1=1

[READ NEXT CARD INTO

@laz_r;,\"

LTEST=1
RETURN

Program for NEWCRD
Flowchart 2

CARD(K),K=1,...,72

©
wfIaN -0 TO LY
(©

ac IGN 10 T L2

liiticlice ICB,ICYs Reud in 1st
bulter Lalf of con-con from IX,
ctort read of 2nde |

&

’ N \‘L/- 5!
st LGN 300 T4 12

ud TO L1 '
(130 or 220)
130
INg = 500 .
Lol = 1KP(e,INg,IN5)
LC< = INP(1,INg,INB)

Ny S
alSTF(LCLl): current -~
wicr entry

,aLL HIERN

10:0NT: 0”_ =

P rfort. o w.ion de,endent on
Lues of wWOUTWT , b RANWT , LE&FWT,
ndouT using LaUGH and HUP

XV-21

Read in one or two files Aepending |
on whether there are any LIKES on |
Bl. Cort with S@RTDC, set

@Zg;; 5. Write them out

Nt —

b~

g /\ -
LENGEN: O

2

ckip file on Bl

Deternine numoer of files of BL to
be sorted. Sort Bl; output tupe of
sort becomes ITP.

O

Sk . S
Deteriine vhich tape ITP is to be.

//”)g\b
< HIER: Q= = MT‘
S0P B)

#
4SSIGN 130 T4 L]
L. I SR

Initizlize IHB,IHq; read in lst|
‘buffer loud of hier. from IB5,

Estart read of <nd. B
SCONCEN: (C)
\\\"(e

©
XP4ND
Flowchart 3

LV-22

Do expansion using LAUGH] NQ = INQ-?

J:__-_—(:> Is input buffer exhausted
]@m

= INQ-1, 1s input
buffer exhausted

YES @B NG
T (¥ lgsslmm 200 T¢ L1

ASSIGN 300 T9 L2
LCON = 0

HIE; =

00 | 7
Finish read of ITP. Switchl

buffer halves, start next
read set NHIE = 1

L &”“‘7:)
Finish copying ITP onto JTP

if necessary

Choose tapes for sort of J%P. Y LC1 = INP(2,INQ,INB)

End file and rewind appropriate LC2 = INP(1,INQ,INB)
tapes.

Sort JTP; result ends up on
tape with number stored in

I4UT.

RETURN

Flowchart 3 (continued)

