
ISR-9 
August, 1965 

IV-1 

XV. HIERARCHY SET-UP AND HIERARCHY AND (JONGEPT-CONCEPT 
EXPANSION PROCEDURES 

M. Razar and G. Shapiro 

1. Introduction 

The present section describes a system for setting up a concept' 

hierarchy and for expanding document vectors using this hierarchy and 

the concept-concept correlations produced by link 9 of SMART. 

The hierarchy consists of a tree-like structure where, in 

general, several related concepts appear under one item of greater 

generality. Provision is made for having a concept number appear in 

several places by allowing any concept in the hierarchy to cross-referr 

any other. Cross-referencing is unidirectional and implies no hier­

archical relation. For a description of the considerations involved in 

constructing a hierarchy, the reader is referred to Sec. Ill of 

Report ISR-7. 

Instead of being based on a treelike structure in core, the 

present version of SMART uses a hierarchy stored on tape in list format. 

Though this format (described in part 2) is highly redundant, it does 

permit hierarchies of unlimited size to be used. (Compare with the 

restrictions to less than one core-load effective in Sec. V of ISR-7). 

If hierarchy expansion is requested, link 10 of SMART adds the 

appropriate entries to the document vectors of each document. There are 

four possible modes of expansion: by parents, brothers, sons and cross-



XV-2 

references, corresponding to weight parameters ROOTWT, BRANWT, LEAFWT 

and GROSWT. Any or all of these may be requested simultaneously. It 

was thought to be more efficient to do concept-concept expansion at 

the same time as hierarchical expansions, since this permits the 

execution of one pass through the sorted document vector tape for both 

expansions. 

Parts 2 and 3 of this section describe the routines used for 

generating the hierarchy file on the SMART library tape. Part 4 

describes the expansion programs. The production of the concept-concept 

correlation tape and its format are described in Sec. XIV of this report. 

2o Card and Tape Formats; Size Limitations 

The SETUP program reads information punched on cards in a 

special format, constructs a tree, and writes some information per­

taining to each node on tape. In particular, the following information 

is provided for each nodes its concept number (i.e. node value) and 

the concept numbers of its parent, sons, brothers and cross-references. 

The individual nodes are not numbered as such but are referred to solely 

by the concept numbers assigned to them*, 

The card format used by SETUP is fairly simple. The first 

number on a card is the concept number of a node in the tree. All 

succeeding numbers on the card are cross-references to it. The position 

of the node in the tree is determined by the position of the first 

number on the card. The column in which the rightmost digit of this 



XV-3 

first number is punched is r^f^rred to as the level of the node. The 

level of a node is compared with the levels of the nodes on preceding 

cards until one is found with a lower level (i.e. punched further to 

the left). The first sucn preceding node is its parent. In preparing 

a rfeck of car^s to be processed by SETUP, the most esthetic approach 

is to punch the concept number of a card at the same level as its 

brothers and at a certain fixed level higher than its parent. This 

is not necessary, however. As long as the parent of a node is the 

first preceding no^e punched to the left of it SETUP will handle it 

properly. (See Fig. 1.) 

The tree (a) can be punched in 
either of the following 
equivalent formats (as well as 
others). 

(a) 
* 

2« 

6vi 7 

2 
3 

6 
7 

or 

Sample Card Format 

Figure 1 

When punching extremely deep hierarchies or nodes with long 

lists of cross-references, one carr! per node may not suffice. If 

desired, a card may be continued to the following one by any punch 

in column 72. On each successive continuation card the level is 



XV~4 

incremented by 70 sc that column k on the nth card represents an 

effective level of 70(n~ 1) + k. Column 71 is always left blank. 

Therefore a concept number and its cross-references should be con­

fined to columns 1~7Q. A single blank card terminates a bush* Two 

consecutive blanks terminate the whole tree and prevent any further 

data from being read in. To insure proper functioning, all concept 

numbers should be at a higher level than the root of the bush. Roots 

have no parent. SETUP identifies roots by giving them the fictitious 

parent 0. 

SETUP i3 designed with two criteria in mind. First, the 

relevant information concerning each node (i.e. parent, sons, 

brothers* cross-references) should be readily accessible by means of 

a fast and efficient search. Second, the hierarchy in the tree 

structure should be easy to update. Since each node is completely 

described by a single card (with, perhaps, some continuation cards), 

insertions and deletions can be made, without massive changes. To 

insert a r.ode one merely adds a card in the right place. To delete a 

node, one removes the card and all its descendants. 

To meet the requirement of accessibility, SETUP writes 

information on tape sorted In order by increasing concept numbers. 

The actual, format used in preparing the tape is as follows. Each 

word on tape contains two numbers packed into it, the first in bite 

1-17* and the second in bits 19-35* The first word of each logical 

record contains the concept number in its first half and the parent in 

its second half* The second and third words of each logical record 



give information as to the number and nature of the succeeding words in 

the record. The second word has, in its first half, the total number 

of words which will contain brothers, sons and cross-references; in its 

second half it contains the number of words of brothers and sons. The 

third word contains the number of words containing brothers; its second 

half is filled out with zeros. Thus if there are five brothers, four 

sons and three cross-references we will have three words of brothers 

and two words each of sons and cross-references. (See Fig. 2.) 

2 1 0 

This refers to the case when there are five brothers, 
four sons and three cross-references. 

Sample of Words 2 and 3 

Figure 2 

The remainder of each logical record (words 4 and after) con­

s i s t s of the l i s t s of brothers, sons and cross-references packed two 

to a word. If n l , n2, n3 respectively represent the numbers packed 

into words 2 and 3> then the next n3 words (4- to n3 + 3) contain the 

brothers; the following n2- n3 words (n3+ 1+ to n2+ 3) the sons; the 

next n l - n2 words (n2+ 4 to nl+ 3) the cross-references. 

As an example, suppose that the node labeled "3" in Fig. 1 

had cross-references to 41 , 42, 56, 71, 103. Then i t would produce 

the logical record indicated in F ig . 3 below. 



XV-6 

1 

2 

3 

4 

5 

6 

7 

S 

L 3 " 

! 5 

i x~ 

L...2 

[ "5 

L .41 _ 
I... 56 ; 

1 103 

l 1 

L..A__ J 
" ..o_J 
r 4... ~\ 

1 "7l'~l 
1 0 i 

Sample Logical Record 

Figure 3 

Two facts about this format should be mentioned* First, any-

extra half-words are simply filled out with zeros. Second, the order 

of the lists of brothers, sons and cross-references is determined by 

the order of the data cards. As nc attempt is made to sort these 

lists, they may appear in any permutation (e<»g., a list bl, b2, b3 of 

brothers might appear in the order b2, bl, b3) • 

Finally, although each logical record consists of nl+ 3 words, 

it is more efficient to have somewhat larger physical records on tape. 

A physical record will contain up to 1000 words. As many logical 

records as can fit within this limit will be contained in each physical 

record* 

A word should be said about the size limitations of SETUP• No 

mere than ten cross-references, twenty sons and twenty brothers can be 



IV 

accommodated. Moreover, as each logical record is limited to 25 words, 

only 22 words can be used for these lists. Hence the maximum total 

number of sons, brothers, and cross-references must not exceed this 

limit. If the total number of references never exceeds 4-2, no trouble 

can arise. 

Also, bushes of more than 100 nodes may cause difficulties 

(in practice, much larger bushes usually can be handled adequately). 

If more space is desired the first dimension of each of the following 

should be changed: IND(lOO), NCJ0N(1OO), LCR0(1OO), NCR£)(100,10), 

NSjeiN(100,20). Neither of these limitations bothers SMART as none of 

the trees presently used is complex enough to require any additional 

space• 

3. Description of Algorithms Used by SETUP 

Most of the work of SETUP is done by a subroutine TRESET, 

which is design̂  1 bo Ictermine all the required information about 

the tree structure and write it on tape without sorting it or com­

pressing it. TKESET roads the r̂ ata cards with a subroutine NEWCRD 

which is described below. 

NEWCRD has five arguments: NCj0NC, LEVEL, LCRJ0S, NCR0S, 

LTEST. These are all used to return information to TRESETj they 

are never used to give NEWCRD information. The first argument gives 

the concept number and the second its level. The third and fourth 

arguments are the length of the cross-reference list and the list 



XV-8 

itself. The fifth argument is a flag indicating whether or not the card 

just read was blank. 

To determine LEVEL, NEWCRD reads a card (with A-format), charac­

ter by character, into a vector CARD of dimension 72. Then it looks for 

nonblank characters in columns 1-70. If it finds one, it continues to 

look until it finds the next blank-column (say, column k). Then LEVEL 

is set at k- 1 to indicate the position of the last digit of the concept 

number- If CARD (1-70) is blank, NEWCRD checks column 72. If it too is 

blank, then the card, is considered blank and NEWCRD returns with LTEST = 0. 

If column 72 is not blank, it goes to the next card, adding 70(n- 1) to 

the level (when it is on the nth card for this node). 

On the nonblank cards, once NEWCRD determines LEVEL, it checks 

column 72 for continuations and sets a flag to record the fact. Then it 

calls a subroutine REREAD which causes the current card to be read again. 

The numbers on the card are then read into a vector NUMB (by means of 

SAO G-format). NUMB(l) becomes NCJ0NC and the vector NCR0S of cross-

references is filled from the remaining nonzero entries in NUMB. A 

count is kept in LCR0S. If continuations are needed, subsequent cards 

are read immediately into NUMB and then transferred into NCR£iS. After 

reading all the continuation cards pertaining to the node, LTEST is set 

equal to 1 and NEWCRD returns. 

The operation of TRESET is centered around two push-down stores. 

One contains the concept number read in before the one that just came 

back from NEWCRD. It is referred to as the current-node pushdown 

store or P.D.S. 1. The other contains the concept number of the last 



XV 

node to qualify as a parent. It is called the current parent push-down 

store or simply P.D.S.2. Til'-* algorithm used by TitESET can then be out­

line^ as follows: 

(1) Read iri a no v. card via I'MEWCKD. If blank, set LEVEL = 0. 

(2) Is it a son of *--he last node before it (i.e. the top 

of P.D.S.I)? 

(a) If so, push down P.D.S.2 and a"1 the top of 

P.D.S.1 to it. Then ru?>}i down P.D.S.I and put 

the new node on top. Then ,jo back to(l). 

(b) If nof go on to (.3) . 

(3) Is it a son of fn^ current parent (i.e. th* top of 

P.D.S.2)? 

(a) If so, push down P.D.S.1 and put ^he new node 

on top. Go back to (1). 

(b) If not, we have the total set of sons of the 

current parent. Go on to (4.) for processing. 

(4.) Set up a list of sons for the current parent. Choose 

nodes from this list one at- a time. 

(5) Process each in turn, taking the remainder of the list 

as its brothers. Namely, pack into a buffer the lengths 

of the brother, son and cross-reference lists, together 

with the concept number and parent of the chosen node 

and the actual lists. Every time the buffer is full, 

write it onto tape and, after clearing it, continue. 

(6) When the whole list of sons has been processed, determine 

th^ status of the pointer to P.D.S.2. 



XV-10 

(a) If it has not hit the bottom of P.D.S.2, pop up one 

level (i.e. lower the pointer) and return to step 

(3). 

(b) If we are at the bottom (i.e. no parents are left 

in P.D.S.2), the root, of the bush must be processed. 

To do so, its parent is set equal to zero, and 

after lowering the pointer beneath the bottom of 

P.DeS.2, one must go to step (5) • (This will 

only occur if a blank card was read in.) 

(c) If we have gone through the bottom (i.e. if the root 

of the bush has been processed), another card is 

read* If it is blank (the second consecutive onel) 

the buffer is written on tape and one returns to the 

program. If not, return is made to (1) to process 

a new bush. 

TRESET writes tapes in the following ways 250 words make up a 

physical record. Each physical record is subdivided into ten 25-word 

logical records. Each logical record contains the information as 

described in part 2 of this section and is then filled out with zeros. 

After calling TRESET, SETUP calls a sorting routine SPECTR, 

which breaks up the physical records into their logical components and 

sorts them in ascending order according to the value of NCJ0NC (which is 

in the first half of the first word, of the logical record). 

A short subroutinep called SQUASH, then removes the extra 

zeros at the end of each record (hence, the name) and packs them into 

physical records of under 1000 words. This is the final output of 

SETUP. 



XV-11 

The THESET and NEWGRD programs are described in Flowcharts 1 

and 2, respectively. 

4. The Expansion Programs 

The main program of link 10, XPAND, performs the hierarchy and 

concept-concept expansions (either or both depending on the parameters 

C0NC0N and HIER). The expansion part of the program assumes that the 

document vector tape, the concept-concept correlation tape, and the 

hierarchy file of the library tape are in order, sorted by concept 

numbers. This is always true of the last two of the tapes mentioned. 

Thus expansion is essentially a two or three-way mprge along with some 

format juggling. 

The document vector tape may not have been sorted into concept 

order before link 10 is called. If C0NC0N is on, then link 9 has to 

sort the document vector tape in order to calculate the correlations 

(cf. Sec. XIV). In this case, the tape and its number are left for 

XPAND, unless only requpsts are to be expanded. In this last case the 

sorted tape produced by link 9 contains document vectors as well as 

request vectors, and thus includes much extraneous information. 

Therefore when this option is active, XPAND reads the request 

(and "LIKE") files of tape Bl, and sorts them internally using the 

routine SORTDC; this can be done since all the requests must fit into 

core. This sorted information is then written out onto a tape which 

is used as input for the expansions proper. If only documents are to 



XV-12 

be expanded, the requests are saved on the end of tape kU> since it 

would be quite time-consuming to redo the sort already done by 

link 9- Note that this permits tape Bl to be used as a scratch 

tape if necessary* 

If only HIER is on, Bl will not have been sorted. In this 

case, XPAND used the trap-controlled tape sort, SPBCTR, to sort the 

appropriate files of Bl (unless, again, only requests are to be 

expanded so that SORTDC may be used). Perhaps the following table 

clarifies these considerations; 

" \ . To be 
"\Bxpanded 

Method ° ± \ ^ 
Expansion "~~\J 

CjeSN«5N 

HIER 

BtfTH 

REQS 

X 

Bl (reqs,docs) 

Bl (reqs,docs) 

X 

Bl (reqs,docs) 

DjeJcs 

X 

Y (docs) 

A4. (reqs) 

Bl (reqs,docs) 

X 

Y (docs) 

M (reqs) 

ALL 

X 

Y (reqs,docs) 

Bl (reqs,docs) 

X 

Y (reqs,docs) 

The tapes in the boxes are those left by the previous link (except for 

the library tape which is not mentioned as it is always available)• 

X stands for the concept-concept correlation tape and Y for the concept-

ordered vector tapeo 

file:///Bxpanded


Before proceeding to the expansion proper, XPAND must also 

figure out what tape is to be used as (temporary) output tape. Be­

cause of the large number of possible combination of options, and 

because it is impossible to determine on which tape SPECTR (either 

in link 9 or 10) will leave its output, this is not a simple task. 

XPAND in fact attempts, during expansion, to perform the difficult 

feat of keeping 3 or U tapes (on two channels) in operation 

simultaneously. To facilitate what overlap is possible, XPAND 

picks the output tape in such a way that the tapes are divided as 

evenly as possible between the two channels, either two on each, or 

two on one and one on the other. 

The following discussion assumes that both the HIER and 

G0NC0N indicators are on; if one is off, the procedure is the same 

except that the part relevant to the missing option is skipped. The 

basic procedure is to read a half-buffer load of input (from the 

sorted document vector tape) and then to read in as much of the 

hierarchy followed by the concept-concept tape as is needed to expand 

this buffer load. Output is accumulated in a buffer, supervised by 

subroutine LAUGH, and is written out each time a half-buffer is 

filled* All input-output is handled by the trap-controlled routine 

INOUT (through several interfaces). Each of the four tape operations 

involved uses two half-buffers, and before switching half-buffers 

and starting a new transmission, the IOEND entry to INOUT is called 

to insure that the previous transmission on this particular unit 

has been completed• In this way, as much overlap as is possible is 

effected with a minimum of bookkeeping on XPAND1s part. 



xv-H 

The item size on the output tape is two words. 500 items are 

packed to a physical record• The format of the item is; 

S12 3 17 

Con No. 

Doc No. 

18 - 20 

T 

21 35 

WEIGHT 

FLAG 

where Con. No. is the 18 bit concept number, Doc. No. is the document 

number, WEIGHT is the weight of this concept in document Doc. No., and 

FLAG is a bit which is on if and only if this item is a document 

identifier. In this case, the rest of the entry is BCD and is merely 

copied onto the output tape for later use in identification. 

During expansion* the weight of an output item is set equal 

to the weight of the input concept number which it is expanding. On 

expansion 

T = 1 for a C0NC0N expansion 

T = 2 » • parent « 

T = 3 " " brother » 

T = 4 » " son » 

T a 5 « « cross- " 
reference 

The input concept number is always copied onto the output 

tape (with a tag of zero), except if the HIER option calls for 

replacement of the items in the original vector by the expanded 

items, and C0NC0N is off. These tags are used by programs in 

link 8, when the program is called again so that it can weight 

each different type of item correctly according to the values of 



X V - J ^ 

( i n o r ^ e r o f t a g s ) COCCWT, ItQOTWT, bKaNUIT, LEAFWT, and ORQSWT. 

XPAND, a t + tin start of the expansion code, initializes al l 

relevant input-output an^ the following pointers: IN^ which points 

to the next location in input half-buffer number INB which is to be 

used; IHtni which points to the next location in the hierarchy half-buffer 

number IHB which is to be used; IG^ which points to the next location 

in the concept-concept half-buffer number ICB which is to be used; an̂  

I0y which points to the next location in the output half-buffer number 

IQb which is to be used- all the counts start at their maximum value 

and count flown since FuaTKaN arrays are ordered inversely with respect 

to tape or^er. 

Control then passes to the hierarchy expansion section• The 

current element of th« input buffer is compare^ to the current element 

of the hierarchy buffer. If the former is greater, subroutine HIERN 

is called. On return, IHQ and IHB point to the appropriate next item 

of the hierarchy buffer. HIERN steps IH^ (by the amount required by 

the pointer built into the hierarchy entry, as described in part 2) 

anr* checks to see if the buffer has been exhausted; if i t has, i t calls 

IOEND, switches IHB and resets IHQ, and starts another read. 

If the two concepts match, each of th» four possible hier­

archy expansion option weights is examined in turn, and for each one 

that is nonzero, the appropriate entries are written onto the output 

tape* The pointer to the input buffer i s then advanced as described 
• 

in the next paragraph. 



XV-16 

If the input concept number is less than the hierarchy concept 

number, INQ is stepped (down) and a test is made to see whether the 

input buffer is finished* If not, the comparison mentioned above is 

repeated. 

When the input buffer has been exhausted by the hierarchy 

expansion section of code, INQ is reset and a very similar process is 

performed for the CONCON expansion. In this case, the operations are 

somewhat simplified since there is but one type of expansion to be 

performed, and since pointers don't have to be unpacked as they do in 

the hierarchy case. 

When both hierarchy and concept-concept expansion have been 

performed for one input half-buffer, INB is switched, the next input 

buffer is read, and processing continues. 

If either the hierarchy or concept-concept tape is exhausted 

before the input tape is exhausted, switches are set so that the 

relevant sections of code are no longer executed. At any rate, any 

excess on the input tape is copied onto the output tape (unless the 

option is HIER replace only). 

After the output tape has been completely written, it must be 

sorted back into order according first to document number and then 

concept number* This sort sends the document identifier to the end 

of the expanded document vector, making it possible for MERVEC, in 

link 8, to identify the document properly. Again, some care must be 

taken in choosing the scratch tapes for the sort. The output tape 

niunber of the sort is left in a CCMMON location for MERVEC. 



XV 

The main subroutine:-- called by XPAND are: 

. (1) INOUT routine- through interfaces ANIBIN, XOBIN, 

WAIT2 and '*VAlT3. 

(2) LAUGH (a, B) which enters A and B into the output 

buffer and controls output tape operation. 

(3) HIERN which sets pointer IH^ and IHB and controls 

the hierarchy tape operations. 

(4) CONIN which sets pointers IC^ and ICB and controls 

concept-concept tape operation. 

(5) HUP(I,N,T) which writes onto the output tape (using 

LAUGH) the expansion of the current item in the 

input buffers by items in the hierarchy buffer, 

starting at index I and proceeding through N packed 

words, giving each output item a ta£ o f T. This 

routine is used for all hierarchy expansions, except 

parent expansion, since the latter, in general, 

require a list, rather than a single item, to be 

added to the output tape. 

Flowchart III describes XP&ND. IEXPAN = 1 , 2, or 3 according 

as requests, documents or all must be expanded* ITP is the input 

tape number for the expansion proper. II is the sorted tape number 

left by link 9- IX is the CONCON tape number. IB5 = 10 is the 

number of the library tape. INP, dimensioned 2 X 500 X 2 is the input 

buffer; the last subscript determines which buffer half is being used. 



XV-18 

NHIB is set to IHIER, the parameter which is 0,1,2 according as HIER 

is offc, expand or replace. Note that, if both HIER and C0NC0N are on 

and NHIE =* 1, the HIER section puts the input concept number out on 

tape (but C0NC0N doesnBt since it ought not to be written out twice)• 

If the hierarchy is exhausted before the concept-concept tape is 

terminated, NHIE is set to zero so that G0NC0N will be forced to write 

out these concept numbers. LCON, similarly, is set to C0NC0N originally. 

If the C0NC0N tape is finished before the hierarchy tape, LCON is set 

to zero and NHIE to 1 so that the hierarchy section will continue 

writing out the input concept numbers. LI and L2 are switches corre­

sponding to FORTRAN assigned G03s. IHCNT, ICGNT and ICCNT are set 

negative if and only if an end of file is read on the hierarchy, 

concept-concept, or input tapes, respectively. INCNT negative will, 

therefore terminate the expansion. 

Note also that XISTF(N) masks out the low order IS bits of the 

argument. 



XV-19 

0 
IEJNTERI 

i 
hear! i n a car. 

with MEWCRD 3 LEVEL = LTEST*LEVEL)<-

v 
I s card blank?_ 

yes 
Write buffer on 
tape if it is 
not blank. 

no 

L_ 
[initialize P.D.S.l 

_>J and P.D.S.2 by-
set t i ng I=J=Q. . _.. 

RETURNI 

i Set up lists of sons 
and brothers: 
LS0N(I2)=I-I2 
LBRO=LSON(I2) 
KPAB=NC0N(I2) 
NS0N(I2,L)=NC0N(I2+L) 
NBR0(L)=NS0N(I2,L) 
(For L=l,...,LBRO) 

1=12 
M=l 

A. 
Process the node I\iaR0(l2+M) 
by loading t h e l i s t s and. 
: the i r l e n g t h s i n t o the 
ibuffer. 

; .. i. 
I s trie buf fe r f u l l ? V-

to=M+le£- (¥ii 
no 

tiRQ_ 

J=J- l |g -

(a> -( J,:Q >-
b 

JI2=IND(J) 

12=0 
LBRO=l 
NPAR=0 
NBR0(1)=NC0N(1) 

i .nu<i i n a ca r 
with NEWCRD 3 

\i/-

LEVEL;LEV(I) ) 2 

J=J+1 
IND(J)=I 

!l2=IND_£jj 

1=1+1 
LEV(I)=LEVEL 
NC0N(I)=NC0NC 
LCR0(l)=LCR0S 
NCRO(l,L)=NCRQS(L) 
(For L=1,. . . ,LCR0S) 

LEVEL:LEV(12) 

Write buffer 
onto t a p e . 
Clear b u f f e r . 

Note: Numbers r e f e r 
t o the numbers of t h e 
s t e p s ou t l i ned on 
page 9 . 

Program for TRESET 

Flowchart 1 



17-20 

ENTER-

©-
LX = 0 

C CARD (72);BLANK >̂ 

I LTEST=0 
IRETURN 

LX=LX+70 

READ (CARD(K),K=1,...,72) 

NCReJS(LCR£5S+J)=|̂ . 
NUMB (J) 

K=l 

3 ( CARD(Kj;BLANK3 

K=K+1 
I 

( CARD(K){BLANK ^ * 

LE7EL=LX+K-1 
LCRe)S=l 
FLAG1=1 

CALL REREAD 
FLAGaQ 

( CARD(72);BLANK > - , = 

FLAG=1| 

READ (NUMB(J) tJ=l, . . . ,20) 

C FLAGlrO >-r-

NCjeiNC=NUMB(l) 

J=JI 

y NUMB(J);0 ^> 

LCR0S=J-l+LCRdS 

FLAG1=0 
|jl=l. 

C FLAG; 0 ^ -

LTEST=1 
RETURN 

READ NEXT CARD INTC( 
CARD(K),K=1,...,72 

Program for NEWCRD 

Flowchart 2 



XV-21 

<$ 
L-

luiflGK - Jo TO L I 

.iJJL'IGK ~.U T£5 L2' © 

EWTER 

or 3 

I n i t i a l i s e ICB,ICQ. Head in 1s t 
buffer hal f of con-con from IX, 
:-t,..rt read of 2nd. 

USEIGW 300 T^ L2; 

uO TO LI " 
(13J or 2 30) 

(?) 

-1Z-
Rea^ in one or two f i l e s depending i 
on whether t h e r e are any LIKES on 
B l . Sort with SjeiRTDC, se t 
ITP = 5 • Write them out 

1 -,A; 

v 

<C0NCj0N jiTib 

130 
1IW = 500 

(G 

i,0l - INPU,INw,INB) 
LC2 = INP(l,INy,INB)| 

A.ISTF(LCI): current 

__id r entry 

v 

,*LL iilERNI 

In'JMTxd 
® 

Ji*L-

ITP = IY 

3 lEXPAJi 

^ 2 
Skip f i l e on BL 

Determine number of f i l e s of Bl t o 
be s o r t e d . Sort Bl ; output tape of 
so r t becomes ITP* 

•V 

[Determine .vhich tape ITP i s to be 

P-rfori,. ypass ion dependent on 
/ Lues of it£5^;<T,DliAWWT,LEaMT, 
îvdSWT us ing LaUGH and HUP 

<KLmi^- = ^ 

ASSIGN 130 ?f6 ill 

U n i t i a l i z e IHB,IHQj read i n 1st! 
j bu f f e r l o a d of h i e r . from I B 5 , I 
I s t a r t r e a d of <:nd » [ 

VCJ0NC0N JfiJ 
\ ^ 

XPAND 
Flowchart 3 



X5T-22 

[Do expansion using LAUGH 

X. JL 
INQ = INQ-1, is inputj 
buffer exhausted 

YES 

& 

tD 

NjeJ 

JZ 
ASSIGN 300 T& L21 

LC£JN = 0 

tD 

300 

UHIEi 

_«iL 
Finish read of ITP. Switch 
buffer halves, start next 
read set NHIE = 1 

NCNT:i ^© 
JZ J? 

Finish copying ITP onto JTP 
i f necessary 

M- JL. 
FTP 

TD 

-® 
[Choose tapes for sort of JTP. 
[End f i l e and rewind appropriate 
[tapes* 

J&L 
Sort JTPj resu l t ends up on] 
tape with number stored in 
ff$JT. 

RETURN 

Or 

|XNQ = INQ-] 
Is input buffer exhausted 

Gj0 Tj0 L2 
(210,300) 

210 %_ 
INQ = 5001 

I LCI = INP(2,INQ,INB) 
LC2 = INP(1,INQ,INB) 

Flowchart 3 (continued) 


