
ISR-9
August 1965

XII. THE TREE MATCHING PROGRAM - MATCH

M. Razar

1* Introduction

In order to determine precisely what concepts are expressed by

a given sentence, one must first know the exact interdependencies of

the various words making up the sentence. For otherwise, one would be

unable to group two or more words to generate a more complex concept than

that expressed by either word alone. As an example of dependencies within

a sentence, consider the following three typical sentences*

(a) "Charged particles interact strongly."

(b) "When charged, particles interact strongly."

(c) "Particles with a charge interact strongly."

Clearly (a) and (c) are completely synonymous. That is, the concepts ex

pressed by the phrases "charged particles" and "particles with a charge"

are identical. Note that the actual positions within the sentence of the

words "charged" and "particles" are irrelevant. What is important is their

syntactic relation - that of an adjective modifying a noun. Conversely, an

adjacent position tells one nothing. For in (b), although the phrase

"charged particles" appears, there is no direct connection between the two

words. The word "charged" is part of the adverbial phrase "when charged"

which modifies the verb "interact."

In order to display the syntactic relations of words in a sentence

conveniently, it is customary to write a sentence in tree form. (See

Fig. 1.)

XII-2

(a)

CT

Charged particles interact strongly.

(b)

When

(c)

charged particles interact strongly.

Particles with charge interact strongly.

Typical Sentence Trees

Figure 1

XII-3

Once a sentence is in tree form, the various word-dependencies

become clear. Two nodes, A and B are directly dependent if a corre

sponding branch AB exists in the tree. They are indirectly dependent

if there is a path in the tree leading from A toB. Thus in Fig. 1(a)

"charged particles" actually constitute a subtree while in (c) only an

indirect dependency exists. In Fig. 1(b), there is no connection,

direct or indirect, between the words "charged" and "particles.w More

over, there may be many irrelevant nodes which are connected like "a"

and "with" in Fig. 1(c). The point is that given a phrase like "charged

particles," it is necessary to determine if it is included (directly or

indirectly) in a given sentence. This task is performed by the sub

routine MATCH.

2. General Considerations

It was seen that a sentence can be put into tree form to exhibit

word-dependencies. Similarly, any phrase (for example, "charged

particles") can be thought of as a tree. To determine whether the

phrase is included in the sentence, it is sufficient to determine if the

phrase tree is a subtree of the sentence tree. Mathematically, one would

like to set up an isomorphism from the phrase tree into the sentence tree.

The routine MATCH will find any such isomorphism, or determine that none

exists.

MATCH is designed to be primarily value-oriented rather than

structure oriented. In SMART, one deals mainly with trees of simple

XII-4

sentence structure for which only fairly simple dependencies exist.

However, the values attached to each node can be quite varied. Just

the opposite would be the case if one were dealing with the graphs

determined by the structures of organic chemical compounds. Then

extremely complex structures would occur but only a relatively few

values (e.g. carbon, hydrogen, oxygen, nitrogen) would be attached to

the nodes. Therefore, MATCH will first determine possible corre

spondences without structural isomorphism, and only then see if the

structure is correct.

In general, MATCH will take a tree in a form similar to that

of the tree in Fig. 2, and determine whether any correspondence is

possible with a tree referred to as SENT which is actually, (though

not necessarily) the tree generated by some sentence. The multiple

2 (d,e)

1 3
• (f)

(a,b,c) j

6 4

(g>h), (i,j,g)

Sample of Labeled Tree

Figure 2

values at each node in Fig* 2 are called relation generators. The

totality* of associated relation generators attached to a given node

is called a relation• More than one relation may be attached to a

node and in order to have this node correspond to a node in SENT

with value x, x must be a relation generator of each relation

attached to the node. Thus the labeled tree in Figo 2 could corre

spond to any one of six trees. Node 1 must correspond to a node

with value a or b or c; node 2 to a node with value d or ej node 3

to a node with value f; node 4 to a node with value go

The relation generators of a given relation can be thought of

as essentially synonymous words which are part of a common concept.

For example, one might not wish to distinguish among the phrases,

"charged particles," "electrified particles/0 ucharged, bodies,85 and

"electrified bodies©* Therefore, one would construct a tree as

followsi

(particleŝ , bodies)

(chargedielectrified)

In practice, of course, all words are represented by (binary) numbers

and this makes possible quite convenient representation of all the

relations in a tree* This representation is performed with the help

of a vector EELN, each word of which contains a relation generator and

a node number as followss

XII-6

S DECREMENT TAG ADDRESS

+ VALUE OF RELATION GENERATOR 0 NODE NUMBER

The sign bit determines the position of a relation generator

within a relation. In particular, the generators of a given relation

are stored in adjacent positions (see Fig* 3) within RELN^ a plus sign

being used to indicate that a generator is the last of its relation

and a minus sign to indicate that it is not.

T

0

0

0

0

0

0

0

0

0

0

0

A

1

1

1

2

2

3

K
A

A

A

A

Vector RELN for Tree of Figure 2

Figure 3

In the last few paragraphs, the storage format for the values

attached to a node was described. The structure of the tree is even

simpler to determine. A vector TPAR is set up so that TPAR(n) contains

the parent of node n in its decrement. If the sign of TPAR(n) is plus,

c

d

e

f

g

h

i

g

XII

the corresponding parent is a direct parent and only correspondences

with direct dependencies will be considered. If the sign is minus,

indirect dependencies are also considered* As an example, consider

the tree:

1

^Particles

2 ^
(J

Charged

The decrement of TPAR(2) contains 1, indicating that node 1 is the

parent of node 2. If the sign is plus, only direct dependencies are

possible matches and this form corresponds to a subtree of the tree

in Fig. 1(a) but to no subtree of the tree in Fig. 1(c). With a

minus sign in TPAR(2) however, indirect dependencies would be per

mitted and a match would also be obtained with the tree in Fig. 1(c).

The node values and tree structure of the phrase tree which

is being matched into a sentence constitutes half the information

needed by MATCH. The other half obviously pertains to the sentence

tree into which the phrase tree is being matched* The information

about the sentence tree structure is very simply stored in a vector

SPAR. SPAR(n) contains the parent of node n in its decrement and

no other information. A somewhat useful fact is that the vector

SPAR is arranged so that SPAR(n) < n for all nodes n.

The values attached to the sentence nodes are determined

quite indirectly from a table to be described below. For each

XII-8

possible value under consideration, four words of core are set aside•

The first, VALU, contains the actual value representing an English

word which may appear in a sentence. The other three, VEC1, VEC2 and

VEC3 are considered as a single 108-bit logical word referred to here

after as VEC* The bits are consecutively numbered from 1 to 108 and

a 1-bit in position n indicates that node n in the sentence tree has

the value contained in VALU. A zero in bit position n indicates that

node n has a value other than that in VALU. Note that this limits the

size of the sentence to 108 words, which in practice is no real

limitation.

The motivation behind this format is that one can determine

all possible correspondents of a given node in the phrase tree as

follows. Form a 108-bit word for each relation attached to the node

by or-ing together the respective contents of VEC corresponding to each

relation generator. When this is done for each relation attached to

the node, the results are "and-ed" together to give a 108-bit logical

word PCORR with 1-bits in those and only those positions which corre

spond to sentence nodes whose values make them possible correspondents

of the phrase node in question. Thus if the value attached to nodes 6

and 10 in a sentence is "charged" while the value "electrified" is

attached to node 19> then a node in the phrase tree having the single

relation ("charged," "electrified") attached to it will generate a

word PCORR with 1-bits in positions 6, 10 and 19.

XII-9

The algorithm used by MATCH is fairly simple and is separated

into two distinct parts. The first part has already been discussed

extensively above• We determine, for each node in the phrase tree,

all possible nodes in the sentence tree to which it could correspond•

If any node in the phrase-tree can correspond to no node in the

sentence, then clearly no match is possible and the subroutine MATCH

returns this information. If every node has possible correspondents

in the sentence, the second part of MATCH is activated to consider

structural constraints. We choose the node with the fewest possible

correspondents and tentatively assign to it one of its possible corre

spondents in the sentence tree. (This assigned node in the sentence is

referred to as its image or correspondent.) The structural constraints

can then be checked by seeing if the parent of the correspondent is a

correspondent of the parent of the node under consideration. If it is,

and if the parent of the node has not yet been tentatively assigned to

something else, one of the remaining possible correspondents of the

parent is assigned to it. This procedure is repeated until all nodes

of the phrase tree are assigned images in such a way that the image of

TPAR(n) is always equal to SPAR(image of n) or until all possibilities

of such an assignment are exhausted. A more detailed description of

the algorithm is found in the flowcharts which are appended to this

report•

XII-10

3* Calling Sequence for MATCH; Returning from MATCH

The calling sequence to MATCH is quite simple. It reads:

CALL MATCH, SPAR, SENSIZ, TPAR, TRESIZ, RELN, REISIZ

where SPAR, TPAR and RELN are the FORTRAN names of each of these

previously described vectors. That is, the vectors SPAR, TPAR

and RELN are stored backwards in core so that SPAR(n) is in loca

tion SPAR-n; TPAR(n) is in TPAR-n; RELN(n) is in RELN-n. The

lengths of the vectors SPAR, TPAR and RELN are found in the

decrements of SENSIZ, TRESIZ, RELSIZ respectively as FORTRAN

type integers•

When a match is found, the actual correspondence is

communicated to the main program in the following way. A vector

CjtfRESP of length TRESIZ is set up (as a Fortran array) in such a

way that CORESP(n) contains the sentence node corresponding to

node n of the phrase tree. This information is contained as a

decrement integer in CORESP(n). Clearly then, the relation

1 = CORESP(n) 3 SENSIZ = 108 must hold for all nodes n.

Once the array CORESP has been set up, MATCH returns the

information by calling a subroutine HIT with a single argument,

CORESP (that is, CALL HIT, CORESP). Then MATCH proceeds as if it

had failed to find this last correspondence to find any other

possible ways of mapping the phrase tree into the sentence tree»

When all possibilities for such full correspondences have been ex

hausted, irrespective of whether any matches at all have been found,

MATCH simply returns control to the main program.

APPENDIX A
XII-11

ALGORITHM FOR DETERMINATION OF VALUE CONSTRAINTS
ON POSSIBLE MATCHES

ENTER

K = K- 1
*

V
TCORRl = 0
TC0RR2 = 0
TCORR3 = 0

V
K = TRESIZ

>
\ /

PCORRIO
PC0RR2(i
PC0RR3(1

\

t) = 0111111111111\
K) = 0111111111111]
i) = 01111111111111

RETURN
NO MATCH

DETERMINE THE SENTENCE NODES WHICH CAN
CORRESPOND TO THE RELATION GENERATOR RELN(L)
BY MEANS OF A CALL TO XSERCH WHICH SCANS
THE VALU TABLE

"ORM THESE INTO TCORR

'lLAST GENERATOR OF ITS
!RELATION IF +

X
LN(L) ; ?J>-

J = NODE TO WHICH
RELN(L) IS ATTACHED.

(FOUND IN ADDRESS OF RELN(L))

JZ
"AND" TCORR INTO PCORR(J)

JL.
RELSI|> ->1 L = L + II

v
T = TRESIZ

NODE(T) = T
NCORR(T) = # OF 1-BITS
IN PCpRR(T)

- ^ T - 1

F lowchart 1

X I I - 1 2

APPENDIX B

SORTING)6F N^DES IN ASCENDING $RDER 0 NUMBER #F
PjeSBSIBLE CORRESPONDENTS

P = 1

J L
CHANGE = 0

1L
Q = TRESIZ
R = TRESIZ-1

<̂ NCliRR(Q) : NCjgRR(R)^

V
INTERCHANGE NC0RR(Q) AND NCj0RR(R).
INTERCHANGE NjdDE(Q) AND NODE(R)
SET CHANGE ̂ Q

_̂ _
CHANGE : 0)

Q = Q - 1
R = R - 1

>\ 1 = 1 + 1

Flowchart 2

APPENDIX C

XII-13

ALGORITHM FOR DETERMINATION OF STRUCTURAL CONSTRAINTS
ON POSSIBLE MATCHES

&

I - 1
ft

I = TRESIZ

N = NODE(I)

LOOP() = i

M = LQQP(l)

v
TEMP(M) = POSITION OF
MTH 1-BIT IN PCORR(N)

FLAGT(N) = 1
IMAGE(N) = TEMP(M)
FLAGS(IMAGE(N)) = 1

±
[J = SPAR(IMAGE(N))|

^UGS(J)
/

J^k_
IS THERE A 1-BIT IN
POSITION J OF PCORR(TPAR(N))

YES
\k

IMAGE(TPAR(N)) = J I
FLAGT(TPAR(N)) = 1 ;

FLAGS (J) = 1 [

_ild
^TPAR(TPARfN)) ; Q >

\l/
|K = TRESIZ

^FLAGT(K) j 0)

JL

^=H

|N = TPAR(Nlj

> f j : IMAGE(TPAR(N)))

M_
/

6

-HK = K - I

RETURN
MATCH

XII-14

APPENDIX C (continued)

V
rTPAR(N) s_T)—--

LQOP(I) = M+ lK

r

^_
RETURN

jk
| j = SPAR(J)1

FLAGT(N) = o
FLAGS(IMAGE(N)) = 0

(M : NCJ0RR(I)J

JL
I = + 1

(I : TKESEp

i_
Lje^P(l) = L^P(I) + 1
M = U60?(I)
N = NjflDE(l)

JL

Flowchart 3

