
ISR-9 
August, 1965 

VI-1 

VI. THE DICTIONARY SETUP PROCEDURES 

M. Cane 

1. Introduction 

The present section describes the routines used to set up the 

thesaurus (or concept dictionary). The specifications for the input deck 

are explained in detail, including also a discussion of all setup options. 

The setup section creates the thesaurus and suffice trees used by the 

thesaurus lockup programs. These trees are then stored as the first file 

of a library tape. 

2. Input Deck, Control Card, and Data Card Formats 

Inputs to the setup programs consist of a single control card 

specifying what is to be done, followed by additional cards containing 

the data for the entries to the suffix tree (if any), and the thesaurus 

tree (if any). 

The control card is divided into two fields: columns 1-6 and 

columns 7-12. All fields are left-justified. Table 1 lists the possible 

configurations of these fields and the options they control. 

1 First Field 
1 col. 1-6 

BOTH 

Second Field 
col. 7-12 

OPTION 

Both the suffix and thesaurus trees 

are set up from cards. Nothing is 

done with the old tape. 



VI-2 

First Field 
1 col. 1-6 

BOTH 

COPY 

THES 

SUFFIX 

Second Field 
col. 7-12 

SPACE 

OPTION 

Same as above, except that the file 

of the old library tape with the 

lookup data is spaced over. 

All trees are copied from the old 

library tape - no further input 

cards are expected. 

The suffix tree is copied from the 

old library; the thesaurus is set

up from input cards. 

The suffix tree is set up from input 

cards; the thesaurus is copied from 

the old library tape. | 

Thesaurus and Suff ix Setup Control Card Formats 

Table 1 

The suffix data cards (if any) follow the control card. Each card 

contains two fields: The first (columns 1-12) contains the English suffix; 

the second (columns 13-15) contains a number less than 2 - 256 associated 

with each suffix in a one-one correspondence. The contents of the first 

field must be left-justified (i.e., the first letter of the suffix: must 

occur in column l), and the contents of the second field must be right-

justified (e.g., a number such as 97 consisting of two digits, would appear 

as a "9" in column lit, and the "7" in column l£j column 13 would be zero 

or blank). The suffix data thus corresponds to a FORTRAN format of (2A6, 

13). 



VI-3 

The first suffix enteredmust begin with the letter ne,! (c.f., the de

scription of subroutine LOOK in report ISR-7, IV-18). The termination of 

the suffix data is signaled by a card with the letter ,fZM in columns 1-6. 

The thesaurus data (if any) appear last. Each thesaurus input 

card is divided into 1$ fields. The first (columns 1-2U) contains the 

English word to be entered, left-justified within the field. The next six 

fields (columns 25-5U) contain the semantic codes (category numbers) 

associated with the word. Each code is allotted five columns, so that the 

codes appear in columns 25-29, 30-3U, 35-39, UO-UU, U5-U9, and 50-5U* Each 

code must be right-justified within its allotted field. Records must also 

be entered consecutively, starting with the left-most semantic field. For 

example, if there are two codes, say 90S> and 237, associated with the word 

"CLEAN," these must appear in the first two fields. The card would then 

appear as follows: 

1 
c 

2 3 k 5 

L E A N 
6 7 2£ 26 27 

9 
28 
0 

29 

6 
J£L _n J£_ 

2 
J l 
3 

3L ^ 
1 

The category numbers must be less than 2 = 32768 in magnitude. 

The last eight fields (columns 5>5>-80) contain the syntactic codes 

associated with the given word. These codes must again be left-justified 

within the entire syntactic field and must be entered consecutively. Each 

code must be right-justified within its field. The syntactic codes must 
o 

be l e s s than 2 • 25>6 in magni tude. The thesaurus cards may t h e r e f o r e be 

read wi th a format of UA6, 6 l £ , 813. The input words must be in s t r i c t 



VI-U 

binary coded decimal (BCD) order. The end of the thesaurus data is signaled 

by a card with 0-8-5 punches in column 1, and #ENDfc in columns 2-6. 

3. Implementation of Setup 

The subsection explains how the setup process is accomplished. A 

general discussion is presented first, followed by a description of the 

component programs. 

f 
First the suffix tree is created, either from the input data cards, 

or by copying the old library tape; the suffix tree is then written onto the 

new tape. The old library tape (if any) should be mounted as tape A6, and 

the new tape as B$. The thesaurus tree is then created (or copied) and writ

ten onto the new tape. 

In order to allow a thesaurus of unlimited length, the thesaurus is 

divided into blocks by the setup programs. Each block approximately fills 

the space allotted to the thesaurus in the lookup link. All words beginning 

with the same letter must fit within one block (see description of TIPUT, 

below). A block may contain words with different initial letters. All 

words beginning with a given letter are read in as a unit. They are added 

to the block now being created if this can be done without exceeding the 

storage allotted to this block. Otherwise, the present block is written 

onto the tape, and a new block is started. This process is repeated until 

For a general discussion of tree structures and their use in the SMART 
lookup schemes see Report No. ISR-7* Section IV. 



vi-5 

all the input cards are exhausted* A word is associated with each block 

gives the highest (relative to the BCD ordering) initial letter of any \ liich 

word in the block (c.f., description of subroutine LOOK below). 

The following programs comprise the dictionary setup routine: 

(1) SWRITE and SREAD respectively write and read 

the suffix tree. They have one argument, 

specifying the top location of the tree* 

(2) TWRITE and TREAD, respectively, write and 

read a block of the thesaurus. They each 

have two arguments: The first specifies 

the top location of the thesaurus block; 

the second is the highest initial letter 

of the block. 

(3) SUFTR sets up the suffix tree. It is described 

in detail in report ISR-7, IV-U. SUFTR has 

four arguments: The first two indicate where 

the input starts and how many items are included. 

The last two arguments are returned by SUFTR. 

The first of these gives the top location of the 

tree. The last, if positive, indicates the number 

of unused locations allotted to the tree. If the 

last argument has a negative sign, it gives the 

number of locations by which the tree exceeded its 

allotted storage. 

(10 TREET and TRADD set up the thesaurus tree. The 

former is an entry for starting a new tree (or a 

new block), and the latter adds to an existing 

tree. They each have three arguments, corresponding 

to the last three arguments of SUFTR. These are 

described in detail in report ISR-7, IV-I4.. 



TIPUT and TIRJT1 read in the thesaurus data and convert 

the semantic and syntactic codes to the proper internal 

format. The semantic codes are packed two to a "word in 

decrement and address respectively. The syntactic codes 

are packed into eight 8-bit fields, with the fifth field 

split between two words. The last eight bits of the 

second word are left empty. 

TIPUT1 is used as initial entry to TIPUT. Both 

programs have three arguments, all of which are created 

by the programs themselves. The first is a flag which 

is zero for a normal return, negative if the program 

returns because its buffer is filled, and positive if the 

card signalling the end of the thesaurus inputs has just 

been read. The second is the counts of words put into 

the buffer, and the third indicates the initial letter of 

the words in the buffer. TIPUT reads-in all and only 

those words beginning with the same letter before returning 

control (except for the case where its buffer is filled 

before this is accomplished, corresponding to a negative 

first argument). 

TIPUT also checks to see if the word just read-in 

begins with a letter different from the initial letter of 

the previous word. To do this, a word is set up whose 

first 6-bits contain the last initial letter found and 

whose remaining bits are all "on." The initial machine 

word of the next English word is compared against this word; 

if the former is greater, a new initial letter is present; 

if not, the present letter is taken to be the same as the 

previous letter. This procedure implies that the deck need 

not be in strict BCD order; in particular, it will suffice 

for the cards to be in order with respect to only column 1. 



vi-7 

ERR = 0 
READ IN PARI, PAR2 
TRANSFER ACCORDING 

TO PARI 

© 
10 

CALL SREAD 
TO READ OLD 
TAPE SUFFIXES 
CALL SWRITE 
TO WRITE NEW 
TAPE SUFFIXES 

4) 
tl2_ 

CALL TREAD 
AND TWRITE 
TO COPY A 
THESAURUS BLOCKl 

RETURN 

-no. 

® 
_30_ 

CALL SREAD 
TO SPACEOVER1 

SUFFIXES 

READ IN 
SUFFIX LISTf 

2L 
CALL SUFTR 
TO SETUP 
SUFFIX TREE1 

ERR = 1 
WRITE ERROR MESSAGE 
SENSE LIGHT 1 ON 

©̂ COPY-

SUFFIX-*© 

BOTH » © 
THES—» © 

® 
J±0_ 

CALL SREAD 
CALL SWRITE 

yfifi 

5SL 
CALL TIPUT1 

(IROV.KOUNI.FLET) 

I 
0 

WRITE MESSAGE 
GIVING STORAGE 
REMAINING 

Subroutine CANE - Supervisor For The 
Dictionary - Thesaurus Setup 

Flowchart 1 



Vl-8 

f 

CALL TREAD TO 
SPACE OUT 
OLD TAPE 

RETURN 

6 
4 

Flowchart 1 (continued) 



VI-9 

\ 51 
IRW = IROV 

FLETT = FLET 
CALL TIFUT 

(lROV,KOUNT,FLET)| 

i 60 
ENDTT=ENDT 

|KPARS=(K0UNT/9)xll 
FLETT=ENDEND 

^© 

X 
y 

6 l 
CALL TRADD 

(KOUNT.ENDT.ISION) 

$ 
62 

ISIGN ^M 

WRITE MESSAGE 
GIVING SPACE 
REMAINING IN 
THIS BLOCK,AND: 

LAST LETTER IN 
BLOCK 

ENDT= 
EiffilTJ 

4 

2LQJ 

_2k 

5k 
WRITE ERROR 
MESSAGE-THIS 
LETTER WON'T FIT 
IN ONE THESAURUS 

BLOCK 
SENSE LIGHT 1 ON 

CALL TVJRITE 
FOR THIS 

THES BLOCK 
X 

2L 
CALL TIFUT 

TO SPACE OUT 
INPUT TAPL 

CALL TREET 
(KOUNT.ENOT.ISIGN) 

yes 

RETURN 

no 

Flowchart 1 (continued) 



VI-10 

If the dictionary were to become so large 

that all words beginning with a given letter could 

not fit in one block, it would be necessary to 

base a division into blocks on more than just the 

initial letter. This can be accomplished by 

changing the parameter MASK in subroutine TIPUT to 

ensure that the first two letters, for example, be 

taken into account. All further tests (i.e., those 

in LOOK) work properly, no matter what the block 

subdivision turns out to be. 

(6) CANE is the supervisory program for the dictionary 

setup. It is the only program called from the main 

program. Flowchart 1 describes the details of this 

program; a few additional remarks may be needed. 

The numbers appearing above the upper right-hand 

corner of some of the boxes key the flowchart to 

the statement numbers of the program. In case of 

error, sense-light 1 is turned on to inform the 

main program. The test in the box labelled ,fHn 

seeks to determine whether the words just read-in 

can be added to the block without overfilling it. 

The test is based on the empirical estimate that 

an item takes an average of eleven locations when 

converted to tree form. If this test indicates 

that these words probably will not fit in the 

block, control is transferred to the box labelled 
ftG,M to initiate a sequence which writes out the 

present block and begins a new block with these 

new input words. 

If the test succeeds, control passes to the 

block labelled M6l,M which adds the new words to the 



present block of the tree* A new test is then per

formed to make sure that the allotted storage has 

not been exceeded. If it has, the end of the block 

is reset to the previous point (box 62), and control 

is transferred to the sequence -which writes out the 

block. 


