
ISR-7
June 1964

XI-1

XI. HOUSEKEEPING ROUTINES

Michael Lesk and Tom Evslin

1. SM&RT System Routines

SMART, like any large system, contains a number of purely

internal subroutines whose functions do not logically contribute to

the retrieval process and can largely be ignored by the user. These

include, among others, the output tape editing system, a system for

punching looked-up documents onto binary cards, and several others-

The binary card system is perhaps the most important and will be

discussed first.

Because of the need to call another chain link to perform

lookups, the phase II processing of SMART, described in Sec. II of

this report, is very expensive* A minimum of ten seconds is required

to process a document through phase II. If syntactic analysis is

requested, or if term clustering is to be applied to a relatively long-

document, another minute may be added to that time. It is then

desirable to provide a method for preserving the results of phase II

so that they may also be used in phase III. The chosen method is to

punch the results of phase II into binary cards which may be reloaded

at close to tape speed.

The information to be saved is contained in two arrays, KLSOCC

and MAPKLS. KLSOCC contains the occurrences of each "cluster,11 where

a cluster is either a group of terms or a single concept. The

XI-2

correspondence between clusters and concepts is given by MAPKLS. Each

entry in MAPKLS contains the cluster number of this entry, and the

component concept numbers. Thus, each document is in a form compatible

with any other document looked up in the same thesaurus, regardless of

the phase II options used. These arrays, together with two constants

defining their length, are punched into binary cards. The deck is

produced by the PUNCH DOCUMENT DATA (PU) specification, which causes

CHIEF to call LSTOUT; LSTOUT writes the binary decks or "lists" on the

punch tape.

The format of these binary decks is as follows: First, the

program punches two flip cards giving the twelve characters of the

document name. Then, a *LIST card suitable for reintroducing the docu

ment during a subsequent run is punched. This card is identical with the

*TEXT card which identifies the text when it is first read in, except

that *TEXT is replaced with *LIST, and the date is inserted in columns

73-80. The document itself follows on binary cards with 5-7-9 punches

in column 1. The binary cards are checksummed and serialized and should

therefore not be tampered with by the programmer. One exception to this

rule is allowed; The flip cards for identification may be inserted

anywhere among the special, binary cards of the list; alternatively the

flip cards may be removed. The first binary card contains the two

constants giving the length of KLSOCC and MAPKLS; the second card begins

the listing of MAPKLS. When MAPKLS is terminated, KLSOCC occupies the

remaining cards. A short abstract is represented by three to seven cards.

A longer text by perhaps 20 cards.

XI-3

The cards are read by subroutine LISTIN, which thoroughly

checks the input decks. At least ten documents a second can be read

in the binary mode. Note that the phase II options for such documents

are those specified at look-up time and not those given at the time the

binary decks are read in. Binary decks from different thesaurus should

not be mixed because the concept numbers used may no longer correspond.

All input and output operations are checked carefully. Because

of the mixed binary and BCD data on the input tape, all input subroutines

are associated with the main link (after the update), and the look-ahead

coding (which signals the mode of the next card on the input tape) is

left in location LUKAHD as specified in the last part of Sec. II. The

input subroutines are NAMES, which reads the list of identifiers for the

thesaurus categories; CHIEF, which reads control cards; SEGMNT, which

reads input texts and specification cards; and LISTIN, which reads in

binary documents.

Print output is provided entirely through the FORTfiAN write

routines (STH) and (IOH). Packed records are used to save time. A

subroutine called LINE keeps track of the number of lines written on

each page, and calls HEADR when necessary to start a new page- In

general, each new write subroutine calls HEADR to rehead the page when

writing is started, and LINE is called before each, write to see if

enough space is still left on the current page.

Other auxiliary routines includes

ERROR - prints error messages for all main link programs;

RANNO - generates random numbers;

Xl-li

FLIP - punches identification flip cards;

SHORT - packs and unpacks portions of machine

words for FORTRAN subroutines;

DOVER and SDOVER - conserves storage space by adding sub

routines not needed in the run to the

free storage chain of DOCWRD;

TAFENO — translates special code words into tape

instructions. (To permit the specif id

eations of logical tape addresses, FAP

subroutines do not contain actual tape

instructions at assembly time, but only

code words indicating the type of command

and the logical tape address; TAFENO

translates these codes into real machine

instructions);

WKUNO — copies the syntactic analysis output from

A6 to A3 so that the programmer can look

at the results of the analysis for each

sentence;

WMODAL — writes the list of "frequent cluster

sentences" on A6 for the syntactic ana

lyzer preprocessor;

ENDEND - prints a termination message, empties

buffers, and calls EXITe

2o Memory Clean-up Procedures

DOVER and SDOVER are routines used to clear away unneeded sub

routines at execution time, thus providing additional space in memory.

The DOVER routine contains a list of BCD subroutine names called

SUBTBL, This list is broken into four parts, each part including those

XI-5

subroutines that are never needed in later parts. For example, sub

routines in part three may be used in any of the first three parts but

are never used in the fourth.

The last card in SUBTBL is labeled ENDTBL. Following ENDTBL,

a list appears containing the bits in the FLGWRD which determine whether

a given subroutine is to be executed during the current run. This list

must be stored in the same order as the subroutines in SUBTBL with which

they correspond. A subroutine which is always needed up to and during

execution of its phase is identified by a keyword with all its bits equal

to one.

SDOVER is a routine called at load time. It picks up each item

in SUBTBL and searches the loading tables to find the matching entry.

If no entry is found, the item in SUBTBL is replaced by zeros. If the

entry is found, the item in SUBTBL is replaced in the following manner:

its address contains the first location of the subroutine and its

decrement contains the first location not used by the subroutine.

DOVER has four entry points: SUBTBL, DSHIFT, DSTATE, and DOVER.

SUBTBL is the first location of the list of subroutine names which

SDOVER replaces with location data. DSTATE contains a one, two, three,

or four indicating the part of SUBTBL currently in use. A call to

DSHIFT results in a shifting of all the keywords following ENDTBL by

fifteen bit positions to the right, so that the matching operation with

FLGWRD, which has also been shifted, can be continued.

Entry DOVER results in an attempt to free the core occupied by

subroutines found to be unneeded. Each nonzero item in SUBTBL is

H-6

examined. If the entry is included in the present or following part,

the word corresponding to it in the key bit list is also examined.

Each bit which is "on" in the keyword must be Moff,f in the FLCMRD if

the subroutine is to be deleted during its own or a preceding phase.

All subroutines appearing in SQBTBL in a phase preceding the current

phase will be deleted regardless of the contents of their keywords

since they cannot possibly be of any further use.

When a subroutine is deleted, each word is cleared and its

decrement is replaced by the address of the following word in a one

dimensional FORTRAN array called LDOC. This means that most words

contain the array address of the word below them in core. The first

location of each subroutine will contain either the array address of

the last location of the next subroutine cleared, or a zero if this

is the last subroutine to be cleared by the current call to DOVER.

The array address of the first location cleared in the above

manner will be returned to the decrement of the word addressed by the

first parameter in the calling sequence to DOVER. All of these sub

routines are written in FAP, Flowcharts 1 and 2 show the organization

of SDOVER and DOVER respectively.

3. Formation of the Vacuous Thesaurus

For any document collection, it is possible to generate a null

thesaurus automaticallyo This null thesaurus assigns to each noncommon

word a unique concept number, and may be used for document processing

in place of the thesaurus described by Harris in Sec. III.

XI-7

SD0VER

Get Name From SUBTBL U
I J Compare To Entries in T0BTBL

Yes

Find Word In T0PTBL
Containing First Location
Of Subroutine

Yes, Any Items LefO
In SUBTBL

No

Store Address First Log
In Address of SUBTBL Item

I Is The First Address of
a Following Program In
Transfer Vector (T0PTBL?

No

Store The Program
Break In The Decrement
Of SUBTBL Item

Yes

Store It In
Decrement of
SUBTBL Item

Items Left In SUBTBL? L>
Yes

Organization of SD0VER Routine

Flowchart 1

DOVER

IND

Find Current Phase Number In DSTATE And
Set Indices

J
i^TStill Processing Subroutines Associated With

\Current of Following Phases?

| No 'Yes

Get SUBTBL Entry

hTes
1—•(Does It Equal Zero?)

Y e s / Is It Still Needed \ No
This Execution?

DSHIFT

Shift All Items In
FLAGTL Right
Fifteen Bits

RETURN

(Any Items Left In SUBTBL?)**

IM
Get Item

Yes
•--(Does It Equal Zero)
es\ r- 1

JTio
Return Ind

RETURN

Calculate LD0C Address of Last
Location In Current Subroutine
From SUBTBL

(Does IND :

J No
Store LD0C

Address Indirect
In TEMP 3

H Subtract One

Store In Next
Location

1
No/Has The Last Point of The

Subroutine Been Reached?

Store Its Address In TEMP3

J
Store Zero In SUBTBL Item

Store LD0C Address
In IND

Organization of D0VER Routine

Flowchart 2

file:///Current

XI-9

The null thesaurus is generated by a separate program, THES.

THES is given a document collection and a list of common words, and

generates a thesaurus for that collection* Cards in the correct format

for the thesaurus updating program (Sec. IV) are punched out, along with

a list of identifiers for the concept numbers. -A frequency count of the

collection is produced as a by-product of the program0

The common word list starts with the first card following the

#DATA card and is terminated by a card containing slashes in columns 1-6.

Each common word has a unique number greater than 1,000. Following this

may be the optional #FREQ* card, the aforementioned characters to appear

in columns 1-6.

This card causes a list of all noncommon words appearing in the

collection to be printed out on tape A3 along with the frequency of their

occurrences. In addition, if a left-justified number appears in columns

7-12 of this card, only those noncommon words with a frequency greater

than or equal to this number will be included in the punched output,

although in no case will more than 1,000 distinct noncommon word stems be

punched.

Following the #FREQ*- card, the document collection itself must

appear• Each document starts with a *TEXT card and is terminated by the

appearance of the next #TEXT card, or the *ST0P card which must follow

the last document. Documents are limited to 1,000 words in length*

Only the first 1,000 words of overlength documents are processed by THES

and an error message results. It is desirable that documents be as close

to the 1,000 word maximum as possible to save processing time.

XI-10

After each document is read, all word suffixes are removed by

a right-to-left suffix scan* Common words are also suffixed. Next an

alphabetic sort is performed by SORTAC (WDSORT). All words whose first

twelve characters after suffix splitting are identical are considered to

be the same word. Any word which occurs in the common word list is

ignored. If two matching words are found, both of which are noncommon,

their frequencies are added and one of the entries is deleted. (Note:

such pairs as "perfected" - suffixed perfect..,ed - and "perfecting" -

suffixed perfect*..ing - are treated as one entry, their frequencies are

combined, and one entry is deleted. This corresponds to the manner in

which words are entered in the normal thesaurus.

Documents cease to be processed when the program has found more

than IjjOOO distinct common and noncommon word stems, or when a #STOP

card is encountered. The number of documents processed is printed out

in the former case.

If more than 999 distinct noncommon stems are found, only those

noncommon words whose frequency is greater than the frequency of the

1,000th most frequent noncommon word appears in the punched output.

Also, if the optional number appears in columns 7-12 of the *FREQ#

card, only those of the above words of frequency greater than or equal

to this number are punched.

The written output on A3 consists of the following: a listing

of all documents processed, a list of all noncommon word stems and their

XI-11

THES |

I
Initialize

Call TAPEN0

a
Read Common Word List
On A2 And Call SUFFXl

Call S0RTAC

Combine Items Having
First 2 Words Identical

Call DATE IS
HEADR

Turn On Sense Lights
One And Two

Yes
(End Of Text?)*

J No
Call SEGMNT To Read

Text On A2

I
r~*|Coll SUFFX For Each Word

X
[Add to Existing Word List

J
Coll S0RTAC

I
Combine Items Having First Two Words Identical. Add
Frequencies Unless One Of The Words Is Common

I
Less Than 4 0 0 0 Different Common And \Yes
Noncommon Word Stems Found?

<

| No

Less Than 1000 Different Noncommon
Word Stems Found?

No Yes

Formation of Vacuous Thesaurus

Flowchart 3

XI-12

® ©

Call S0RTAC
By Frequency

I
No / Is Frequency List

\ Requested?

1^1

Is Frequency
Requested?

J Yes No

Call S0RTAC
By Frequency

List Noncommon Word And
Frequencies On A3

I

I List Noncommon Words
And Frequencies On A3

Find Frequency One Greater Than
That Of 1000th Noncommon Word
And Eliminate All Noncommon
Words Of Lower Frequency

i
Call SORTAC Alphabetic

I Punch All Items Except Those
Noncommon Words Eliminated Above
Or By A *FREQ* Card With
Optional Cutoff Point

B4

Punch *NAMES Card For
Each Noncommon Word As In
Above Box B4

* KHHX * Card

Exit

Flowchart 3 (cont inued)

XI-13

frequencies if a *FREQ* card was encountered, either a statement that

the entire document collection has been processed or a count of the

number of documents which have been handled, a statement of the least

frequency a noncommon word may have in order to appear in the punched

output, and a statement of the highest concept number assigned.

Concept numbers are assigned to noncommon words in alphabetical

order starting with concept number 1. The first four 6-column fields

of each of the first batch of cards contain the stem and suffix. The

fifth 6-column field contains the concept number. Common words retain

their original concept number, although some of these words may disappear

because of apparent identities after suffixing.

Immediately following the cards containing the above data a set

of cards is present having *NiiMES in columns 1-6, and the first six

columns of each suffixed noncommon word in columns 7-12. The last card

has asterisks in columns 1-6. Punched output appears on B4«

This is a main program and not part of the SMART system proper.

Flowchart 3 describes this program.

