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VI. SYNTAX AND CRITERION PHRASE PROCEDURES 

Alan Lemmon 

1. Introduction 

The syntactic procedure incorporated into the SMART system may 

be separated into three distinct parts. The first is an editing program 

(BT0KUN) which converts binary data produced by the SMART dictionary look-

up process into the binary coded decimal (BCD) form required by the syntactic 

analysis programs. The second is the Kuno Syntactic Analyzer, described in 

Reports NSF-8 and NSF-9 by the Computation Laboratory of Harvard University, 

1 2 and not further discussed in the present report. ' The last and functionally 

most important part of the syntactic procedures deals with the comparison of 

selected, syntactically analyzed sentences extracted from the documents with 

a dictionary of so-called "criterion" trees or phrases. These phrases are 

preanalyzed and furnished with concept indicators. If the proper match is 

obtained between a given sentence in a document and a criterion phrase, the 

corresponding concept indicators can then be used as additional concept 

indications for the document. 

In the present section the input editing (BT0KUN), as well as the 

"criterion" routines are described in detail. The actual sentence matching 

procedure and the methods used to setup the criterion tree dictionary are 

covered in later sections by Sussenguth, Evslin and Lewis, respectively. 
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2. The Input Editing Problem 

The SMART system processes data largely in binary form. However, 

the syntactic analyzer used by the system expects to receive input data in 

BCD form. For this reason, a code conversion operation is necessary. 

Additional format changes are, however, also required: in the first place, 

a selection must be performed to obtain those sentences from a document 

which are to be syntactically analyzed. Second, and more importantly, a 

code construction must be effected. Indeed, the dictionary supplies syntactic 

codes for the stems of words, and also identifies the suffix (if any); the 

analyzer, however, requires single codes giving information assembled from 

both the stem (i.e. part of speech) and from the suffix (tense and number). 

It is thus necessary to correlate the syntactic information pertaining to 

stem and suffix before the analyzer takes over. BT0KUN is a routine to 

handle these conversion tasks. 

The details of the input format required by the analyzer are given 

1 2 
in NSF Reports 8 and 9 5 and in the manual of operating instructions 

supplied with the syntactic analyzer. Basically, the form is as follows: 

(1) A ,rstart" sentinel (one record). 

(2) Sentences: 

(a) A count of the words in the sentence (one record). 

(b) The words of the sentence. Several records may 

exist for one word, showing different possible 

syntactic types (codes) for that word. 

(c) An "end of sentence" sentinel (one record), 

(3) An "end of text" sentinel (one record). 

(k) End of file. 
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The syntactic codes used by the syntactic analysis programs are 

chosen from a l i s t of about 180 BCD symbols. Each of these indicates a 

par t of speech, and, i f the word i s a noun, pronoun, or verb, then the tense, 

number, and/or case are also given. Fortunately, as w i l l be seen, the 

arrangement in the l a t t e r case i s simple and direct (see Table 1 ) , and corre­

sponds rather closely to the organization of the output of the lookup program 

used in SMART. 

Three different inputs are needed by BT0KUN. The f i r s t i s , of course, 

the text as recorded on magnetic tape in text order as nine-word binary items. 

Each item corresponds t o one text word, and has the following format: 

(1) Four binary words, consisting of 2k BCD characters which 

store the text word i t s e l f : 

(2) One binary word: 

(a) In the decrement (posi t ion 3-17), the number 

of the sentence; 

(b) In the address (posi t ion 21-35), the posi t ion 

of the word in the sentence. 

(3) Two binary words, consit ing of six 12-bit bytes , each of 

which represents a "concept number" or "semantic value"; 

(k) Two binary words, divided into nine 8-bit bytes: 

(a) Eight bytes (6I4. b i t s ) , par t of speech code; 

(b) One byte (eight b i t s ) , identifying the l a s t 

suffix of the word, i f any. 

These nine-word items are recorded consecutively on magnetic tape. BT0KUN 

does not require any special blocking. However, a t most 1,000 nine-word 

items may appear on the tex t tape ( i . e . 9,000 binary words). 
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Type 

I n t r a n s i t i v e 

T r a n s i t i v e 

1 

2 

3 

1 

2 

3 

k 
$ 

6 

6-1 

7 

7-1 

I n f i n i ­
t i v e 
( I ) 

I I I 

112 

113 

IT1 

IT2 

IT3 

nh 
IT5 

IT 6 

IT6 1 

IT 7 

IT7 1 

F i n i t e Forms 

Singular 

VI1S 

VT2S 

VI3S 

VT1S 

VT2S 

VT3S 

VTitS 

VT5S 

VT6S 

VT6S1 

VT7S 

VT7S1 

P lu ra l 

v i i p 

VI2P 

VI3P 

VT1P 

VT2P 

VT3P 

VTliP 

VT^P 

VT6P 

VT6P1 

VT7P 

VT7P1 

E i t h e r 

VI1C 

VI2C 

VI3C 

VT1C 

VT2C 

VT3C 

VTUC 

VT^C 

VT6C 

VT6C1 

VT7C 

VT7C1 

Past 
Pa r t . 

P H 

PI 2 

PI 3 

PT1 

PT2 

PT3 

PTli 

PT5 

PT6 

PT6 1 

PT7 

PT7 1 

Presen t 
P a r t . 

RI1 

RI2 

HI 3 

RT1 

RT2 

RT3 

RTii 

RT5 

RT6 

RT6 1 

RT7 

RT7 1 

Gerund 

GI1S 

GI2S 

GI3S 

GT1S 

GT2S 

GT3S 

GTliS 

GT^S 

GT6S 

GT6S1 

GT7S 

GT7S1 

Nouns 

Type 

Any noun use 

Subject or ob jec t 

Numbers 

Singular 

N0US 

N0VS 

NUMS 

P l u r a l 

N0UP 

N0VP 

NUMP 

E i t h e r 

N0UC 

N0VC 

NUMC 

Organization of Syntactic Word Class Codes for Input 
to Syntactic Analyzer 

TABLE 1 
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Foil coring the text, a file of up to £0 sentence numbers is required, 

preceded by a load command to load the file. The load command stores in its 

decrement a count of the number of sentences (N £ 5>0) which are to be pro­

cessed by the syntactic analyzer, and the address part of the load command 

contains 77i±6lg-N. Each sentence number, within the table, refers to one of 

the sentences to be analyzed, and the program assumes that one sentence is 

included in the text for each number in the list. In order to be properly 

processed, the numeric codes must appear on the list in increasing numeric 

order. 

The last input file required by BT0KUN is a file of suffix codes, 

furnished as part of the SMART library tape (tape B£). This file (the second 

on the tape) consists of two records: 

(1) Directory: 

(a) 2^6 words, one for each suffix number 
n(0 i: n ± 225), to indicate (in the decrement) 

how many codes pertain to that suffix, 

and to refer (in the address) to locations 

above octal 67372. 

(b) One word, whose decrement is the sum of 

the decrements of the preceding 2̂ 6 words, 

and whose address is 67372. This word serves 

as an 1-0 command far the next record. 

(2) The list of suffix codes. 

This record contains as many words as are referred to by the directory. Each 

of these suffix codes consists of one binary word. Each binary word is 

interpreted as five BCD characters, followed by five bits, followed by one 
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blank bit* A given suffix code is derived from a complete syntactic code 

by judiciously replacing some of the characters of the original syntax 

code by zeros, and by indicating the pattern of replacement in the five-

bit byte which is appended. Each bit within the five bit part is zero 

if and only if the corresponding BCD character which precedes is zero. The 

final (sixth) bit is always set equal to one. The construction of the 

suffix code is illustrated by the examples of Fig. 1. 

Suffix 

No suffix 

- ED 

- S 

- ING 

- AL 

• VOOPO 

vooco 
vooso 
GOO SO 

ADJ 

10010 1, 

10010 1, 

10010 1, 

10010 1, 

11111 1 

Codes 

100 0 10010 1, 

POO 0 10010 1 

000P0 00010 1 

R00 0 10010 1 ^ 
y V ps. 

Five characters 
derived from full 

code 

000S0 00010 1 

. ^ ^ ^ Sixth 

Five bits b l t 

showing pattern 
of zero-substi­
tution 

(a) Suffix codes 

Example and Interpretation of Partial 
(Suffix and Stem Codes) 

Figure 1 
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Stem 

ADD 

BE 

CAPIT-

ACT 

M0USE 

MICE 

0T10 

BEO 

N0UO 

N0UO 

NOUS 

N0UP 

Codes 

01101 0 

11011 0 

11101 0, 0T10 01101 0 

11101 0, 0110 01101 0 

11111 1 

11111 1 

(b) Stem codes 

Original code: 

Zeros inserted: 

Partial code 
resulting: 

VT1S_ 11111 1 

0..0. 0..0. 

0T10 01101 1 

zeros correspond 

(c) Meaning of parts of a 
partial code 

Figure 1 (continued) 

3. Internal Processing - The BT0KUN Routine 

The input files are first read in, including the text, the list of 

sentences to be processed, and the suffix code list. An initial sentinel is 

then written on the output tape. 

The routine now takes the first entry from the list of sentence 

numbers, and retrieves the corresponding sentence (using the fifth word in 
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the nine-word items as key). When that sentence is found the number of 

words contained in it is counted and the count is written on the output 

tape. The words in the sentence are then processed one by one, to con­

struct the corresponding complete syntactic code. 

Each of the first eight 8-bit bytes (in the last two words of a 

nine-word item) represents one of about 180 stem syntax codes. Their 

format is similar to that used for the suffix codes: five BCD characters, 

followed by six bits. Again the five characters are derived by substi­

tuting zeros for certain of the characters in a complete code. The next 

five bits have the same meaning as before. The final bit, however, is 

"one" only if no substitutions have been made in the construction of the 

code. 

The program can now capitalize upon the fact that information 

can be extracted to some extent independently from stem and suffix codes. 

Consider, for example, the procedure pertaining to verbs. Reference to 

Table 1 shows that the first and fourth characters of a given syntax code 

indicate the mode and number of a verb, and can thus be derived exclusively 

from the suffix (see Fig. 1(a)). On the other hand, the second, third, and 

fifth characters indicate the type of stem and can thus be formed independently 

of the suffix. 

For a word such as ADDED, appearing in the input, the dictionary 

lookup program (Sec. IV) produces a nine-word item of the following form: 

Sentence number 
/ Word number 

ADDED [S W| ... |Ql|3 ... QQ1| 

1 2 3 h 5 ~ ~T ~ ~ 
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where 0)4.3 is the numeric code for Tl verbs, and 001 is the code of the suffix-ED. 

Under 0U3 in the table of stem codes (which is a part of the BT0KUN program), 

BT0KUN finds "0T10 01101 0". Under suffix number 001 the program finds 

"V00C0 10010 lM and MP00 0 10010 1" . The stem code is checked against each 

of the suffix codes to see if they are exactly complementary, as in the 

example shown: 

Stem code denoting L_»0T10 o n o i 0 0 T 1 0 0 1 1 0 1 0 

Tl verb J Suffix code 
for past 

Suffix code showing) T r n n p n l n m n 1 p a r t i -
f i n i t e form 

7) parti-
H^VOOCO 10010 1 ciple ^P00_0 10010 1 

VT1C JL1111 1 PT1 11111 1 

When such complementary pairs are found, they are combined, and the result 

is taken as a complete syntax code. For the example given, BT0KUN would 

supply the (correct) codes VTIC, PT1 (finite Tl verb, past participle of Tl 

verb) for "ADDED". 

The processing of nouns is similar. £'or nouns, the first character 

is always N; the class occupies the first three character positions. The 

number (singular, plural, or " common" -irrelevant or indeterminate, e.g. 

"DEER") occupies nosition four, and character number five is always blank. 

Thus stem codes will be N0UO 111010, N0VO 11101 0, etc.; suffix codes are of 

the form 000S0 00010 1, 000P0 00010 1, 000C0 00010 1. Note here that the 

suffix/stem partition of complete codes is different for nouns (U/1235) and 

for verbs (lU/235)• Thus noun stem codes cannot by mistake be combined xtfith 

verb suffix codes or vice versa. 
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A large number of words exist which do not require partial codes. 

Among these are all those which exhibit no suffixes - prepositions, 

irregular forms, pronouns, forms of "be", "have", "do", and so on. Also, 

the codes for adjectives and adverbs are not divided. Many suffixes are 

included in the suffix table which, give rise to complete syntax codes by 

themselves, no matter what stem code is supplied. For instance, -MESS 

always gives rise to the code "N0US" . Under these circumstances the code 

juxtaposition operation can be skipped. 

If no codes are determined by the procedure previously described, 

because stem and suffix codes do not match, or because no partial codes 

were provided by dictionary lookup, an arbitrary code list is assigned as 

shown: VTIC, VI1C, N0UC, ADJ, AVI. This set of codes covers most word 

classes except pronouns, prepositions and other common words which are 

entered in the dictionary. BT$KUN writes out the list of syntactic codes 

generated for each word on the output tape in the following order: the code, 

the word and "homograph" numbers, the text word (2l| characters), and text, 

sentence, and word number. (The word number thus appears twice). 

The sixth and seventh words of a nine-word item contain semantic 

information. This information is required by the criterion routine described 

later in this section, and is therefore transferred into COMMON storage 

where it is not disturbed. (COMMON k$l9 i.e« octal 76556 and preceding 

locations). 

When every word in the sentence has been processed as described 

an end-of-sentence sentinel is written on the output tape and the next 
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sentence i s processed. If the sentence-number l i s t i s exhausted, the 

routine wri tes an end-of-text sent inel and an end-of-f i le on the output 

tape, the tape i s rewound, and the f i r s t section (SETUP) of the syntact ic 

analyzer i s calledo The complete process i s deta i led in Flowchart 1. The 

square brackets near the flowchart box indicate the symbolic name of the 

program areas that perform the corresponding operations. 

h* Organization and Operation of the Criterion Routine (CRITER) 

Following the syntactic analysis of the t e x t s , the c r i t e r ion routine 

performs three functions * F i r s t , i t accepts the output of the syntactic 

analyzer, and compute from i t a set of binary connection matrices. Secondly, 

i t l i s t s a l l semantic and syntactic values appearing in a sentence, and the 

words to which they per ta in . Final ly, i t supervises the matching of th i s 

data against each member of the l ib ra ry of c r i t e r ion t r e e s . The overal l 

organization of th is routine is shown in Flowchart 2. 

In the output of the syntactic analysis program, one record i s formed 

for each text word, containing among other information a s t r ing of up to 2)| 

BCD characters (see Fig. 2 ) . Each character of such a s t r ing represents one 

s t ructure or substructure in the sentence. The type of s tructure (e .g . subject, 

phrase, object, e t c . ) i s indicated by the character: f!S,f for subject, ,rPn 

for phrase, e t c . The s t ructure indicated by each character i s contained in , 

depends on, or modifies that indicated by i t s predecessor in the s t r ing ( i f 

any). Thus in Fig. 2, rtone,f in each str ing denotes a declarative clause 

standing alone, the "S" in s t r ings one and two indicates a subject of that 

clause, and so on. 



Compute number of 
binary words on 

text tape 

Read suffix table 
from library tape 

Error 

O.K, 

Read text and list 
of "frequent cluster11 

sentences 

XI < number of sentences 
to be processed 

X2 < number of binary words 
in text 

i Write i n i t i a l 
s e n t i n e l ("ENGTEX") 

on output tape 
[FIND 

A-< number of f i r s t 
sentence to be 

processed 
[GEfj 

Search text for first 
word of sentence number A 

Verify Mot 

O.K. <3 
Search text s w for f i r s t 

word of next sentence 

Compute number of 
words in sentence and 

verify 

Bad 

O.K. 

© 
Operations of BT0KUN Editing Routine 

Flowchart 1 



R 

a fe-
No more 

Convert number of 
*| words and sentence 

number to BCD 

Write word count 
on output tape 

(in BCD) 

[RESET] 

Move f i r s t word to 
buffer 

jSUFLOC] 

^ Get list of suffix 
1 codes; H0M0S* 0 

[RETSTM 

Get one stem syntaxL 
code 

[GETSTM] 

I s i t complete 

w more 

No [GE 

Scan suffix code 
list 

SFJ 

Yes Put it 
-*list »H0I 

Find a fit 

Form combined 
syntax code; 

put i n r,J$M0Sn 

Flowchart 1 (cont inued) 



[STEMOK 

Scan su f f ix code 
l i s t for complete 

codes 

Find 

Put i t i n t o 

No more 

#• 0 

R e p e a t 

O.K. 

[FULHOMl 

H0M0S: 0 

0 
HOMOS <—VTIC,VIlC 

N0UC,ADJ,AV1 

[GOOD] 

J Compute BCD word 
number 

[LIMIT] 

Take a code from 
H0MJ0S and write it on 

output tape 

No more 
'[ENDWDJ 

Store semantic values 
(concept numbers) 

in SMS, with sentence 
and word numbers 

© 

Flowchart 1 (cont inued) 
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Have we processed the 
l a s t word in the 

sentence? 

Yes 
[ENDSENJ 

Write ,fend of sentence'1 

sentinel 

Have we processed 
the l a s t 
sentence? 

Yes [D0NE1 

[Write r,end of text" 
sentinel; rewind 

tape 

Store count of items 
in SEMS 

EXIT to 
chain 
(U,3) 

No Next word 

to buffer KD 

No 
A number 

of next 
sentence <E) 

*J 
A 

4 

rERR0Rl 

Write on A3: "error in BT0KUN or 
sentence tape'1 

J Write on A3: 
1 table 

A c ^ ~ 

TERR0R21 

"BT0KUN suff ix 
i s in error 

•l 
"KUN0ER": ca l l 
LESK 

/ 
s» 

Flowchart 1 (continued) 
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Form chained 
"table" of nodes, 

strings and connections 

Form connection 
matrices from "table" 

Form "Semval" table 
from value tape and "table" 

Form relations 
from tree tape 

and "Semval" table 

Form summary table 
->| listing subject heads 

of matching trees 
Index Information 

lc 
Attach index information 
to summary, leave in 

C0MM0N 

EXIT 

Organization of Criterion Routine 

Flowchart 2 
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Input 

Magnetic ISA -

tape IS — 

is IV-

the 1CA -

fastest 1CA _ 

input 1C - • 

which 1C7S 

is 1C7V 

available 1C7C 

today 1C7D 

1. _ 

Format of Syntactic Analysis Used as Input 

Figure 2 

It may be seen from Fig, 2 that the strings may easily be 

constructed from the corresponding syntactic tree simply by working up the 

tree from any given node. For example, the string for "magnetic," which 

corresponds to node three in Fig. 2, may be found by taking the predecessors 

of node three, that is, node two, and then again of node two, i.e. node one. 

The characters for these nodes are ,?A," rfS," "1" respectively, and correspond 

to the string "ISA." 

(1)1 
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The criterion routine must perform the inverse transformation; that 

is, it must determine a dependency tree from a set of strings. This task 

is complicated by several factors. First, distinct nodes may have the same 

strings; e.g., nodes six and seven in Fig. 2 both have the BCD character or 

syntactic value ,fAM (adjective) and the string ,?1CA.M Secondly, the strings 

contain no explicit information to distinguish between phrases modifying 

the same word. Thus, in Fig. 3, there are two distinct trees exhibiting the 

same set of strings. Only one of them (Fig. 3(a)) is correct. 

The criterion routine processes the strings one at a time, starting 

with the first word. Each string is scanned from left to rigjit. The program 

maintains a list, called TABLE, of sentence nodes and their dependencies. 

TABLE is initially empty. As each string is scanned, the routine traces through 

this TABLE (see Fig. h) * When the string specifies a node not recorded in 

TABLE, a new entry is generated. Thus, when all strings have been scanned, 

TABLE contains a tree corresponding to the strings. Various refinements are 

added to the miles for generating new nodes; these refinements handle the 

various ambiguities discussed in the last paragraph. 

The criterion routine uses several tables as part of the process. 

Two of these, "SEMS" and "SIMM" are used throughout a run; the others are 

reset for each sentence. 

"SEMS" contains the semantic information for all the sentences to be 

processed. It is stored by the BT0KUN program in C0MM0N U5l (octal 76556). 

CRITER makes no alterations in it, but moves it into the program proper for 

safekeeping. This is necessary because GRAPH uses that area of C0MM0N for 

other purposes (see Sec. VII by Sussenguth). The semantic information is 
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Input 

It 

is 

on 

the 

shelf 

in 

a 

bottle 

It 

is 

on 

the 

shelf 

in 

a 

bottle 

Interpretation 

IS ^ ( 2 ) S 

IV- Oft. 

1VPR Q ( 5 ) R 

1VP0A 0 ^ ) A V(7)I 

1VP0 " ^ 6 ) 0 

IVPR aS9)R 

1VP0A -oM-l)k yi(Q)P 

1 V P0 ^ ° C i o ) 0 

1 0 

(a) Correct in te rpre ta t ion 

1 S x\(2)S 

iv (3)1 

IVPR <x(5)R 

1VP0A Q ( 7 ) A 

1VP0 - S Q ( 6 ) 0 VJ ( i 

IVPR °(f)R • 

1VP0A -°4™>A 

1VP0 -V(9)0 

1. 

(b) Incorrect in te rpre ta t ion 

Interpretations of an Analysis 

Figure 3 
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Word String & 
Character 

Structure Implied by 
Characters to Date 

this 

this 

this 

ISA 

u 

1~ 
is 

A 

this 

0(1)1 

(2)s l > ^ 
i3)A^ JO (1)1 

paper 

paper 

this • 

this _ 

paper 

(1)1 

(1)1 

(2)S 

discusses 

discusses 

\ 
IV 

1* 

this -

paper -

this 

paper 

discusses 

(in 

document 10A this • 

paper 

discusses ^(U) V 

information oJ6)A 

and (7) + 

document (8)A (5)0 

Note; The vertical arrows indicate the character and node being 
scanned at each step. 

Scanning of Syntax Strings 

Figure k 
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stored in consecutive three-word items. The first word contains the 

sentence and word numbers originally assigned by the itemizer. The next 

two words (72 bits) consist of six semantic values (or concept numbers), 

packed as three 12-bit bytes per word. These are obtained by the thesaurus 

lookup. 

"SUMM" holds at any time the list of matches found between all 

sentences so far processed, and the criterion trees in the library. SUMM is 

initially cleared; every time a tree is found to match a sentence, the table 

is updated. Each entry in SUMM consists of two machine words. The second 

of these contains a subject heading or "index" specified by six BCD characters. 

The other word contains a count specifying the number of times that the 

corresponding heading has been found to match a sentence. 

When a match is found between a sentence and a criterion tree, SUMM 

is scanned for an entry that matches the heading of the tree. If such an 

entry is found, the count in that entry is incremented. If no entry is found, 

a new entry is made, with a count of one. 

"(0UT)" is a table constructed from SUMM. It is located in octal 

61717 (C0MM0N 7010) and lower locations. Octal 61717 contains, in the decre­

ment, the number of items in the table0 These items are listed in successively 

lower locations in reverse alphabetical order. Each item comprises five 

machine words. The first word consists of a subject heading from SUMM; the 

fifth contains in the decrement, the appropriate count (also from SUMM). 

The sign of this count is positive. The remaining three words are extracted 

from an "index" file on the SMART library tape. This file contains a three-
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machine-word correspondent for each subject heading; these three words are 

simply copied into the appropriate locations without any processing. 

"TABLE" is the most important table in the criterion routine. It 

is stored in C0MM0N 10010 (5U027g). It is the primary active storage 

during input of a sentence. When an entire sentence has been read-in, 

TABLE contains all of the structural information provided by the analyzer. 

During the processing of a sentence, TABLE holds all the nodes (i.e. 

substructures) found as of that moment. 

Each item in TABLE corresponds to one node of a tree. In memory an 

item consists of 16 machine words. Of these, the first contains a chain 

link, and a flag to indicate whether an actual word corresponds to that 

node. The next five contain up to 30 BCD characters from the analysis of 

the sentence, indicating the role of the node. The next two words are not 

used. The remaining eight words in each item form two lUU-bit binary vectors. 

One of these (the first) is called the "indirect" vector, the other the 

"direct" vector. The "direct" vector is either 0, indicating that the 

node has no antecedents (i.e. corresponds to the main structure (clause) of 

the sentence),, or contains a single "1" bit whose position corresponds to 

that of the immediate antecedent. The "indirect" vector contains a "1" bit 

for each antecedent in the tree all the way up to the main clause. 

The chain links referred to above, link together those entries corre­

sponding to strings of equal length. Thirty words, labeled TABLE+1 through 

TABLE+30, are provided to hold the initial links of these chains. Each link 

points to the seventh word in a 16-word item. The link at the end of the 

chain is 00000. 
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The last table, called f,SEMVALM, is reset for each sentence. It 

lists all the semantic values and syntactic structure types found to 

pertain to any node of the sentence. In memory, it consists of a sequence 

of five-word items. The first of these contains one 12-bit value, and a 

chain link by which the entire table is chained so that the values are in 

increasing numerical order. The remaining four words comprise a lljii-bit 

binary vector; the "one" bits indicate the nodes to which the given value 

pertains. Only one entry is made for each distinct value: if two nodes 

have the same value this is represented by two "one" bits in a single entry. 

5. Internal Processing of the Criterion Routine 

After a few initializations, CRITER processes the input, one 

sentence at a time. The input tape is first scanned for a sentinel 

indicating the beginning of an analysis: the sentinel record then provides 

the number of the sentence. The sentence is then scanned, and the information 

extracted from each word is stored in TABLE and SEMVAL. When the sentence 

is completely read-in, CRITER matches it against each of the criterion trees. 

The criterion tree tape is then backspaced and another sentence processed. 

Finally the results are summarized and left in memory for the next program. 

When a sentence word is read from tape, its record contains among 

other things a string of BCD characters denoting the syntactic function of 

that word in the sentencee The criterion routine keeps a count, "K", in 

index register two. For each word, this count starts at one, and then is 

incremented. The routine takes the first K characters of the character string 
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representing the BCD syntactic function code and scans through TABLE by-

means of the chain (starting at TABLE+31-K). The scan stops when a TABLE 

entry is found whose string is equal to the first K characters of the 

BCD code string of the word. If the chain is exhausted before such a 

match is found, or if the match is not permitted (e.g. where a match 

indicates that the code entry corresponds both to the present and to some 

previous text word), ENTERK generates a new entry in TABLE. This entry 

will be chained into the beginning of the Kth chain, and its string will 

consist of the first K characters of the code string for that word. 

When an entry in TABLE is either found by the matchin process 

or generated, the number of the entry (represented as a single "one" bit) 

is placed in a special vector, called DIRCT; the updated DIRCT vector is 

then used to alter another nINDRCT,T vector by "0Ring" the contents of 

DIRCT into INDRCT. 

Figure £ shows a simple example of this process. The sample 

sentence is "Computers think." The BCD code string for "Computers" is 

"IS", and the code string for "think" is "IV". Here "S" means "subject" 

and "V" means "verb". The "1" in both strings is the clause indicator for 

the singLe clause to which both words belong. 

Both DIRCT and INDRCT are set to zero at the start of the process. 

Then with K » 1, TABLE is scanned for entry whose string field is equal to 

"1". Since TABLE is anpty, none is found, so a new entry is generated as 

shown at the top of Fig. £. (The arrows represent the successive links of 

the chains connecting the entries). The first entry has a string field 
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of "1", blank I and D fields, because INDRCT and DIRCT are blank, and a 

blank link (L) because this entry is the first for K • 1. DIRCT and 

INDRCT are now updated. Since the entry just generated is the first 

entry in TABLE, a "one" bit is placed in the first position of DIRCT, 

and zeros elsewhere. Then the new DIRCT vector is 0Red into INDRCT. 

The process is repeated for K = 2. The string is now "IS" and 

again no entry is found. A new entry is generated; this time the I and 

D fields each contain a "one" bit in position one, derived from INDRCT and 

DIRCT respectively. The flag bit is set because "IS" is the full string 

for the word "computers." 

The situation is similar when "think" is processed. When K = 1, 

however, the code string is "1"; and the first entry in TABLE already 

contains the string "1". Thus no new entry is generated, and DIRCT will 

have a "one" in the first position. INDRCT will also have a single "one" 

bit in position one, since it was previously reset to zero before the new 

word "think" was read-in. The process described above is repeated again 

for K = 2, string = "IV", A new entry (the third) is generated and placed 

at the beginning of the second chain. DIRCT has a "one" in position three; 

INDRCT has "ones" in positions one and three. 

Thus after the processing of the entire sentence, TABLE contains 

a representation of the corresponding syntactic structure in tree form. 

Each entry in TABLE represents a node, and the D(direct) field in a given 

entry indicates the node upon which the given node depends. At any time 

during the process, DIRCT indicates the most recent node found (or generated), 
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i.e. the node upon which the next node will depend directly. INDRCT exhibits 

all the nodes upon which the next node will depend, either directly or 

indirectly, up to and including the topmost node of the tree. 

When the entire code string for a word has been processed, TABLE 

contains a complete record of the syntactic relations of the given word to 

the earlier words in the sentence, and SEMVAL records the syntactic functions 

of the word. The semantic values (from SMS) are now added to SEMVAL. As 

before, DIRCT serves to indicate which nodes in the syntax tree are being 

processed. When a given word is completely processed, DIRCT and INDRCT are 

cleared to zeros for the next word. 

Figure 6 shows how the concept numbers associated with the sentence 

"Computers think" are entered into SEMVAL. The DIRCT vector is shown as it 

is generated during the construction of TABLE. The steps which update 

SEMVAL alternate with those that update TABLE; thus DIRCT always shows the 

node presently being processed. 

After the first node is entered in TABLE, DIRCT contains a single 

"one" bit as shown. At this point an entry is made in SEMVAL which indicates 

that the first node has the (syntactic) value "1". Similarly, after node two 

is entered, an entry is made into SEMVAL, to indicate that node number two 

has the value "S". Then a third entry is made into SEMVAL, showing that the 

value ,f(G0MP)fl pertains to node number two. This is a semantic value obtained 

from SMS; the entry is made only after the complete code string for the text 

word has been processed. 
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The same procedure is followed for "think". Note that when the 

first value, "1" is to be entered, a r,ln already appears in SEMVAL; in this 

case DIRCT is 0Red into the entry. This has no effect in the present example, 

because there is already a "one" in the first position of the SEMVAL entry. 

When a word is read which is coded "period" or "question mark", the 

above processing is not performed. Instead, the INDRCT and DIRCT fields are 

extracted from each entry in TABLE and reassembled to form two binary matrices, 

one made up of all the INDRCT fields collected together, the other of the 

DIRCT fields. Together these matrices are called C0NMAT (C0Nnection MATrices): 

each is an incidence matrix indicating internode dependencies. 

The complete preceding process takes place exactly once for each 

sentence. The "criterion trees", I.e. the model phrases, are now read-in 

from tape. Each is compared against the sentence as shown in Fig. 8, 

Each tree consists of one record on tape, which is divided logically 

into several fields (see Fig. 7)- The first field is the prefix, which 

contains the number of nodes, the number of "relations" (see below), the 

number of "relation generators", and a BCD heading and an I.D. (identification) 

number. The next two fields are indirect and direct connection matrices 

showing the structure of the tree. 

The fourth field consists of a series of "relation generators"* Each 

of these is composed of a 12-bit value (syntactic or semantic), a node 

number, and a relation number. The latter refers to one of a set of "relations", 

(denoting restrictions which affect the matching process between the given 

tree and the sentence). Each relation is represented by a pair of binary 
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vectors, one for the tree and one for the sentence, and its function is 

to ensure that each of the tree nodes indicated by the "tree" vectors 

correspond to one of the sentence nodes indicated by the "sentence" vector. 

These relations are set up by a simultaneous scan of the set of 

relation generators (sorted in numeric order) and of SEMVAL (chained in 

order of value). When an entry in SEMVAL is found to have the same value 

as a relation generator, a relation is set up. 

A space is reserved in storage near each connection matrix (C0NMAT 

for the sentence, and "TREEBF" for the tree), to store the respective 

relation vectors. The relation number in the current relation generator 

specifies a location in each of these reserved storage spaces. In TREEBF, 

the relation vector is cleared to zero, and a single "one" bit inserted 

corresponding to the node number found in the relation generator; in 

C0NMAT, the SEMVAL entry is 0Red into the relation vector. This process 

is shown in Fig. 8. 

The first SEMVAL entry scanned in Fig. 8 has the value (C0MP), as 

does the first relation generator. Therefore a relation is set up. This 

will be relation number two, corresponding to the number given by the 

relation generator. Thus the second vector in each reserved space is up­

dated: the one in TREEBF is replaced by a vector having a "one" bit in 

position one (as indicated by the relation generator) and the data from the 

SEMVAL entry (which has a "one" in position two) is 0Red into the C0NMAT 

half of the relation. 
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When this has been done, the routine examines the next relation 

generator. If the value is the same, the process is repeated; if greater, 

a new SEMVAL entry is scanned. Then the comparison is repeated. If the 

SEMVAL entry is less than the relation generator value, SEMVAL is scanned; 

if greater, a new relation generator is examined. Thus the routine continues 

its scan until it runs out of entries of either kind. 

At this point the situation illustrated in Fig. 9 obtains. Two 

separate areas are set up in memory, C0NMAT and TREEBF, each containing 

the data for one syntactic structure. The first word in each area contains 

the number of nodes in that structure* (In the example of Fig. 9 this is 

three in both cases; in general, the criterion tree will have fewer nodes — 

usually considerably so.) The next word is blank. The third word contains 

a number of "one" bits, right justified, i.e. a string of "zero" bits followed 

by a string of "ones". There are as many "ones" as there are relations. 

This number is, of course, the same in C0NMAT and TREEBF — four in the example. 

The relations are stored next in memory; these are paired: the first 

relation vector in C0NMAT goes with the first one in TREEBF, etc. They 

instruct the graph matching routine GRAPH (see Sec. VII) to permit only certain 

correspondences. 

Finally come the two connection matrices. Those in C0NMAT originate 

in TABLE; those in TREEBF come from the original tape record. In the example 

of Fig. 9, they indicate that nodes two and three of the sentence each depend, 

directly (and hence indirectly) upon node one, while node one depends on 

nothing; whereas the tree matrices show that the correspondent of node one must 

depend directly on that of node two, while the correspondent of node three need 
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only have an indirect dependence on that of node two. The correspondence 

1 >2,2 — > 1 , 3 — > 3 satisfies these dependency requirements but not the 

relations, because tree node two must correspond (by relation number one) 

to a sentence node marked S, i.e. to sentence node two. But also by relation 

two, tree node two must correspond with sentence node one (the only one 

with value (COMP)); thus no correspondence is possible here. 

These two sets of data serve as input to GRAPH (Sec, VII). They 

are set up as described, and GRAPH is given the addresses of the corre­

sponding; areas in memory. Then GRAPH evaluates all the relations, con­

nections, etc. and either decides that no one-to-one correspondence is 

possible (as in the example given), or finds such a correspondence. The 

answer is returned in the accumulator: zero if no match, one if a match is 

possible. If a match is possible, GRAPH leaves in memory a list of binary 

words, one for each node in the tree. Each of these words contains the 

number of the sentence node corresponding to the respective tree node. 

Flew charts 3* k and 5 describe the various steps used by CRITER in 

greater detail. 
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