
ISR-7
June 196U VI-1

VI. SYNTAX AND CRITERION PHRASE PROCEDURES

Alan Lemmon

1. Introduction

The syntactic procedure incorporated into the SMART system may

be separated into three distinct parts. The first is an editing program

(BT0KUN) which converts binary data produced by the SMART dictionary look-

up process into the binary coded decimal (BCD) form required by the syntactic

analysis programs. The second is the Kuno Syntactic Analyzer, described in

Reports NSF-8 and NSF-9 by the Computation Laboratory of Harvard University,

1 2 and not further discussed in the present report. ' The last and functionally

most important part of the syntactic procedures deals with the comparison of

selected, syntactically analyzed sentences extracted from the documents with

a dictionary of so-called "criterion" trees or phrases. These phrases are

preanalyzed and furnished with concept indicators. If the proper match is

obtained between a given sentence in a document and a criterion phrase, the

corresponding concept indicators can then be used as additional concept

indications for the document.

In the present section the input editing (BT0KUN), as well as the

"criterion" routines are described in detail. The actual sentence matching

procedure and the methods used to setup the criterion tree dictionary are

covered in later sections by Sussenguth, Evslin and Lewis, respectively.

VI-2

2. The Input Editing Problem

The SMART system processes data largely in binary form. However,

the syntactic analyzer used by the system expects to receive input data in

BCD form. For this reason, a code conversion operation is necessary.

Additional format changes are, however, also required: in the first place,

a selection must be performed to obtain those sentences from a document

which are to be syntactically analyzed. Second, and more importantly, a

code construction must be effected. Indeed, the dictionary supplies syntactic

codes for the stems of words, and also identifies the suffix (if any); the

analyzer, however, requires single codes giving information assembled from

both the stem (i.e. part of speech) and from the suffix (tense and number).

It is thus necessary to correlate the syntactic information pertaining to

stem and suffix before the analyzer takes over. BT0KUN is a routine to

handle these conversion tasks.

The details of the input format required by the analyzer are given

1 2
in NSF Reports 8 and 9 5 and in the manual of operating instructions

supplied with the syntactic analyzer. Basically, the form is as follows:

(1) A ,rstart" sentinel (one record).

(2) Sentences:

(a) A count of the words in the sentence (one record).

(b) The words of the sentence. Several records may

exist for one word, showing different possible

syntactic types (codes) for that word.

(c) An "end of sentence" sentinel (one record),

(3) An "end of text" sentinel (one record).

(k) End of file.

VI-3

The syntactic codes used by the syntactic analysis programs are

chosen from a l i s t of about 180 BCD symbols. Each of these indicates a

par t of speech, and, i f the word i s a noun, pronoun, or verb, then the tense,

number, and/or case are also given. Fortunately, as w i l l be seen, the

arrangement in the l a t t e r case i s simple and direct (see Table 1) , and corre­

sponds rather closely to the organization of the output of the lookup program

used in SMART.

Three different inputs are needed by BT0KUN. The f i r s t i s , of course,

the text as recorded on magnetic tape in text order as nine-word binary items.

Each item corresponds t o one text word, and has the following format:

(1) Four binary words, consisting of 2k BCD characters which

store the text word i t s e l f :

(2) One binary word:

(a) In the decrement (posi t ion 3-17), the number

of the sentence;

(b) In the address (posi t ion 21-35), the posi t ion

of the word in the sentence.

(3) Two binary words, consit ing of six 12-bit bytes , each of

which represents a "concept number" or "semantic value";

(k) Two binary words, divided into nine 8-bit bytes:

(a) Eight bytes (6I4. b i t s) , par t of speech code;

(b) One byte (eight b i t s) , identifying the l a s t

suffix of the word, i f any.

These nine-word items are recorded consecutively on magnetic tape. BT0KUN

does not require any special blocking. However, a t most 1,000 nine-word

items may appear on the tex t tape (i . e . 9,000 binary words).

vi-Jb.

Type

I n t r a n s i t i v e

T r a n s i t i v e

1

2

3

1

2

3

k
$

6

6-1

7

7-1

I n f i n i ­
t i v e
(I)

I I I

112

113

IT1

IT2

IT3

nh
IT5

IT 6

IT6 1

IT 7

IT7 1

F i n i t e Forms

Singular

VI1S

VT2S

VI3S

VT1S

VT2S

VT3S

VTitS

VT5S

VT6S

VT6S1

VT7S

VT7S1

P lu ra l

v i i p

VI2P

VI3P

VT1P

VT2P

VT3P

VTliP

VT^P

VT6P

VT6P1

VT7P

VT7P1

E i t h e r

VI1C

VI2C

VI3C

VT1C

VT2C

VT3C

VTUC

VT^C

VT6C

VT6C1

VT7C

VT7C1

Past
Pa r t .

P H

PI 2

PI 3

PT1

PT2

PT3

PTli

PT5

PT6

PT6 1

PT7

PT7 1

Presen t
P a r t .

RI1

RI2

HI 3

RT1

RT2

RT3

RTii

RT5

RT6

RT6 1

RT7

RT7 1

Gerund

GI1S

GI2S

GI3S

GT1S

GT2S

GT3S

GTliS

GT^S

GT6S

GT6S1

GT7S

GT7S1

Nouns

Type

Any noun use

Subject or ob jec t

Numbers

Singular

N0US

N0VS

NUMS

P l u r a l

N0UP

N0VP

NUMP

E i t h e r

N0UC

N0VC

NUMC

Organization of Syntactic Word Class Codes for Input
to Syntactic Analyzer

TABLE 1

vi-5

Foil coring the text, a file of up to £0 sentence numbers is required,

preceded by a load command to load the file. The load command stores in its

decrement a count of the number of sentences (N £ 5>0) which are to be pro­

cessed by the syntactic analyzer, and the address part of the load command

contains 77i±6lg-N. Each sentence number, within the table, refers to one of

the sentences to be analyzed, and the program assumes that one sentence is

included in the text for each number in the list. In order to be properly

processed, the numeric codes must appear on the list in increasing numeric

order.

The last input file required by BT0KUN is a file of suffix codes,

furnished as part of the SMART library tape (tape B£). This file (the second

on the tape) consists of two records:

(1) Directory:

(a) 2^6 words, one for each suffix number
n(0 i: n ± 225), to indicate (in the decrement)

how many codes pertain to that suffix,

and to refer (in the address) to locations

above octal 67372.

(b) One word, whose decrement is the sum of

the decrements of the preceding 2̂ 6 words,

and whose address is 67372. This word serves

as an 1-0 command far the next record.

(2) The list of suffix codes.

This record contains as many words as are referred to by the directory. Each

of these suffix codes consists of one binary word. Each binary word is

interpreted as five BCD characters, followed by five bits, followed by one

VI-6

blank bit* A given suffix code is derived from a complete syntactic code

by judiciously replacing some of the characters of the original syntax

code by zeros, and by indicating the pattern of replacement in the five-

bit byte which is appended. Each bit within the five bit part is zero

if and only if the corresponding BCD character which precedes is zero. The

final (sixth) bit is always set equal to one. The construction of the

suffix code is illustrated by the examples of Fig. 1.

Suffix

No suffix

- ED

- S

- ING

- AL

• VOOPO

vooco
vooso
GOO SO

ADJ

10010 1,

10010 1,

10010 1,

10010 1,

11111 1

Codes

100 0 10010 1,

POO 0 10010 1

000P0 00010 1

R00 0 10010 1 ^
y V ps.

Five characters
derived from full

code

000S0 00010 1

. ^ ^ ^ Sixth

Five bits b l t

showing pattern
of zero-substi­
tution

(a) Suffix codes

Example and Interpretation of Partial
(Suffix and Stem Codes)

Figure 1

VI-7

Stem

ADD

BE

CAPIT-

ACT

M0USE

MICE

0T10

BEO

N0UO

N0UO

NOUS

N0UP

Codes

01101 0

11011 0

11101 0, 0T10 01101 0

11101 0, 0110 01101 0

11111 1

11111 1

(b) Stem codes

Original code:

Zeros inserted:

Partial code
resulting:

VT1S_ 11111 1

0..0. 0..0.

0T10 01101 1

zeros correspond

(c) Meaning of parts of a
partial code

Figure 1 (continued)

3. Internal Processing - The BT0KUN Routine

The input files are first read in, including the text, the list of

sentences to be processed, and the suffix code list. An initial sentinel is

then written on the output tape.

The routine now takes the first entry from the list of sentence

numbers, and retrieves the corresponding sentence (using the fifth word in

VI-8

the nine-word items as key). When that sentence is found the number of

words contained in it is counted and the count is written on the output

tape. The words in the sentence are then processed one by one, to con­

struct the corresponding complete syntactic code.

Each of the first eight 8-bit bytes (in the last two words of a

nine-word item) represents one of about 180 stem syntax codes. Their

format is similar to that used for the suffix codes: five BCD characters,

followed by six bits. Again the five characters are derived by substi­

tuting zeros for certain of the characters in a complete code. The next

five bits have the same meaning as before. The final bit, however, is

"one" only if no substitutions have been made in the construction of the

code.

The program can now capitalize upon the fact that information

can be extracted to some extent independently from stem and suffix codes.

Consider, for example, the procedure pertaining to verbs. Reference to

Table 1 shows that the first and fourth characters of a given syntax code

indicate the mode and number of a verb, and can thus be derived exclusively

from the suffix (see Fig. 1(a)). On the other hand, the second, third, and

fifth characters indicate the type of stem and can thus be formed independently

of the suffix.

For a word such as ADDED, appearing in the input, the dictionary

lookup program (Sec. IV) produces a nine-word item of the following form:

Sentence number
/ Word number

ADDED [S W| ... |Ql|3 ... QQ1|

1 2 3 h 5 ~ ~T ~ ~

VI-9

where 0)4.3 is the numeric code for Tl verbs, and 001 is the code of the suffix-ED.

Under 0U3 in the table of stem codes (which is a part of the BT0KUN program),

BT0KUN finds "0T10 01101 0". Under suffix number 001 the program finds

"V00C0 10010 lM and MP00 0 10010 1" . The stem code is checked against each

of the suffix codes to see if they are exactly complementary, as in the

example shown:

Stem code denoting L_»0T10 o n o i 0 0 T 1 0 0 1 1 0 1 0

Tl verb J Suffix code
for past

Suffix code showing) T r n n p n l n m n 1 p a r t i -
f i n i t e form

7) parti-
H^VOOCO 10010 1 ciple ^P00_0 10010 1

VT1C JL1111 1 PT1 11111 1

When such complementary pairs are found, they are combined, and the result

is taken as a complete syntax code. For the example given, BT0KUN would

supply the (correct) codes VTIC, PT1 (finite Tl verb, past participle of Tl

verb) for "ADDED".

The processing of nouns is similar. £'or nouns, the first character

is always N; the class occupies the first three character positions. The

number (singular, plural, or " common" -irrelevant or indeterminate, e.g.

"DEER") occupies nosition four, and character number five is always blank.

Thus stem codes will be N0UO 111010, N0VO 11101 0, etc.; suffix codes are of

the form 000S0 00010 1, 000P0 00010 1, 000C0 00010 1. Note here that the

suffix/stem partition of complete codes is different for nouns (U/1235) and

for verbs (lU/235)• Thus noun stem codes cannot by mistake be combined xtfith

verb suffix codes or vice versa.

VI-10

A large number of words exist which do not require partial codes.

Among these are all those which exhibit no suffixes - prepositions,

irregular forms, pronouns, forms of "be", "have", "do", and so on. Also,

the codes for adjectives and adverbs are not divided. Many suffixes are

included in the suffix table which, give rise to complete syntax codes by

themselves, no matter what stem code is supplied. For instance, -MESS

always gives rise to the code "N0US" . Under these circumstances the code

juxtaposition operation can be skipped.

If no codes are determined by the procedure previously described,

because stem and suffix codes do not match, or because no partial codes

were provided by dictionary lookup, an arbitrary code list is assigned as

shown: VTIC, VI1C, N0UC, ADJ, AVI. This set of codes covers most word

classes except pronouns, prepositions and other common words which are

entered in the dictionary. BT$KUN writes out the list of syntactic codes

generated for each word on the output tape in the following order: the code,

the word and "homograph" numbers, the text word (2l| characters), and text,

sentence, and word number. (The word number thus appears twice).

The sixth and seventh words of a nine-word item contain semantic

information. This information is required by the criterion routine described

later in this section, and is therefore transferred into COMMON storage

where it is not disturbed. (COMMON k$l9 i.e« octal 76556 and preceding

locations).

When every word in the sentence has been processed as described

an end-of-sentence sentinel is written on the output tape and the next

VI-11

sentence i s processed. If the sentence-number l i s t i s exhausted, the

routine wri tes an end-of-text sent inel and an end-of-f i le on the output

tape, the tape i s rewound, and the f i r s t section (SETUP) of the syntact ic

analyzer i s calledo The complete process i s deta i led in Flowchart 1. The

square brackets near the flowchart box indicate the symbolic name of the

program areas that perform the corresponding operations.

h* Organization and Operation of the Criterion Routine (CRITER)

Following the syntactic analysis of the t e x t s , the c r i t e r ion routine

performs three functions * F i r s t , i t accepts the output of the syntactic

analyzer, and compute from i t a set of binary connection matrices. Secondly,

i t l i s t s a l l semantic and syntactic values appearing in a sentence, and the

words to which they per ta in . Final ly, i t supervises the matching of th i s

data against each member of the l ib ra ry of c r i t e r ion t r e e s . The overal l

organization of th is routine is shown in Flowchart 2.

In the output of the syntactic analysis program, one record i s formed

for each text word, containing among other information a s t r ing of up to 2)|

BCD characters (see Fig. 2) . Each character of such a s t r ing represents one

s t ructure or substructure in the sentence. The type of s tructure (e .g . subject,

phrase, object, e t c .) i s indicated by the character: f!S,f for subject, ,rPn

for phrase, e t c . The s t ructure indicated by each character i s contained in ,

depends on, or modifies that indicated by i t s predecessor in the s t r ing (i f

any). Thus in Fig. 2, rtone,f in each str ing denotes a declarative clause

standing alone, the "S" in s t r ings one and two indicates a subject of that

clause, and so on.

Compute number of
binary words on

text tape

Read suffix table
from library tape

Error

O.K,

Read text and list
of "frequent cluster11

sentences

XI < number of sentences
to be processed

X2 < number of binary words
in text

i Write i n i t i a l
s e n t i n e l ("ENGTEX")

on output tape
[FIND

A-< number of f i r s t
sentence to be

processed
[GEfj

Search text for first
word of sentence number A

Verify Mot

O.K. <3
Search text s w for f i r s t

word of next sentence

Compute number of
words in sentence and

verify

Bad

O.K.

©
Operations of BT0KUN Editing Routine

Flowchart 1

R

a fe-
No more

Convert number of
*| words and sentence

number to BCD

Write word count
on output tape

(in BCD)

[RESET]

Move f i r s t word to
buffer

jSUFLOC]

^ Get list of suffix
1 codes; H0M0S* 0

[RETSTM

Get one stem syntaxL
code

[GETSTM]

I s i t complete

w more

No [GE

Scan suffix code
list

SFJ

Yes Put it
-*list »H0I

Find a fit

Form combined
syntax code;

put i n r,J$M0Sn

Flowchart 1 (cont inued)

[STEMOK

Scan su f f ix code
l i s t for complete

codes

Find

Put i t i n t o

No more

#• 0

R e p e a t

O.K.

[FULHOMl

H0M0S: 0

0
HOMOS <—VTIC,VIlC

N0UC,ADJ,AV1

[GOOD]

J Compute BCD word
number

[LIMIT]

Take a code from
H0MJ0S and write it on

output tape

No more
'[ENDWDJ

Store semantic values
(concept numbers)

in SMS, with sentence
and word numbers

©

Flowchart 1 (cont inued)

vi-15

Have we processed the
l a s t word in the

sentence?

Yes
[ENDSENJ

Write ,fend of sentence'1

sentinel

Have we processed
the l a s t
sentence?

Yes [D0NE1

[Write r,end of text"
sentinel; rewind

tape

Store count of items
in SEMS

EXIT to
chain
(U,3)

No Next word

to buffer KD

No
A number

of next
sentence <E)

*J
A

4

rERR0Rl

Write on A3: "error in BT0KUN or
sentence tape'1

J Write on A3:
1 table

A c ^ ~

TERR0R21

"BT0KUN suff ix
i s in error

•l
"KUN0ER": ca l l
LESK

/
s»

Flowchart 1 (continued)

vi-16

Form chained
"table" of nodes,

strings and connections

Form connection
matrices from "table"

Form "Semval" table
from value tape and "table"

Form relations
from tree tape

and "Semval" table

Form summary table
->| listing subject heads

of matching trees
Index Information

lc
Attach index information
to summary, leave in

C0MM0N

EXIT

Organization of Criterion Routine

Flowchart 2

VI-17

Input

Magnetic ISA -

tape IS —

is IV-

the 1CA -

fastest 1CA _

input 1C - •

which 1C7S

is 1C7V

available 1C7C

today 1C7D

1. _

Format of Syntactic Analysis Used as Input

Figure 2

It may be seen from Fig, 2 that the strings may easily be

constructed from the corresponding syntactic tree simply by working up the

tree from any given node. For example, the string for "magnetic," which

corresponds to node three in Fig. 2, may be found by taking the predecessors

of node three, that is, node two, and then again of node two, i.e. node one.

The characters for these nodes are ,?A," rfS," "1" respectively, and correspond

to the string "ISA."

(1)1

VI-18

The criterion routine must perform the inverse transformation; that

is, it must determine a dependency tree from a set of strings. This task

is complicated by several factors. First, distinct nodes may have the same

strings; e.g., nodes six and seven in Fig. 2 both have the BCD character or

syntactic value ,fAM (adjective) and the string ,?1CA.M Secondly, the strings

contain no explicit information to distinguish between phrases modifying

the same word. Thus, in Fig. 3, there are two distinct trees exhibiting the

same set of strings. Only one of them (Fig. 3(a)) is correct.

The criterion routine processes the strings one at a time, starting

with the first word. Each string is scanned from left to rigjit. The program

maintains a list, called TABLE, of sentence nodes and their dependencies.

TABLE is initially empty. As each string is scanned, the routine traces through

this TABLE (see Fig. h) * When the string specifies a node not recorded in

TABLE, a new entry is generated. Thus, when all strings have been scanned,

TABLE contains a tree corresponding to the strings. Various refinements are

added to the miles for generating new nodes; these refinements handle the

various ambiguities discussed in the last paragraph.

The criterion routine uses several tables as part of the process.

Two of these, "SEMS" and "SIMM" are used throughout a run; the others are

reset for each sentence.

"SEMS" contains the semantic information for all the sentences to be

processed. It is stored by the BT0KUN program in C0MM0N U5l (octal 76556).

CRITER makes no alterations in it, but moves it into the program proper for

safekeeping. This is necessary because GRAPH uses that area of C0MM0N for

other purposes (see Sec. VII by Sussenguth). The semantic information is

VI-

Input

It

is

on

the

shelf

in

a

bottle

It

is

on

the

shelf

in

a

bottle

Interpretation

IS ^ (2) S

IV- Oft.

1VPR Q (5) R

1VP0A 0 ^) A V(7)I

1VP0 " ^ 6) 0

IVPR aS9)R

1VP0A -oM-l)k yi(Q)P

1 V P0 ^ ° C i o) 0

1 0

(a) Correct in te rpre ta t ion

1 S x\(2)S

iv (3)1

IVPR <x(5)R

1VP0A Q (7) A

1VP0 - S Q (6) 0 VJ (i

IVPR °(f)R •

1VP0A -°4™>A

1VP0 -V(9)0

1.

(b) Incorrect in te rpre ta t ion

Interpretations of an Analysis

Figure 3

VI-20

Word String &
Character

Structure Implied by
Characters to Date

this

this

this

ISA

u

1~
is

A

this

0(1)1

(2)s l > ^
i3)A^ JO (1)1

paper

paper

this •

this _

paper

(1)1

(1)1

(2)S

discusses

discusses

\
IV

1*

this -

paper -

this

paper

discusses

(in

document 10A this •

paper

discusses ^(U) V

information oJ6)A

and (7) +

document (8)A (5)0

Note; The vertical arrows indicate the character and node being
scanned at each step.

Scanning of Syntax Strings

Figure k

VI-21

stored in consecutive three-word items. The first word contains the

sentence and word numbers originally assigned by the itemizer. The next

two words (72 bits) consist of six semantic values (or concept numbers),

packed as three 12-bit bytes per word. These are obtained by the thesaurus

lookup.

"SUMM" holds at any time the list of matches found between all

sentences so far processed, and the criterion trees in the library. SUMM is

initially cleared; every time a tree is found to match a sentence, the table

is updated. Each entry in SUMM consists of two machine words. The second

of these contains a subject heading or "index" specified by six BCD characters.

The other word contains a count specifying the number of times that the

corresponding heading has been found to match a sentence.

When a match is found between a sentence and a criterion tree, SUMM

is scanned for an entry that matches the heading of the tree. If such an

entry is found, the count in that entry is incremented. If no entry is found,

a new entry is made, with a count of one.

"(0UT)" is a table constructed from SUMM. It is located in octal

61717 (C0MM0N 7010) and lower locations. Octal 61717 contains, in the decre­

ment, the number of items in the table0 These items are listed in successively

lower locations in reverse alphabetical order. Each item comprises five

machine words. The first word consists of a subject heading from SUMM; the

fifth contains in the decrement, the appropriate count (also from SUMM).

The sign of this count is positive. The remaining three words are extracted

from an "index" file on the SMART library tape. This file contains a three-

VI-22

machine-word correspondent for each subject heading; these three words are

simply copied into the appropriate locations without any processing.

"TABLE" is the most important table in the criterion routine. It

is stored in C0MM0N 10010 (5U027g). It is the primary active storage

during input of a sentence. When an entire sentence has been read-in,

TABLE contains all of the structural information provided by the analyzer.

During the processing of a sentence, TABLE holds all the nodes (i.e.

substructures) found as of that moment.

Each item in TABLE corresponds to one node of a tree. In memory an

item consists of 16 machine words. Of these, the first contains a chain

link, and a flag to indicate whether an actual word corresponds to that

node. The next five contain up to 30 BCD characters from the analysis of

the sentence, indicating the role of the node. The next two words are not

used. The remaining eight words in each item form two lUU-bit binary vectors.

One of these (the first) is called the "indirect" vector, the other the

"direct" vector. The "direct" vector is either 0, indicating that the

node has no antecedents (i.e. corresponds to the main structure (clause) of

the sentence),, or contains a single "1" bit whose position corresponds to

that of the immediate antecedent. The "indirect" vector contains a "1" bit

for each antecedent in the tree all the way up to the main clause.

The chain links referred to above, link together those entries corre­

sponding to strings of equal length. Thirty words, labeled TABLE+1 through

TABLE+30, are provided to hold the initial links of these chains. Each link

points to the seventh word in a 16-word item. The link at the end of the

chain is 00000.

VI-2 3

The last table, called f,SEMVALM, is reset for each sentence. It

lists all the semantic values and syntactic structure types found to

pertain to any node of the sentence. In memory, it consists of a sequence

of five-word items. The first of these contains one 12-bit value, and a

chain link by which the entire table is chained so that the values are in

increasing numerical order. The remaining four words comprise a lljii-bit

binary vector; the "one" bits indicate the nodes to which the given value

pertains. Only one entry is made for each distinct value: if two nodes

have the same value this is represented by two "one" bits in a single entry.

5. Internal Processing of the Criterion Routine

After a few initializations, CRITER processes the input, one

sentence at a time. The input tape is first scanned for a sentinel

indicating the beginning of an analysis: the sentinel record then provides

the number of the sentence. The sentence is then scanned, and the information

extracted from each word is stored in TABLE and SEMVAL. When the sentence

is completely read-in, CRITER matches it against each of the criterion trees.

The criterion tree tape is then backspaced and another sentence processed.

Finally the results are summarized and left in memory for the next program.

When a sentence word is read from tape, its record contains among

other things a string of BCD characters denoting the syntactic function of

that word in the sentencee The criterion routine keeps a count, "K", in

index register two. For each word, this count starts at one, and then is

incremented. The routine takes the first K characters of the character string

VI-2U

representing the BCD syntactic function code and scans through TABLE by-

means of the chain (starting at TABLE+31-K). The scan stops when a TABLE

entry is found whose string is equal to the first K characters of the

BCD code string of the word. If the chain is exhausted before such a

match is found, or if the match is not permitted (e.g. where a match

indicates that the code entry corresponds both to the present and to some

previous text word), ENTERK generates a new entry in TABLE. This entry

will be chained into the beginning of the Kth chain, and its string will

consist of the first K characters of the code string for that word.

When an entry in TABLE is either found by the matchin process

or generated, the number of the entry (represented as a single "one" bit)

is placed in a special vector, called DIRCT; the updated DIRCT vector is

then used to alter another nINDRCT,T vector by "0Ring" the contents of

DIRCT into INDRCT.

Figure £ shows a simple example of this process. The sample

sentence is "Computers think." The BCD code string for "Computers" is

"IS", and the code string for "think" is "IV". Here "S" means "subject"

and "V" means "verb". The "1" in both strings is the clause indicator for

the singLe clause to which both words belong.

Both DIRCT and INDRCT are set to zero at the start of the process.

Then with K » 1, TABLE is scanned for entry whose string field is equal to

"1". Since TABLE is anpty, none is found, so a new entry is generated as

shown at the top of Fig. £. (The arrows represent the successive links of

the chains connecting the entries). The first entry has a string field

VI-25

TABLE

S I

J/
• m

s
) ?

?

L F

X

S I

1
I S 1

D

1

Indirect
Direct

\L

PLl
.1

Word and
S t r ing

Computers

i s

Y

• •

1 \ / A

/

L F

X

S I

1

IS 1

D

1

Think

>
•

\
•

1 ^ N-I • T "

L

T

1

F

X
X

S I

1
I S
IV

1

1

D

1

1
1.1

. .1

IV

ds: L = Link which chains together entries of equal depth (=K)
F = Flag. This is set for an entry which matches the

entire string for a word
S = String
I = Indirect
D = Direct

Construction of TABLE

Figure 5

VI-26

of "1", blank I and D fields, because INDRCT and DIRCT are blank, and a

blank link (L) because this entry is the first for K • 1. DIRCT and

INDRCT are now updated. Since the entry just generated is the first

entry in TABLE, a "one" bit is placed in the first position of DIRCT,

and zeros elsewhere. Then the new DIRCT vector is 0Red into INDRCT.

The process is repeated for K = 2. The string is now "IS" and

again no entry is found. A new entry is generated; this time the I and

D fields each contain a "one" bit in position one, derived from INDRCT and

DIRCT respectively. The flag bit is set because "IS" is the full string

for the word "computers."

The situation is similar when "think" is processed. When K = 1,

however, the code string is "1"; and the first entry in TABLE already

contains the string "1". Thus no new entry is generated, and DIRCT will

have a "one" in the first position. INDRCT will also have a single "one"

bit in position one, since it was previously reset to zero before the new

word "think" was read-in. The process described above is repeated again

for K = 2, string = "IV", A new entry (the third) is generated and placed

at the beginning of the second chain. DIRCT has a "one" in position three;

INDRCT has "ones" in positions one and three.

Thus after the processing of the entire sentence, TABLE contains

a representation of the corresponding syntactic structure in tree form.

Each entry in TABLE represents a node, and the D(direct) field in a given

entry indicates the node upon which the given node depends. At any time

during the process, DIRCT indicates the most recent node found (or generated),

VI-2 7

i.e. the node upon which the next node will depend directly. INDRCT exhibits

all the nodes upon which the next node will depend, either directly or

indirectly, up to and including the topmost node of the tree.

When the entire code string for a word has been processed, TABLE

contains a complete record of the syntactic relations of the given word to

the earlier words in the sentence, and SEMVAL records the syntactic functions

of the word. The semantic values (from SMS) are now added to SEMVAL. As

before, DIRCT serves to indicate which nodes in the syntax tree are being

processed. When a given word is completely processed, DIRCT and INDRCT are

cleared to zeros for the next word.

Figure 6 shows how the concept numbers associated with the sentence

"Computers think" are entered into SEMVAL. The DIRCT vector is shown as it

is generated during the construction of TABLE. The steps which update

SEMVAL alternate with those that update TABLE; thus DIRCT always shows the

node presently being processed.

After the first node is entered in TABLE, DIRCT contains a single

"one" bit as shown. At this point an entry is made in SEMVAL which indicates

that the first node has the (syntactic) value "1". Similarly, after node two

is entered, an entry is made into SEMVAL, to indicate that node number two

has the value "S". Then a third entry is made into SEMVAL, showing that the

value ,f(G0MP)fl pertains to node number two. This is a semantic value obtained

from SMS; the entry is made only after the complete code string for the text

word has been processed.

VI-28

(WORD)

WORD

DIRCT and VALUE

COMPUTERS

ll

1.1

1.1 (COMP)

SEMVAL

T

LINK VAL
1

DIRCT

1. . J

V

"^s 1
l

s
1 . .

. 1 .

PL.

(COMP) .1.

THINK

. . 1
f^

n\ r
1 X

i

s
1 (COMP)

1 v

1 . .

. 1 .

. 1 .

. . 1 \

(WORD) (THINK)

h
\— u

ft
•

-L

1 i

i
s

(COMP)

V

|(THINK)

1 . .

. 1 .

. 1 .

. . 1

. . 1

(Note: The s t ages of p rocess ing shown he re a re not cont iguous , but
a l t e r n a t e wi th those shown i n F ig . $).

Cons t ruc t ion of SEMVAL, Using DIRCT as Developed i n
Cons t ruc t ion of TABLE (see F ig . 5)

Figure 6

VI-29

The same procedure is followed for "think". Note that when the

first value, "1" is to be entered, a r,ln already appears in SEMVAL; in this

case DIRCT is 0Red into the entry. This has no effect in the present example,

because there is already a "one" in the first position of the SEMVAL entry.

When a word is read which is coded "period" or "question mark", the

above processing is not performed. Instead, the INDRCT and DIRCT fields are

extracted from each entry in TABLE and reassembled to form two binary matrices,

one made up of all the INDRCT fields collected together, the other of the

DIRCT fields. Together these matrices are called C0NMAT (C0Nnection MATrices):

each is an incidence matrix indicating internode dependencies.

The complete preceding process takes place exactly once for each

sentence. The "criterion trees", I.e. the model phrases, are now read-in

from tape. Each is compared against the sentence as shown in Fig. 8,

Each tree consists of one record on tape, which is divided logically

into several fields (see Fig. 7)- The first field is the prefix, which

contains the number of nodes, the number of "relations" (see below), the

number of "relation generators", and a BCD heading and an I.D. (identification)

number. The next two fields are indirect and direct connection matrices

showing the structure of the tree.

The fourth field consists of a series of "relation generators"* Each

of these is composed of a 12-bit value (syntactic or semantic), a node

number, and a relation number. The latter refers to one of a set of "relations",

(denoting restrictions which affect the matching process between the given

tree and the sentence). Each relation is represented by a pair of binary

(C0MP)

Y)(C,V) (THINK)

(a) Symbolic representation

— J
1

1
1

D i
1 • • •• •

1 t • * «

1 14* i t

|_.i..
1 • • • •

1 • • • •

_ 3
196
S [C

(COMPj

(THINK)
C

S

V

- I

1

1
1

1

i

i

•

i

i

"1

i
i

R

If
5

i I

l

3
! 3

! 2

! 3

i P

i 2

: k J
! 3

! 1

; 3

P (Prefix)

I (Indirect)

D (Direct)

\ V (Values)

(b) Structure of binary record

A Sample Criterion Tree

Figure 7

VI-31

Current
SEMVAL Ent ry

V

• (COMP) .1

Current Relation
Generator

Value
Node Relation
No.

(C0MP1

Relations Generated

Sentence
(C0NMAT) TREEBF

1.

• (THINK; . . 1

1 1...

(THINK) 3 3
..1

1..

..1

• S .1.

V . . 1

c

s

3 3

2 l

V 3
1

1 .1 .

1.1.

| . . l

. 1 .

. 1 .

. . 1

I . . 1 1

.1

.1.

1..

.1

..1

k-

Scanning of SEMVAL in Generating Relations

Figure 8

VI-32

vectors, one for the tree and one for the sentence, and its function is

to ensure that each of the tree nodes indicated by the "tree" vectors

correspond to one of the sentence nodes indicated by the "sentence" vector.

These relations are set up by a simultaneous scan of the set of

relation generators (sorted in numeric order) and of SEMVAL (chained in

order of value). When an entry in SEMVAL is found to have the same value

as a relation generator, a relation is set up.

A space is reserved in storage near each connection matrix (C0NMAT

for the sentence, and "TREEBF" for the tree), to store the respective

relation vectors. The relation number in the current relation generator

specifies a location in each of these reserved storage spaces. In TREEBF,

the relation vector is cleared to zero, and a single "one" bit inserted

corresponding to the node number found in the relation generator; in

C0NMAT, the SEMVAL entry is 0Red into the relation vector. This process

is shown in Fig. 8.

The first SEMVAL entry scanned in Fig. 8 has the value (C0MP), as

does the first relation generator. Therefore a relation is set up. This

will be relation number two, corresponding to the number given by the

relation generator. Thus the second vector in each reserved space is up­

dated: the one in TREEBF is replaced by a vector having a "one" bit in

position one (as indicated by the relation generator) and the data from the

SEMVAL entry (which has a "one" in position two) is 0Red into the C0NMAT

half of the relation.

VI-33

When this has been done, the routine examines the next relation

generator. If the value is the same, the process is repeated; if greater,

a new SEMVAL entry is scanned. Then the comparison is repeated. If the

SEMVAL entry is less than the relation generator value, SEMVAL is scanned;

if greater, a new relation generator is examined. Thus the routine continues

its scan until it runs out of entries of either kind.

At this point the situation illustrated in Fig. 9 obtains. Two

separate areas are set up in memory, C0NMAT and TREEBF, each containing

the data for one syntactic structure. The first word in each area contains

the number of nodes in that structure* (In the example of Fig. 9 this is

three in both cases; in general, the criterion tree will have fewer nodes —

usually considerably so.) The next word is blank. The third word contains

a number of "one" bits, right justified, i.e. a string of "zero" bits followed

by a string of "ones". There are as many "ones" as there are relations.

This number is, of course, the same in C0NMAT and TREEBF — four in the example.

The relations are stored next in memory; these are paired: the first

relation vector in C0NMAT goes with the first one in TREEBF, etc. They

instruct the graph matching routine GRAPH (see Sec. VII) to permit only certain

correspondences.

Finally come the two connection matrices. Those in C0NMAT originate

in TABLE; those in TREEBF come from the original tape record. In the example

of Fig. 9, they indicate that nodes two and three of the sentence each depend,

directly (and hence indirectly) upon node one, while node one depends on

nothing; whereas the tree matrices show that the correspondent of node one must

depend directly on that of node two, while the correspondent of node three need

VI-3U

C0NMAT TREEBF

3

1111

. 1 .

. 1 .

. . 1

. . 1

! i . .

i . .

I . ,

l . .

Cĵ NMAT and TREEBF J u s t Before GRAPH
i s Ca l l ed

U n

vRela t ions /

> INDRCT <

I DIRCT

. 1 .

1 .

1111

Figure 9

|START|

VI

I n i t i a l i z e :
SUM

SENTN0
TAP0S

QjEADSN)

I n i t i a l i z e
SEM;

N < 1

JNEtfREC]

Find f i r s t a n a l y s i s
of a sentence

I fFlND
Find f i r s t

word
O.K. [iDECil

Convert BCD
sentence number

to b inary

TTfoGAINI

No Analys is

^ End of sentence? Yes

J/No [PRCCESI

String 4-
DIRCT 4-
INDRCT «£r

1
O's
0
0

(SEM)
Search for this word

in SEMS

LlOOPSM)]

Initialize reference to
SEMVAL

(EpF) < $

E0F

*©

Criterion Routine

Flowchart 3

36

[ENDWD -k\

Is character (K+l)
- 60j? -0

JRETRNJ

String <- a, /characters

I ^ / s t r i n g : + or ,

JL
other

M TABLE +31-k

K+l : 30

[BEGINK h©
Chain (TABLE +31-16)|<.

i CTABLOCJ
= 0

W/TABLE (6,M): R TABLE (1,M)
l n s e t | i _ M £ L A G) Set

Flowchart 3 (continued)

VI-37

rr ^
/

[SETUP]

DIRCT <r- - A
INDRCT « INDRCTvA

V

S •<:—60n (fe c h a r a c t e r / , , - .

V

JENDWD]

Set f l a g of TABLE
(1 ,cha in)

[BACK]

S.t— a /SEM: 0
*| SEM <-— a2/SEM

S / 0

S = 0

Read next word
i n sentence

E0F

Find

*©

Flowchart 3 (cont inued)

VI-38

I + 1: V!

T ITRREL:

TREL(R(I))K-

« %(I)L-

No

[TREES]

Set up C0NMAT
from TABLE

1 fREADTR]
Read a criterion tree
(sample phrase) from

tape

E0F Backspace
»)tree tape
one file

H®
O.K. V,GEN,TREMAT

I -
chain

J

1
SEMTAB
1

[GETVALl

SEMVAL (c h a i n , 2)
genera tor (I)

J L O .
[NEWENT]

Chain <- 3EMVAL
(cha in ,1) : 0

["EQUAL!

REL(R(I)) 4 — REL(R(I))
v SEMVAL (CHAIN,3);

[T0GRAF

J Set up c a l l i n g
sequence

0

Match

Match [MATCH]
Scan SUMM t a b l e for e n t r y

= to head of cu r r en t
t r e e

Find [MATH

Fa i l .

Add 1 to count of
e n t r y

Make new e n t r y
from head of t r e e

s e t count = 1

I
(Size of SUMM)*—

(Size of SUMM) + 1

Flowchart 3 (cont inued)

VI-39

Tree f i l e unused

[GOODBY]

*| Space over tree file
to index heading file

O.K.

Repeat

[PICK]

J Get alphabetically earliest heading
from SUMM; then erase

Bad

L _ l ^ _

Not

Find

O.K.

Make up en t ry for (OUT), us ing
heading and count from SUMM

[FINISH]
Compute number of entries in

(OUT) and verify K-

O.K. [READHD]

Has enough more index data
been read?

No [LIMTWgl
Is read in still going on?

No

Initiate read

[_BAKX[

Compare input data against^
(0UT)

No
More

Yes

E0F

Overshoot

Find [(MOV])

Move index data to (0UT)

[SORRY]

Set item count of (0UT)
= to zero

JSKIPL
Skip r e s t of index f i l e L

(0.K)
Rewind sentence tape; EXIT [£

Flowchart 3 (continued)

VI-1*0

1ENTERKI

Get empty l o c a t i o n
fo r new node

Move chain l i n k from
table+3l(K) to new

l o c a t i o n

Table+31(K) ^ — l o c a t i o n
of new e n t r y

Store l o c a t i o n of new
e n t r y

New e n t r y <— K c h a r a c t e r s
from s t r i n g

New e n t r y
< INDRC.T.DIRCT

I s t h e r e more room i n
TABLE?

No;

F u l l -©
Yes

RETURN

Subroutine ENTERK

Flowchart h

V I - M

I ENTERS I

SCHAIN <? 0

Move down one
chain l i n k :
SCHAIN <

SEMTAB(SCHAIN)
LINK

No Kore

CSEMST0J
SEMTAB(SCHAIN) VAL

O.K.

friLEM)

SEMTAB(SCHAIN)<
SEMTAB(SCHAIN)

v DIRCT

DATA
DATA

RETURN

-*
Back up one
chain l i n k

-± flNSERfl
I s t h e r e any

more room
i n SEMTAB?

No < R)

Kes
[SEHTET4T

Get new s l o t :
SEMTAB (NEW) LINK<—SCHAIN

3EMTAB(SCHAIN)LI^-
New Address

SEMTAB (NEW) M T A |

« DIRCT

Subroutine ENTERS

Flowchart 5>

VI-1|2

only have an indirect dependence on that of node two. The correspondence

1 >2,2 — > 1 , 3 — > 3 satisfies these dependency requirements but not the

relations, because tree node two must correspond (by relation number one)

to a sentence node marked S, i.e. to sentence node two. But also by relation

two, tree node two must correspond with sentence node one (the only one

with value (COMP)); thus no correspondence is possible here.

These two sets of data serve as input to GRAPH (Sec, VII). They

are set up as described, and GRAPH is given the addresses of the corre­

sponding; areas in memory. Then GRAPH evaluates all the relations, con­

nections, etc. and either decides that no one-to-one correspondence is

possible (as in the example given), or finds such a correspondence. The

answer is returned in the accumulator: zero if no match, one if a match is

possible. If a match is possible, GRAPH leaves in memory a list of binary

words, one for each node in the tree. Each of these words contains the

number of the sentence node corresponding to the respective tree node.

Flew charts 3* k and 5 describe the various steps used by CRITER in

greater detail.

REFERENCES

Mathematical Linguistics and Automatic Translation, Report No. NSF-8

The Computation Laboratory of Harvard University (January 1963).

Mathematical Linguistics and Automatic Translation, Report No. NSF-9

Vol. I and II, The Computation Laboratory of Harvard University

(June 1963)-

