
ISR-7 V-l
June 1964.

V. PROCESSING OF THE CONCEPT HIERARCHY

George Shapiro

1. Introduction

This report describes a system for setting up and referencing a

hierarchic structure consisting of integers which represent English language

concepts. These programs are incorporated into the SMART document retrieval

system- The programs described here do not depend on the significance

attached to the integers (hereafter called "concept numbers"), and confine

themselves to the replacement of sets of original concept numbers by new

ones found within the hierarchical structure. Thus, search requests pro­

ducing unsuitable responses might be altered, using such a hierarchy, to

produce in some sense "better" requests (i.e., requests resulting in

"better" responses).

English words occurring in search requests or in documents are first

replaced by concept numbers using a thesaurus lookup operation (several

words often have the same number; one word may have several numbers). These

concepts are arranged in a treelike structure called the hierarchy where,

in general, several related items appear under one item of greater gener­

ality. Provision is made for having a given concept number appear in

several places within the hierarchy by allowing any concept in the tree to

"cross reference" any other. Cross referencing is unidirectional and

implies no hierarchic relation. Section ill of this report may be consulted

for a detailed discussion of the considerations involved in generating the

hierarchy.

V-2

Two main program blocks, the update and the lookup, are used to

process the hierarchy which is normally stored on tape. For each update

run, a set of cards is required specifying all changes, additions, and

deletions to be made. The update options are described in Part 3 of the

present section. It should be noted that the update programs provide

diagnostic information to detect inconsistencies in the input data.

The hierarchy lookup program uses as argument a vector of concept

numbers and an associated vector of frequencies. The program returns a

new vector corresponding to the expansion of the input (request) vector;

specifically, each item in the input vector is replaced by or added to

(depending on the option chosen) its parent, children, brothers or cross

references (depending again on the option chosen)• These functions are

detailed in Part 6 of this section.

2. Structure in Core

To each item in the hierarchy there correspond three consecutive

locations in core as follows:

Prefix Decrement Tag Address

s l

S2

N

SON

LEVEL

POP

BRUB

REF

V-3

where Li is the concept number of the item, POP is the core address of the

node corresponding to the parent of the item, SON is the core address of

the node corresponding to the first member in the (filial) set of the item,

BRUB is the core address of the node corresponding to the next brother in

the filial set of which the item is a member, LEVEL is the index of the

level (starting from a root) where this item is located in the hierarchy,

and REF is the core address of the first item in a chained list of cross

references to the item,

JM is the only field which can in no case be equal to zero. S. = +

unless the item is marked deleted, in which case S. = - . Sp = + if the

item is not the last in the filial set of which it is a member; otherwise

If REF is nonzero, the corresponding address points to the first

item in a chained list containing the cross references to the given item,

î ach element in this list is a 7094 machine word; the decrement part

contains in each case the core address of the node in the main structure

of the hierarchy corresponding to a cross reference, and the address part,

if it is nonzero, points to the next item in the cross reference list; a

zero address denotes the end of the list, The sign of a given word in the

cross-reference list is negative if and only if the given item has been

deleted from that list.

A mechanism must, of course, be available for finding the core

address of a node in the hierarchy corresponding to a given concept number.

To this end, a chained tree of numeric keys is provided in which each item

is of the form

V-4

S 1 2 Decrement Tag Address
J

0 R K B - P

K represents one (octal) digit of a concept number. Since each concent

number is constrained to be less than 8 = 4-096 and is thus represented by

four octal digits, the key tree includes a total of one for each digit of

the concept number. R points to the first element in the set of sons

(i.e., the set of key digits one level deeper and under K) of the given

word of the key tree. On the fourth level, R points to the core address

in the main structure of the hierarchy of the (unique) concept number

corresponding to this leaf- B - P points to the brother or parent in the

key tree of the given word, depending on whether S is 0 (plus) or 1 (minus),

respectively. On the fourth level, if and only if bit 1 is 1, the given

item has been deleted.

Lookup in such a tree is a fairly simple procedure (performed by

subroutines NFIND and FIND, which are slight modifications of each other)

and updating is simpler than in simple lists, because nothing must be

physically moved when an insertion is made. Flowchart 1 describes sub­

routine NFIND. N(I) is the Ith octal digit (from the right) of the concept'

number N which is being looked up. B represents the location of the first

root of the key tree. C(j) denotes the contents of location J, and

, denotes bits a through b of the contents of location J.

The flowcharts appear in the appendix to this section.

/ /

;/

2
/

00000

tf
/A
2 — ^ 3

/' /A
00004- / \|

00007 00012

(a) Tree Representation

- 20002 0 20000 - 20003 1 20001

- 20006 1 2000^ + 20007 2 20010

+ 00007 k 20012 - 00012 6 20010

L 00001 1 20002

r 00004 :i 20006]

(b) Core Image

Example of Key Tree Structure

Figure 1

V-6

It is now apparent why all the various pointers in the main

structure (and the cross-reference lists) point to node addresses rather

than to the concept numbers directly: in the present system, the concept

number can be picked up easily, and tests and searches can be made; if,

however, the pointers were used to find the concept numbers rather than

their core addresses, the item would first have to be looked up in the

key tree before tests or searches could be performed.

isiote that no items are ever physically deleted, but rather marked

and later skipped by the lookup programs. In this manner the various

linked lists are never broken, an option is available to write onto an

intermediate tape card images of input cards (see Part 3 of this section)

for the hierarchical structure in core, and later to generate an undated

hierarchy. This option is used to eliminate inefficiencies in terms of

time and space arising from large numbers of deletions or reattachments.

The following illustration should help to illuminate the above

discussion of the key list. Suppose the only concept numbers in the

hierarchy are (in octal) 0012, 1121, 1134, and 1136, and that the nodes

corresponding to these are located respectively at (octal) 00001, 00004-,

00007, and 00012. The key tree would then appear as shown in Fig. 1.

3* Instructions for Using Subroutine GEORGE

Before giving examples of the main structure of the hierarchy, the

present section specifies the necessary instructions for using subroutine

V-7

GEORGE, the supervisory program for hierarchy update and setup. The

various available options are described in detail.

GEORGE assumes that the input tape containing the hierarchy is

correctly positioned on A6. It is further assumed that the output tape

(i.e., the tape onto which the hierarchy is to be written) is correctly

positioned on B5. An end-of-file mark is written on B5 after the last

word of the hierarchy.

Input cards to GEORGE have the following format:

i l - 6 ,

FLAG

7 - 10 ,

NSOK

1 1 ,

9

12 - 15,

NPOP

16, 17 - 20,

NR(1)

2 1 ,

>

22 - 25 ,

NR(2)

26, ,

where FLAG is a six-character alphabetic flag and NSQN,NF0P,NR(l),1= 1,«..,12

are right-justified decimal integers. The list HSDN,NP0P,NR(1) ,NR(2), . •.

terminates at the first zero or blank field. Any nonnumeric punch

(including "+" or "-") in the numeric fields causes the card to be ignored

and printed off-line v/ith a message.

Note that GEORGE, in general, reads in all the input cards and

stores the processing requests in the form of so-called "request vectors"

before commencing any processing (except of DELETE cards)• See, however,

the definition of the BYPASS card below.

If

FLAG = INSERT, NSON is inserted as the son of liPOP with

MR(!),..• as cross references if they are present;

V-8

FLAG = TOPMAN, NSON is inserted with no parent and with

NPOP,NR(l),... as cross references if they are present;

FLAG = REFERS, NPOP,NR(l), ... are inserted as cross references

to NSON;

FLAG = OUTREF, NP0P,NR(1),. .. are deleted from the cross-

reference list of NSON;

FLAG = DELETE, NSON is deleted from the hierarchy (its children,

if any, are reattached with its old parent as their parent if it had a

parent and are left with no parent otherwise•)

FLAG = ATTACH, NSON is removed from its current position in the

hierarchy and reattached along with all its children, cross references,

etc., as the child of NPOP, or if NPOP is blank or zero with no new parent;

note that ATTACH cards are processed after INSERT cards;

FLAG = BYPASS, the hierarchy request vectors up to this point are

processed, and the remaining cards in the input deck are then processed;

FLAG = FINISH, the hierarchy request vectors are processed and

input ceases. If, further, NSON = 2, a listing of the hierarchy is

produced. If NSON = 1, a listing is produced and the hierarchy is

rewritten in "tightened" form.

If the first card of the input deck or, for that matter, the first

card after a BYPASS card (though in this case the purpose is ill-defined)

contains merely FLAG = TAPE, the hierarchy is read in from tape (A6) before

V-9

updating commences. Otherwise, the hierarchy is written entirely from

cards (in which case GEORGE does not require that A6 be mounted).

Note that the structure, as far as it has been set up, is -written

out on B5 'whether or not GEORGE thinks that dangerous errors have been

made. Thus, in some cases it might be desirable to correct the errors by

updating the new (incorrect or incomplete) tape rather than by attempting

to update again the tape originally on A6. This procedure should be

followed only by a person who is acquainted with the hierarchy programs

and is thus familiar with the structure written onto B5- (Alternatively,

this tape might be listed by submitting as an input deck the two cards

TAPE and FINISH0002.)

4.. Hierarchy Setup and Update Processing Examples

The present part describes some typical examples excluding,

however, any cross-reference processing which is quite straightforward.

If GEORGE is first given the following input deck

T0PMAN0001

INSERT0002,0001

INSERT0003,0001

INSERT0007,0002

INSERT0008,0002

INSERT0010,0003

IMSERT0011,0003

INSERT0004,0001,

a hierarchical structure Is then generated as shown in Fig* 2.

V-10

S\ /A
>.3 >U

/A
10—>11

Example of Hierarchy Structure

Figure 2

Suppose now that the card INSERT0009,0003 is processed. The pro­

cedure used by subroutine CONU to insert the new concept number in the

hierarchy is then as follows: three core cells are set aside for concept

number 9- Concept number 3 is then looked up and the location of its son

is saved. This son pointer is then replaced by the location just set aside

for 9, and the address of the old son, now the brother of node 9, is

inserted in the "BRUB" location of 9. The hierarcical structure of Fig. 3

then results.

i—^Ac-* u

-> 8 9 —^10—>11

Hierarchy Structure of Fig. 2
After Processing Insertion Request

Figure 3

V-ll

Assume now that the card processed next is as follows: DELETE0003,

Then, the structure generated is that of Fig. I4.. The box in Fig, h

represents the deleted item which merely serves as a pointer, and k now

Hierarchy Structure of Fig. 3
After Processing Deletion Request

Figure k

points to 9 as its brother (rather than being flagged S = - as before)

Similarly, given the hierarchical structure of Fig. 2 and the

input card ATTACH0003,0002, the structure of Fig. 5 is then generated.

The box in Fig. 5 again represents a deleted item, this time the core

Hierarchy Structure of Fig. 3
After Processing Attach Request

Figure 5

V-12

location where 3 was previously located; this location now points to (the

new) 3 as its parent so that 9, 10, and 11 still exhibit the correct

parent. The location now marked 3 is a physically new node. It is the

only node which must be newly created in order to effect this change.

5. Description of Programs for Setting Up and Updating the Hierarchy

Subroutine GEORGIL (cf. Flowcharts 2 through U explaining various

sections of this program) is the supervisory program for updating the

hierarchy. It accepts and processes the control cards described in Part 3.

and provides fairly comprehensive diagnostic information about illegal

information and inconsistencies in the input cards. In conjunction with

SPLASH, options are provided for producing a listing of the hierarchy and

for rewriting the hierarchy in "tightened" form (cf. the discussion of

deletions and reattachments in Parts 2 and U)•

In order to avoid restrictive conditions regarding the ordering

of the input cards, GEORGE has been coded so as to read all input cards

before attempting to process any; the single exception to this rule is that

deletion requests are processed immediately as they are encountered. (This

exception is made because it is assumed that, during a given update run,

an item might be deleted and then reinserted elsewhere, but the opposite

procedure should never be attempted.)

GEORGE keeps one or two integer request vectors for each type of

request (see Appendix A, Table 1 for symbol-definitions of specifics).

After all cards for a given run or segment of a run, as indicated by a

V-13

FINISH or BYPASS card, have been read, the processing of these vectors

commences. During the processing, GEORGE calls a large number of FAP-coded

programs which perform "atomic" operations on the hierarchy. The names

and calling sequences of these programs appear below. Note that all of

these programs return with the argument NTEST equal to zero if and only if

they have been able to complete their specified functions successfully*

CONU(NPOP,NSON,NTEST) inserts NSON as the son of NFOP. If NPOP is

not in the hierarchy, NTEST is positive on return. If NSON was already in

the hierarchy, NTEST is negative on return.

EPON(NSON,NTEST) inserts NSON in the hierarchy with no parent.

NTEST is positive on return if NSON was already in the hierarchy,

CHANGE(NSON,NPOP,NTEST) detaches NSON from its old parent (if it

had one) and reattaches it as the son of NPOP. If NPOP - 0, NSON is left

without a parent. 0 n return, NTEST is positive if NSON is not in the

hierarchy and is negative if NPOP is nonzero and is not in the hierarchy.

DELETE(NSON,NTEST) deletes NSON from the hierarchy; if NSON has any

children they are attached as children of the parent of NSON if it had one;

if it had no parent they are left without a parent. NTEST on return, is

positive if NSON was not in the hierarchy.

REFER(NAME,NCRS,NTEST) enters NCRS as a cross reference to NAME.

On return, NTEST is positive if NCRS is not in the hierarchy and is negative

if NAME is not in the hierarchy. No test is made to determine whether

NTEST is already in the cross-reference list of NAME; if it is, and is then

entered a second time, false weights will be generated in expansions during

the lookup programs (cf* Part 6).

V-14

STILL(DUMMY,NCRS,NTEST) enters NGRS as a cross reference to the

last item to which a reference was previously added by REFER (or by STILL).

If none had been added previously, the result of calling STILL is undefined.

The sequence

CALL REFER (NA,NB,M)

CALL STILL (DUMMY,NC,M)

should be used in preference to

CALL REFER (NA,NB,M)

CALL REFER (NA,NC,M)

because IMA is not looked up a second time (with FIND) by STILL. All other

comments applying to REFER apply also to STILu-

ROUT(NAME,NR,NTEST) removes NR from the cross-reference list of

NAME. On return NTEST = 1 if NAME is not in the hierarchy; NTEST = 2 if

not in the hierarchy; and NTEST is negative if NR is in the hierarchy but

is not in the cross-reference list of NAME.

SR0UT(DUMMY,NT,NTEST) acts with respect to ROUT in the same manner

as STILL does with respect to REFER*

The algorithm used in connection with CONU may be of interest. The

requests for insertions are stored in vectors NDAD,NB0Y. In order to avoid

specifying a given order among the input cards, the following method is

employed: a pass is made through the vectors NDAD,NB0Y and an attempt is

made to effect each insertion in turn* those successfully handled are marked

and a count is kept. GEORGE then continues to scan the vectors until the

v-15

count of successes for a complete pass is zero (on each successive pass,

items previously entered are ignored). If any concept numbers still have

not been entered, diagnostic information is printed out. This is also

done for any concepts found to be already in the hierarchy• (In this case

subroutine XPOP finds the number of its parent if any, and this number is

included in the diagnostic.) See Flowchart h for a more detailed description

of this process.^

After setting up the hierarchy, depending on the FINISH card,

SPLASH may be called either to produce a listing or to list and also leave

card images of input cards on logical tape 80 There are no DELETE, ATTACH,

or OUTREF requests among these data. After control is returned to GEORGE,

NTAPE is set to 8, the hierarchy is erased and reinitialized (by subroutine

WENT) and processing is recommended.

When the hierarchy is eventually written on tape, subroutine TAPEU

is called which in turn calls HOUT, a routine used to write the hierarchy,

including also a code record giving length and location, onto tape B^.

Read-in of the hierarchy is performed by subroutine HIER (called in the

update link by INPUT and in the lookup link by FOREST). If read-in is to

be performed a location other than that from which the hierarchy was

previously read out, the various pointers in the hierarchy must be relocated

XSCHON is a Fortran integer which sets the sign bit and bit one of its
argument equal to 1. XTHENF(N) is zero if and only if bit one of N is one.
(The items which could not be entered because they were already included
are set negative, so as to be ignored on the next pass, and are also
flagged so that the appropriate diagnostic information can be written out
later.)

V-16

by HIKR. (It would have been possible to specify that the hierarchy

should always be read into the same core locations; this would, however,

have impaired the flexibility of the various component subprograms.)

It should be noted that GEORGE keeps count of a number of errors

considered dangerous during setup, and if this count (called NF) is

positive the program turns on Sense Light 1 before returning. The main

program in the update link of SMART interprets this as a signal of failure

and writes out an appropriate message.

6. The Hierarchy Lookup Programs

The second main set of programs includes those which expand

(request) vectors of concept numbers. These routines are called (by the

routine TREES in link 1) with a sequence such as CALL NAME (NUMS,NWTS,N,NF),

where NUMS is an N-vector of distinct, nonzero concept numbers, and NWTS is

an N-vector containing in position I the integer weight associated with

NUMS(l). NF = 1 if each item in NUMS is to be replaced by its expansion;

NF = 2 if each (expanded) item is to be added to the original in NUMS. Note

that, if the expansion of an item is null, the Item will be left in the

output vector even if NF = 1*

On return, NUMS, NWTS, and N specify the same type of information

where NUMS is now the vector of expansions. NUMS is compressed in the sense

that if a concept number appears in the expansion of more than one item of

the input vector, it still appears only once in the output vector, the corre­

sponding weights being added• Thus, on return, NWTS(l) is equal to the sum

of the input weights of all the items in whose expansion NUMS(l) occurs.

V-17

If name is /

CLIMB
each item in NUMS

CHILD is replaced by or J
FILIAL added to its

CROSS

parent

children

brothers

cross references

For example, if the hierarchy appears as in Fig. 3 and CALL

FILIAL(NAMES,NWTS,N,NF) is executed with NF = 2, N = 3, and

NAMES(l) = 1 NWTS(l) = 1

NAMES(2) = 9 NWTS(2) = 1

NAMES(3) - 10 NWTS(3) = 1;

then, on return, N - h and

NAMES(l) = 1 NWTS(l) = 1

NAMES(2) * 9 N¥TS(2) « 2

NAMES(3) « 10 NWTS(3) = 2

NAMES (h) = 11 NWTS(ij) = 2.

As in the setup link there exist, in the hierarchy lookup link,

FORTRAN-coded "bookkeeping" programs which call additional "atomic" FAP

programs.

CLIMB calls a (function type) subprograms, XDADF(NSON) which returns

with the concept number of the parent of NSON if NSON is in the hierarchy

and has a parent, and with zero otherwise. The coding of CLIMB is indi­

cated in Flowchart 5. NCON,NFREQ are (integer) vectors used by generated

expansions and associated weights before they are condensed. MARC is a

subprogram which condenses NCON,NFREQ so that each concept number occurs

only once in NCON.

V-18

CHILD, FILIAL, and CROSS are similar programs, except that a FAP-coded

supervisory program (cards labeled NFUDGE) arranges matters so that different

FAP subroutines labeled KID, BRUB, and CRS, respectively, are called. Each

of these latter is called with a sequence like CALL ME(NH,NCON(l),K) and

inserts the expansion of NH in the vector NCON in positions NCON(l) through

NCON(l+K-l), where K (on return) represents the number of concept numbers

in the expansion of NH. None of these routines returns NH as part of its

own expansion, thereby permitting the bookkeeping program conditional on

the value of NF to decide whether NH is to be Included in the output vector-

CHILD, FILIAL, and CROSS all call MARC, except that CHILD does not

If NF = 1 (since distinct parents have disjoint sets of sons).

Flowchart 6 describes the coding of CHILD, FILIAL, or CROSS; NCON,

NFREQ here serve the same function as in CLIMB.

As an example of (a fairly simple) lookup procedure, Flowchart 7

describes the coding of XDAD • The argument is found by the subroutine in

the accumulator (Ace), and the value is returned there. Again, C(X) refers

to the contents of location X and Y , refers to bits a through b of Y.

APPENDIX A

V-19

Symbol Definition

FLAG the six-character alphabetic flag read in from the input card

NAME a vector containing in position N the element to "which the Nth
item in the vector NCRS must be added as a cross reference

NAT the length of the vectors NCH and NEW

NBOI a vector containing in the Nth position the Nth item to be attempted
to be entered into the hierarchy (it will be added as the son of the
Nth item in NDAD)

NCH a vector containing in the Nth position the Nth item to be moved
(cf. ATTACH option)

NCRS see definition of NAME

NDAD see definition of NBOI

NDL the length of the vector NGUT

NEW a vector containing in the Nth position the item to which the Nth
item in NCH is to be moved

NF the number of so-called "dangerous" errors

NINS the length of the vector NBOY

NOR the length of the vector NROUT

NGUT a vector which contains in the Nth position the Nth item to be
inserted without a parent (cf. TOPMAN option)

NPL a vector which contains in the Nth position the item from which the Nth
item in the vector NROUT should be deleted as a cross reference

NPOP the second integer read in from the input card

NR a vector of length twelve, the third through fourteenth integers to
be read in from the input card

NREF the length of NCRS

NROUT see definition of NPL

NSON the first integer read in from the input card

NTAPE the number of the input tape (either logical 5 or 8)

NTEST a variable used by the various FAP routines to indicate to GEORGE
whether or not they have been able to perform their intended task

Definition of Symbols in Subroutine GEORGE

TABLE 1

20

N NOT FOUND,
RETURN

f"
T ,*

I "* • 1-1

J—[c(J)] 3 „ l 7

RETURN; ITEM £_
WAS DELETED"

J — [c(J)]3 . l 7
RETURN, J HAS LOCATION
OF N IN HIERARCHY

Subroutine NFIND, Looks up Concept Number (M)
i n Key Tree and Returns Locat ion of Hierarchy Node

Flowchart 1

V-21

NTAPE*— S

CALL WENT

1
SET COUNTS TO ZERO
INITIALIZE SWITCHES

CHART 3

I IF BYPASS SET SWITCH a\ FOR RERUN
IF NSON*0 SET SWITCH cr2 TO CALL SPLASH

X
TOPMAN REQUESTS

CHART 4

PROCESS ALL OTHER
REQUEST VECTORS

CALL SPLASH (NSON)

NTAPE*-8

IF NF>-I TURN ON SENSE LIGHT 1

°"l CALL TAPE u RETURN

Block Diagram of Subroutine GEORGE; (Processing of Request
Vectors Other Than Insertion Requests is Straightforward

and is, Therefore Mot Included)

Flowchart 2

22

(CALL CLETEINSON. NTESTj)

I
WRITE DIAGNOSTIC IF ANY

(*• SEE IF NTEST-O)

AMoch

NAT • - N A T * I
WCH (NAT)••-—NSON
NEW (NAT) ••— NPOP

NINS*—NINS • 1
NDOD(NINS)*—NPOP
NBOY (NINS)- NSON

-L
NOL—NOL

NOUT(NDL) « — NStyN

NREF *— NREF • I
NAME(NREF) -—NSON
NCRS(NREF)-—NPOP

NREF •*— NREF • !
NAME(NREF) +— NSON
NCRS(NREF) —"NR(J>

NOR •— NOR • I
NROUTINDR)—NPOP

NPL (NOR)*-NSON
J -•— I

NOR —NORM
NROUT(NOR)-»-NR(J)

NPL(NOR) -—NSON
J *— Jt I

SET SWITCHES 5 Q
GO TO CHA8T 4

Setup of Request Vectors in Hierarchy Update Program

Flowchart 3

V-23

/d\
/ h? \ V

N
TE

S

\ \ H
A \ \

.̂ ,

Q

< Q
Z
LL
Z
o T

"X
S

C

J
• — 1

u

|
N

D
A

»>

*~" 1 *—* 1
"" O
• <
5 z
2 ^
i • Li
1 if z l s ~ Q

< o z

3
S I
-P
CO

a)

ft!

o
•H
-P
JH
0)
CO

O

CO

CO

CD

a

• P

&
o

V-2U

I P *
NCON(IP)*
NFREQUP)

IP+1
NUMS(I)

- NWTS(I)

IP-
I "

0
1

r\ NC •*- XOADFINUMS(I))

IP * - IP f t
NC<$/NUPH NC
NFREQUP)-*—NWTS(l)

MOVE NCON, NFREO into
NUMS, NWTSresp.

I
N IP

1 *

I * 1

* i i

IND -•— IP-f- I
NCtyN(IND)-*— NUMS(I)
NFREQ(INO) *— NWTS(I)

<; IN ><

\ t 4 7771
< i

Return

Subroutine CLIMB (NUMS,NWT3,N,NF)

Flowchart £

v-25

} <

I 1

1
NC0N(M + I)-«—NUMS(I)
NFREQ(M+I)-»—NWTS(I)

-v i [: L ^ >

I ^

I " 1+1

1
M * - M + L

Call MARC(M)
(Unless NF = I And PROG = KID)

Move Vectors
NCON, NFREQInfo

NUMS, NWTSResp.

I
L - — M

Return

Enter

\
K •*
1 •*

1 1
ll

I
1 + 1

CALL PROG(NUMS(I), NCON (K), MM, NF)

£
J *•— J + I

NFREQ(K+J-D—NWTS(I)

NCON(K)-
NFREQ(K)-

K •

NUMS(I)
NWTS(I)

- K + 1

Flowchart of CHILD, FILIAL or CROSS;
PROG i s KID, DRUB or CRS, Respec t ive ly

Flowchart 6

V-26

N •*—Ace

3 !

CALL NFIND(N),
Core Address Of N's Node--*-J

Acc-[C(J)]3_17]

\ i '

Return

Subroutine XDAD

Flowchart 7

