
ISR-7 IV-1
June 1964.

IV. DICTIONARY LOOKUP AND UPDATING PROCEDURES

Mark Cane

1. Introduction

The present report describes the routines used to manipulate the

thesaurus (or concept dictionary), including all thesaurus lookup programs,

as well as the programs used to set up and update the hierarchy. The update

programs are described first, including a specification of the input deck,

as well as a detailed explanation of all setup and updating options. This

is followed by a discussion of the lookup procedures. Examples are given

and detailed flowcharts are shown to illustrate the programs.

The updating section sets up the thesaurus and suffix trees used by

the thesaurus lookup programs. These programs are stored as the first file

of a library tape. Inputs to these program blocks consist of a control card

specifying what is to be done, followed by additional cards containing the

data for the entries to the thesaurus and the suffix trees. A variety of

options is provided. Either tree may be set up in its entirety; an

existing tree may be copied onto a new library tape unaltered, or may be

augmented by new data on cards; furthermore, the semantic and syntactic data

associated with each entry in the trees may be altered.

The block of updating programs also handles the conversion of

semantic and syntactic data from a format acceptable to the FORTRAN 1-0

package to the packed format used by later programs.

IV-2

2. Input Deck, Control Card, and Data Card formats

The input deck consists of a single control card, followed by the

cards containing the thesaurus entries (if any), terminated by a card with

the letter ,!ZM in columns 1 through 6; the thesaurus entry cards are in turn

followed by the cards containing the suffix data (if any), which are again

terminated by a card with six "Zfns.

The control card is divided into four fields: columns 1-6, 7-12,

13-18, and cclumn 24.• All fields are left-justified. Table 1 lists the

possible configurations of these fields and the options they control*

A thesaurus input card contains 15 fields. The first field (card

columns 1 to 24) contains the English word to be entered. It must be left-

justified, i.e., the first column must contain the first letter of the

word. The next six fields (columns 25 to 48) store the semantic codes

(category numbers) associated with the word. Each code is allotted four

columns, so that the codes appear in columns 25-28, 29~32, 33-36, etc. The

codes must be left-justified in the field, and must be stored consecutively.

For example, if there are two codes, say f;05 and 237, they must appear in

the first two fields in columns 25-28 and 29~32, respectively. Furthermore,

each code must be right-justified within each field* Thus, for the above

example, columns 25-32 would appear as follows:

25 26 27 28 29 30 31 32

9 0 5 2 3 7

The category numbers must be less them 2 = 4096 in magnitude*

IV-3

p

1

2

3

4

5

6

7

8

9

I 10

first Field
Col. 1-6

BOTH

BOTH

BOTH

BOTH

BOTH

THES

THES

SUFFIX

SUFFIX

Second Field
Col. 7-12

START

START

START

UPDATE

UPDATE

START

UPDATE

START

UPDATE

Third Field
Col. 13-18

START

START

UPDATE

START

UPDATE

Fourth Field
Col. 2U

1

Option

Both the thesaurus and
suffix trees are set up
in their entirety.
Nothing is done with the
old tape (an explicit 0
may appear in column 2U) •

Same as above except that
the old tape is spaced
past the file with the
lookup data.

The second field controls
the action taken for the
thesaurus tree: START
means that it is setup
in its entirety, UPDATE
implies that the entries
on the input cards are
added to the tree on the
old library tape. The
third field controls the
action taken for the
suffix tree, with defi
nitions as before.

The action specified by
the second field is takenj
on the tree specified in
the first field. The
tree not referred to in
the first field is copied |
unaltered from the old
library tape to the new* |

If the first field is
blank the lookup file is
copied from the old tape
to the new; nothing is
altered.

Thesaurus and Suffix Setup and Update Control Card Formats

TABIiS 1

IV-4

The last eight fields (columns 49-72) represent the syntactic codes

associated with the given word. Each code is allotted three columns

(i.e., columns 49-51? 52-54* etc*). These codes must again be left-

justified within the entire syntactic field and must be stored consecutively.

jîach code must be right-justified within its field. The syntactic codes

0:

must be less than 2 = 256. The thesaurus input cards may therefore be

read with a format of 4A6, 6l4; 813. There are no restrictions on the order

of the input words.

The suffix input cards contain two fields. The first (columns 1-12)

stores the English suffix; the second (columns 13-15) contains a number

associated with each suffix in a one-one correspondence. This number must

be right-justified within its field and less than 2° = 256 in magnitude.

The first suffix entered must begin with the letter "e" (see l$0K

description)*

3. Implementation of oetup and Updating

The thesaurus setup and update block consists of the following

subroutines, CANE (with entry CANE3), ECRW, CANE1 (with entries CEAD and

CRITE), CANE2, TIPUT, TREET (with entry TRADD), and SUFTR (with entry

SUFAD). CANE1 copies the file from the old library tape to the new tape.

CEAD reads the file into memory from the old tape, and CRITE writes the

trees in memory onto the new tape. CANE is the only routine called from

the main program. Its entry. CANE3 , is an error return - in case of error

during reading (i.e., redundancy, end of file encountered) or during writing

IV-5

(i.e., redundancy), CANE1, et al. transfer control to ECRW, which prints

out a message explaining the error and transfers to CANE3• The latter turns

on sense light 1 to let the main program know that an error occurred, and

then returns to the main program.

CANE2 controls the main flow of operations of this block. The

flowchart for this routine (Flowchart 1) is generally self-explanatory;

7°
only a few remarks are needed. The operations of spacing past the

thesaurus file and of reading in the old trees to update them are performed

in the same manner: CEAD is called to read in the whole file. If the

thesaurus tree is to be set up solely from input cards, the old tree is

simply ignored.

Messages are printed out stating the amount of tree storage

remaining for both the thesaurus and suffix trees. This aids in determining

whether future additions are likely to cause either tree to overflow their

allotted storage.

In the event that either tree should exceed its allotted storage,

a message stating the amount of the excess is printed arid a printout indi

cates whether the thesaurus or suffix trees were involved; sense light 1

is also turned on. If the overflow occurs in the suffix tree, or if it

occurs in the thesaurus and no suffix cards are present to be read, control

is returned to the main program. If overflow is detected in the thesaurus,

and suffix cards are to be read, it is desirable to space the input tape

The flowcharts appear in the Appendix to this section.

IV-6

past the suffix cards, so that the next setup or update programs can again

test for possible errors. Further, it is then also useful to process the

suffix cards to determine whether the suffix tree will also overflow. In

this case it is, however, undesirable to waste time writing a worthless

file. The parameter K3PACE is then used to prevent such a tape from being

written.

The buffer provided for the thesaurus input may not be large enough

to contain all input simultaneously. TIPUT, which reads in the cards, is

used to furnish a parameter IRfJV, which is set to 1 if the reading operation

is interrupted because of a filled buffer and is set to 0 if reading stops

because a word of MZ,Ms is encountered to indicate the end of the inputs cards.

After returning from TBEET or TRADD (depending on whether the tree is set

up or updated., respectively), this parameter is tested. If it is 1, TIPUT

is called again, and then TRADD is entered if the tree is being updated,

in addition to reading in the thesaurus cards, TIPUT packs the semantic and

syntactic codes into a format acceptable to the other routines in SMART.

Internally, each entry in the thesaurus consists cf four computer

words of associated data as shown in Fig. 1. The semantic codes appear in

the first two words in six 12-bit fields (S, to 3, in the diagram). The

codes are left-justified; that is, if for example a word has four semantic

codes, they are stored in fields S.,, S S«, and 3, . The syntactic codes

occupy the next two words in eight 8-bit fields (Y. to Yp in the diagram).

Note that the fifth field is split between two adjacent words. The codes

IV-7

1 12 13 2U 25 36 1 12 13 2U 25 36

SA S5 S6 [fl S2 S3

SEMANTIC CODKS

1 8 9 16 17 24 25 32 33 U 5 12 13 20 21 28 29 36

k Y2 * 3 \
L

Y5
> V

Y6 Y7 Y8 *J
SYNTACTIC CODES

Internal Formats of Semantic and Syntactic Codes

Figure 1

are again left-justified. The rightmost field of the syntactic words

(JL in the diagram) is always set equal to zero, (It Is reserved for a

suffix code - see the description of L^j2K).

4. The Tree Programs - SUFTR, SUFAD, TREET, and TRADD

Before discussing the routines which set up the trees, it //ill be

helpful to give a brief, nonrigorous explanation of some of the concepts

involved. The principal concepts are illustrated in Fig. 2* Roots are

For a fuller, more precise discussion see Iverson, A Programming Language,
Wiley (1962) and E. H. Sussenguth, "The Use of Tree Structures for
Processing Files," CACM (May 1963).

IV-8

A Pictorial Representation of a Tree

Figure 2

nodes with no branches entering them; leaves are nodes with no branches

leaving them. Note that while many branches may leave one node, at most

one branch enters each node. The filial set of a node A is the collection

of nodes S such that there is a branch from A to the elements of S. A

member of the filial set is called a son of A; two members of the same

filial set are said to be "brothers." Thus, in the tree of Fig. 2, A is

the son of B, and C and D cire brothers.

in the trees to be described, each node consists of one machine

word containing three fields (w. , w , vju) • The first field, w , is called

the key; the second, VjU, points to a brother; the third (w) to a son. The

key is a BCD representation of an English letter. In the trees used in

IV-9

connection with the thesaurus, each node points to one son, which in turn

points to its brother* Thus the tree of Fig. 2 can more accurately be

represented by Fig. 3 (with double lines connecting brothers)-

An English word is represented as a path from a root to a leaf.

A word is always taken to be terminated by a blank (represented here by

" * ") . Thus the key (w,) of each leaf is the character "*" (represented in

BCD code by the digits "60"). The w~ field of each leaf points to the date

associated with the word. For example, the words "ADD11 and "ADDRESS,"

Pictorial Representation of a Tree as Represented
in'Memory by SUFTR and TREET

Figure 3

A o
-o-
S

A Pictorial Representation of "ADD" and "ADDRESS" in Tree Form

Figure U

IV-10

in tree form, are represented pictorially as shown in Fig. k* The tree of

Fig. k might be stored in memory as shown in Fig. S>.

Consider now the routines SUFTR and SUFAD (see Flowchart 3). SUFTR

sets up the complete suffix tree initially. The routine starts by setting

up the first word, and enters nodes consecutively from the beginning of the

block reserved for the suffix tree. SUFAD adds suffixes to a tree already

set up; it begins by adding from the next free location of the suffix

Location

100

101

•
105

107

115
«

120

121

123

121*

1 Bits
S, 1-5

*1

A

D

D

R

E

S

S
*

Bits
6-20

^2

115

Bits
21 - 35 |

"3 1 101

105

107

-A
XXXM

120

121

123

12U
XXX

A Possible Memory Configuration Corresponding
to the Tree of Fig. k

Figure £

The w f i e l d s marked "XXX" po in t t o da t a .

IV-11

block - as determined by an input parameter. Except for this difference,

the two routines are identical and will henceforth be referred to as SUFTR.

SUFTR begins by entering a new suffix by comparing the first letter

of the input word with the key of the first root of the tree. If a match

is found, the next letter of the input is compared with the son of the

matching key letter (pointed to by the w~ field). If the routine fails to

find a match, it proceeds to the first brother (pointed to by wO and

compares the input letter with the new key (see Flowchart 3, especially the

box labeled 3). The search is continued until a match is no longer possible

(when no match is found and the wp field is zero, indicating that there is

no brother). The address of the next free location, K, is then inserted

as the w field of this letter (box J+ of Flowchart 3) and control is trans

ferred to box 1 of the flowchart where the letter of the input word is

defined as the key (w field) of the word at K. The address of the next

free location (K- 1) is then inserted as the w~ field of the word at K.

The next letter (its son) will then be put in this new location. Sons are

continually inserted in this way until the "letter11 of the input word is a

blank ("*-u). At that point the data (suffix code) for this word Is stored

in the next free location.

If a match should be found for the entire suffix, this is taken to

mean that an alteration of the data associated with that suffix is desired.

Box 5 of Flowchart 3 handles this (of course, if the same suffix is inserted

a second time by mistake no harm will be done; the suffix code will merely

be stored over itself).

IV-12

The algorithm of TKEET is essentially the same as that of SUFTR

(TRADD stands in the same relation to TREET as SUFAD does to SUFTR)• The

similarity of the algorithms may be seen by comparing the parts of Flowchart

2 above the dotted line with Flowchart 3. This similarity is obscured

somewhat by the special requirements that L00K. places upon the order of

the thesaurus tree (see the description of L0#k). Specifically, L00K

requires that blanks, final f,eu,s, and final wy,ns be encountered before

any other members of the same filial set, so that possible stems will be

recognized. The TREET routine must therefore verify that a blank occurs

always as the first element of a filial set (the one pointed to by the Wo

field of the parent and not by the ^ field of a brother). An "e" is

always inserted as the first element of a filial set, except if a blank is

stored ahead of it. A "yu is inserted before everything except a blank or

an "e". (Note that it is not strictly necessary, from the point of view

of L00K, to insert all neIMs and "y,n s ahead of everything else; this is

only necessary if these letters occur as final letters of a word. By doing

it in every case, the setup routine becomes more efficient: no rearrangements

or searches through a whole filial set are required if an r,e" or "yn in the

middle of a word should turn out to be a final ''e" or "y" of another word.)

An initial "eM or uyM is not inserted ahead of other roots.

This rearrangement is accomplished by the sections of TREET repre

sented by the part of Flowchart 2 below the dotted line. If the next

"letter" of the input word is a blank and there is no blank in the filial

set of the last node for which a match was found, the blank is inserted as

IV-13

the first son of this ncde and the address of the old first son is inserted

in the w field of the new first son. This is done in box 7 of Flowchart

2* If a blank is already included in the tree at this point, an alteration

of the data of the word is called for; this is handled as in the description

of SUFTR. Similarly for an "eM if there is no blank in the tree at this

point, or a My,! if there is no blank and/or "en in the tree at this point.

If the letter in question is already in the tree, TREET moves on to the next

letter of the input word in the normal manner.

As an example of this process, Fig. 6 shows the tree of Fig. 4- with

word "AD" inserted. Similarly, Fig. 5 is changed to the form shown In

Fig. 7, assuming the next free location at 271.

If the letter of the input word to be searched is an "e" and a blank

already occurs in the filial set, the Men Is inserted just under it (i.e.,

the Wp field of the blank is made to point to the "e"), unless the f,efl is

already present there, in which case TREET moves on to the next letter of

the input word. This insertion is accomplished in box 8 of Flowchart 2.

If the w field of the blank is zero, "e" is made a brother in the same

manner as for any other letter (in box 6 of Flowchart 2). If My" is the

input and a blank and/or an "e" is already in the tree, the same procedure

is followed.

Figure h With the Word "AD" Added to the Tree

Figure 6

IV-1A

Location

100

101
•
•
•

105
•
•
•

107
•
•

115
•
•
•

120

121
•
•
•

123

124
•
•

271

*1

A

D

D

*

R

E

S

S
• #

1

w
-2

115

105

w
-3
101

271

107

XXX

120

121

123

124

XXX

XXX

Figure 5 With "AD" Added to the Tree

Figure 7

o o o o o
R E S S *

Tree of Fig. 6 With "ADDER" Added

Figure 8

«

IV-

Location

100

101
•
•
•

105
•
•
•

107
•
•
•

115
•
•
•

120

121
•
•
•

123

124-
•
•

271
•
•

311

312

1 313

1 %
A

D

D

*

R

E

S

S
*

*

E

R
*-

^2

311

105

115

1*3
101

271

107

XXX

120

121

123

124

XXX

XXX

312

313

XXX

Memory Map of Fig. 7 With "ADDER" Added to the Tree

Figure 9

For example, if the word "ADDER'1 were to be added to the trees

depicted in Figs. 6 and 7, and the next free location were 311, Figs* 8

and 9 would be generated, respectively.

IV-16

5. General Description of Thesaurus Lookup

This block of programs "looks up" an input text in a thesaurus

dictionary and suffix lists which have previously been written on tape in

tree form (see the description of the setup routines.)

Semantic codes (or a code indicating that the word was net found)

are entered in a text output block, together with the sentence and word-

iii-sentence numbers which identify that word. If the word is not found,

it is put in a "not found" block as is explained below. If requested

(by leaving sense light 3 on), a block is assembled which can be used as

input for syntactic analysis, iiach item contains the English text word

with its numbers, the semantic and syntactic codes which are entered in

the thesaurus with the item of that word, and a code for the suffix of the

word (if any). If the word is not found, a special code is entered

(semantic and syntactic words are zeroed) and a search is made for a

possible suffix to aid in syntactic analysis.

The search for a match with an input word proceeds from left to

right one letter at a time. The longest possible match is looked for, but

notice is taken of any possible shorter stems which may be found on the way.

If the match is not complete (i.e., if the whole input word is not matched),

a suffix is searched for. If no successful match is found for both stem

and suffix, the routine backtracks to possible shorter stems and again

searches for suffixes. Certain spelling rules to be described are built

into the program.

IV-17

The thesaurus and suffix tree formats were described as part of the

setup programs. Other format specifications are as follows:

(1) Input Text Words• Each item consists of five machine

words. The first stores the sentence number of the

word in the decrement field and the word-in-sentence

number in the address field. The next four words

contain the English word in BCD form.

(2) Text Output. Each item consists of three words. The

first contains the sentence and word numbers as above.'

The next two contain either the semantic codes associ

ated with the word (or with its stem) In the thesaurus,

or a "not found" code (all bits "on").

(3) Syntactic Output. Each item consists of nine words.

The first four store the English word; the next the

sentence and word numbers; the sixth and seventh

contain the semantic codes; and the eighth and ninth

represent the syntactic codes, with the last eight

bits of the ninth word being a suffix code (if a suffix

exists) . If the word was not found, these last four

words are set equal to zero. There may, however,

still be a suffix code stored in the last word. Before

the block of syntactic items is written onto tape It

must be revised, since all blocks are stored in

backward (FORTRAN II) order.

(4) Not Found Output. Each item consists of six words.

The first five are identical with the input items.

The sixth word contains a code in the decrement Indi

cating whether

(a) no stem was found, or

(b) no suffix match could be made after
a possible stem was detected »

IV-18

The address of the sixth word contains the index of

the first letter in the word for which no match could

be found. This information is generated relative to

the last pass of the lookup process. Since each

individual letter appears as an entry in the thesaurus,

a stem consisting of a single letter is always found:

the first letter not found is then determined relative

to this stem,

6. Implementation of Lookup

Three subroutines comprise this block: L00K, RSSX, and GCRW. The

sole function of the latter is to print messages in case of error while

reading the input tape, or writing the syntactic output tape. RSSX

(Flowchart 5>) looks for a suffix if no stem is found. Since this is only

wanted for the syntactic analysis, the routine is called only when syntactic

output is desired. L00K, the only routine called from the main program,

performs all other functions (see Flowchart k) •

L00K begins by reading in the thesaurus and suffix trees from tape.

Sense light 3 is then examined and transfers are set throughout the program

either to bypass or perform the operations that produce the syntactic output.

If the sense light is on, syntactic output will be produced.

The data output section of L00K is explicitly described in Flowchart

k. The boxes surrounding box 3 store data when a word is found in the

thesaurus. The series of blocks starting with box h perform the operations

needed when a word is not found. Since the buffer allotted for syntactic

output is not large enough to hold the entire output for a text longer than

IV-19

100 words, this output must be written onto tape in pieces. Before it is

put on tape, the block must be reversed so as to appear in forward order.

This operation is handled while the tape is being written so that no

additional time is lost.

The actual search through the thesaurus tree is similar in outline

to that of the search in SDFTR (see description of trees and of the SUFTR

routine in Part U of this section) . However, L00K must also take note of

possible stems which are not complete matches for the input word (e.g., HAND

is a stem of HANDING but the two words obviously do not match completely).

The following are considered indicative of possible stems:

(1) a blank indicating end of word;

(2) a final "e" (an "e" followed by a blank with a

blank in its filial set);

(3) an "i" occurring as a letter of the input word

with a final "y" in the tree (the parameter ITEST

of Flowchart U ensures that no "y" will be noted

unless the input letter is an "i").

The first possibility corresponds to a word taking a suffix as an

ending, e.g., HAND + ING is HANDING. The second corresponds to a word

dropping an »e" before taking a suffix, e.g., HOPE less the E + ING is

HOPING. The third corresponds to a "y" changing to an "i" before taking

a suffix, e.g., PRETTIER is PRETTY with the »T« changed to an 1+ the suffix

ER.

IV-20

•o o
Y *

Pictorial Representation of a Part of a Thesaurus Tree

Figure 10

The necessity of becoming aware of these stems accounts for the fact

that in TREET (see description of TREET in setup section) blanks, ,!e,ns, and

nyn,s are inserted ahead of other members of a filial set* This restriction

on the order implies that all possible stems must be recognized before any

match is found.

The following example will serve to render this procedure clearer.

Consider a (partial) thesaurus tree as shown in Fig. 10 and assume that the

input word is CODING. 'L00K moves from left to right along the tree matching

C; 0, and D. In trying to match the I, the final E of CODE is first en

countered and is saved as a possible stem. The routine then moves on to

find a match with the I of CODIFY. Eventually the routine fails to match

the N of CODING with the F of CODIFY. So, remembering that CODE was a

possible stem, a search is made for a suffix beginning with the I. When

ING is found, CODING is recognized as the stem CODE plus the suffix 1NG.

IV-21

7. Spelling Rules Incorporated into Lookup

In order to be able to recognize, for example, that HOPED is

HOPE+ ED while HOPPED is HOP+ doubled letter+ ED, certain spelling rules

are built into L00K. These are summarized in Fig. 11 ("*" represents blank)

Case
Number

1

(a)

(b)

(c)
1

2
3

U
(a)

(b)

(c)

5
6

Case Description

*

B= C (a doubled letter)

B^ C and B is an "e"^

B^ C and B is not an »e»

e

y (means C is an MiM)

* and e

B= C

B/1 C and C is a vowel

Bfi G and C is not a vowel

* and y

e and y

Longer
Ending

*

*

*

e

*

e
*

*

e

Shorter
Ending

*

1

y

*

y

I
B refers to the last letter for which a match is found in the
thesaurus;

G refers to the first letter for which no match is found in
the thesaurus (the current letter being searched for).

Summary of Spelling Rules Built .Into L00K

Figure 11

"e" followed by the longer ending is also treated as a possible ending
and is associated with the ue,! stem.

IV-22

The three possible types of stems - those terminated by a blank; those

terminated by an "e" followed by a blank; and if C is an "i", those

terminated by a "y" followed by a blank - are referred to in column 2

of Fig. 11 by ,?*% "e", and "y", respectively.

The "longer ending" includes C followed by the rest of the word;

the "shorter ending" refers to the rest of the word not including C; "e"

followed by the longer ending denotes the concatenation of the letter "e"

with the letters of the longer ending.

For example, the input HANDIER would be decomposed into the

possible stems HAND (denoted by "*") and HANDY (denoted by "y"). In this

case, the longer ending would be "ier", the shorter "er" . B would be the

letter "d", and C the letter "i". HOPED would furnish HOPE as a possible

stem. B = "e", C = "d"; the longer stem is just "d", and "e" concatenated

with the longer stem is "ed".

The longer of two endings is always treated first; if no match is

found in the suffix table, the shorter one is tried. Examples of cases of

Fig. 11 are shown in the following list (L will be used as an abbreviation

for the longer ending; S for the shorter):

(a) If the input word is HOPPED, the stem is HOP indicated

by a terminal n*u (blank). B = p = C, so case 1(a)

applies. First a match in the suffix list is attempted

for L = "ped". None is found so S = "ed" is tried and

matched. If, however, FINALLY were the input word and

FINAL the stem, a match would be found for the longer

ending, namely "ly".

IV-23

(b) If the input word is HOPED, the stem is HOPE (a •'*"

stem); B is an M e % "e" + L = "ed" is searched

first and a match is found. For HOPELESS, "e" + L

would be "eless", and no match would be found; but

the search for a suffix matching L = "less" would

be successful.

(c) If the input word is ENDED, the stem is END.

B is a MdM, so that case l(c) applies.

In all of the above cases the semantic and syntactic data are taken from

the data in the thesaurus tree pointed to by the H*M of the recognized stem.

This explains the significance of the "*" in the longer and shorter ending

columns of Fig. 11.

Consider now the entries EASE and EASY, both included in the

thesaurus, and the input words EASING and EASIERo In both cases, EASE

(marked by the MeM) and EASY (marked by the ,fyn) will be found as possible

stems. For EASING, L = "ing" will be found in the suffix list, so L00K will

take the data from the "e" stem EASE, and the suffix code from ,fingM . For

EASIER, the program will fail to find a match for L » "iern and so will

try to match S = ffern. Since this is successful, the data are taken from

the rtyn stem EASY and the suffix code from fler,?.

If the input word were HOPED, and both HOPE and HOP were in the

thesaurus, L00K would first attempt the longer match with HOPE - marked by

a ll*H since the match would be made through the "e" - and apply rule 1(b).

If (as is not the case) no suffix were found to match, the routine would

then backtrack one level to where it had found the possible stems HOP

(marked by a "#•") and HOPE (marked by an ,Ten) and apply rule U(b).

IV-24

The suffix search uses the same basic search algorithm. It is

capable of handling many types of multiple suffixesj e.g., for HOPELESSLY

it will find the suffix i,lessiI. Since the son of the last f,sM is an "*n,

and that no x%" can be found in the filial set of this "sfl, the routine

will re-enter the suffix tree from the beginning, trying to match the

second '[£" of HOPELESSLY. It will proceed to find a match with "lyM .

Only the code for the last suffix found is entered in the data of

the syntactic output. For this reason it is desirable to enter certain

compound suffixes explicitly in the tree to provide a maximum of syntactic

information (e.g., if KINDNESSES is being looked up, arid llnessn and "es"

are in the suffix tree but "riesses" is not, L00K will only pick up the

data of "es"; if "nesses" were in the suffix list, enough information would

be available to recognize a plural noun).

L$0K will not find multiple suffixes if there is an "e" telescoped

between the parts; e.g., "ized" is nize" + "edn, but the one ne" is "used11

by the two parts. Such suffixes must also be entered separately (e.g.,

,ti:,Jed
,, as well as nize(l arid "ed") .

8. Processing of Words Wot Eound by the Thesaurus Lookup

The general purpose of this program block is to supply information

about the words that are not found by the thesaurus lookup- This information

is useful for deciding upon later alterations (particularly additions) to

the thesaurus.

IV-25

If all the words are found by I#0K, a message to this effect is

printed out. If not, distinct occurrences of the same English word are

combined into one output item. This item contains:

(1) the English word in BCD format;

(2) a code indicating whether 100K failed to find a stem

in the thesaurus that matched the input word or

whether, having found a possible stem, it was unable

to find a suffix in the suffix list to match the

rest of the word (see the description of the lookup

block);

(3) the number in the word of the first letter of the

input word for which no match was found in the

thesaurus (see the description of the lookup block);

(4) the number of occurrences of the word in the text

looked up;

(5) the sentence and word-in-sentence numbers of the

occurrences of the word.

All of this information except the fourth item, the number of occurrences,

is supplied explicitly by L0tfK. For example, assume that the word PLANET

is not included in the thesaurus, but that the word PLANE is, and is the

only possible stem identified. Assume further that in a given text PLANET

occurs as the seventh word of the third sentence, and as the tenth word of

the eleventh sentence. The output for this word would then appear as in

Fig. 12.

IV-26

WORD KINL LOC M M SENTENCE AND WORD NUMBERS
PLANET SUFFIX 6 2 3,7 11,10

Output Format for a Word not Found in the Thesaurus

F igure 12

L00K would find a match up to the neM of PLANE and thus think it

had found a possible stem. It would then fail to find a suffix to match

the nt" . Thus, the stem-suffix code (KIND) indicates that a potential

stem was found but no suffix was found. Since "tu is the sixth letter of

the word PLANET, the location of the letter in the word (LOC) is 6. The

number of occurrences of the word (NUM) is 2. The sentence and word-in-

sentence numbers are as shown.

Subroutine L00K provides two inputs for this block: an array of

the words not found (for format see the description of the thesaurus lookup

block), and a count of the number of computer words in this array. Currently

space is provided for 250 items, each of which consists of six computer

words. If more than 250 words are not found, only the first 250 are

processed •

The program is composed of three subroutines: SNCC, BAG;, and CROC.

Only SNCC is called from the main routine. No arguments are needed, since

the inputs are left in common by L00K. SNCC first checks to see if all the

words were found. If so, a message to that effect is printed out and return

is made to the main program. If not, a heading for the output is printed

IV-27

and the first word of the output block is set up. CROC is then called.

If only one word is not found, CROC immediately proceeds to process it for

printing. If more than one word is not found, each additional word in the

input block is compared successively with the words in the output block.

If different from all of them, the five pieces of information mentioned

above are stored as a new item in the output block with the occurrence count

set to one. If, however, the input word is identical with one of the words

in the output block, the occurrence count of that output item is increased

by one and the sentence and word-in-sentence numbers of this latest

occurrence are stored in the output block. Space is provided for 26 such

occurrence numbers for each item. In the unlikely event that more than 26

occurrences are detected, the occurrence count Is increased, but the numbers

are not stored *

After all input words are treated in this manner, the output block

is ready to be printed out. CROC unpacks the sentence and word-in-sentence

numbers of each item (see the writeup of I#0K for formats), and puts them

in a form acceptable to the FORTRAN 1-0 routines. Subroutine BAG then

prints out (off-line) the relevant information for each item in the format

of Fig. 12. After all items are printed, control is returned to the main

program. (Since subroutine CRCG uses multiple tagging, the computer is

assumed to be in the multiple tag mode when this routine is called) .

APPENDIX

1

ENTER
4

KSPACE=0
READ IN THE

CONTROL CARD

COPY FILE ON OLD
TAPE ONTO NEW TAPE

IDONE BY CANE I)
RETURN

ERROR-ILLEGAL|
CONTROL CARD

CALL TIPUT TO READ
THESAURUS INPUT CARDS
AND PACK SEMANTIC AND

SYNTACTIC DATA
SETS IROVM IF

STOPPED READING BECAUSE
FILLED BUFFER; IROV = 0
IF ALL INPUT DATA IS

READ IN

SENSE LIGHT 1
ON RETURN

IS THE
"THESAURUS TO^

BE SET UP
FROM /

SCRATCH?
^ ^No J2*

CALL CEAD TO READ
IN OLD THESAURUS AND

SUFFIX TREES AND
SPACE PAST END

OF FILE

CALL CEAD TO READ
IN OLD THESAURUS
AND SUFFIX TREES
THUS SPACING TO

END OF FILE

X

CALL TREET
TO SET UP

THESAURUS TREE

CALL TRADD TO ADD
[THESE ENTRIES TO THE

THESAURUS TREE

| KSPACE'O KSPACE=1

PRINT OUT AMOUNT
BY WHICH STORAGE

EXCEEDED SENSE
LIGHT I ON

RETURN

CALL TIPUT TO READ
IN AND PACK NEXT
THESAURUS DATA

PRINTOUT AMOUNT
OF FREE STORAGE

REMAINING

CALL CRITE TO WRITE
THESAURUS AND SUFFIX h

TREES ON NEW TAPE
H RETURN

CALL CEAD TO READ
IN OLD THESAURUS
AND SUFFIX TREES

h ©

Main Logic of Thesaurus Setup Block
(Subroutine CANE2)

Flowchart 1

READ IN
ALL SUFFIX

DATA

(a

IS
"SUFFIX TREE"

TO BE
(a) SET UP FROM

SCRATCH
i b) ADDED TO

(b)

ERROR-RETURN
SENSE LIGHT 1 ON

Flowchart 1 (continued)

IV-30

TRAOO

__i
KOD£» 1

K=NEXT FREE
LOCATION (INPUT

TO TREET)

TREET, TRADD

Flowchart 2

IV-31

SUFTR
k

d>

RETURN

SUFAD
_ J
KODE« 1

K'NEXT FREE
LOCATION (INPUT

TO SUFAD)

STORE DATA OF
I j AT K, FIRST
SHIFTING IT INTO
POSITION

K=K- l

STORE DATA OK
I j AT

£ (w^a))
k?)

SUFTR, SUFAD

Flowchart 3

LEGEND FOR FLOWCHARTS 2 AND 3 - SUFTR, SUFAD, TREET, TRADD

I Input data.

j Index of I; I. is the jth input item.
J

t Input word (^2 characters, always including the terminating

character blank).

w Machine word.

w. - is the key.

Wo "" is "the address of next w in the same filial set

(the next brother of w).

w~ - is the address of first w in the filial set (the first

son of w) if w. • * then w is the address of the data

for the word.

w(a) Machine word in address a.

i Indexes tj t. is the ith letter of word t.

* Indicates the character blank.

n Number of input items.

X A blank machine word, field or character.

s Starting address of the tree.

K Indexes free space: K is the address of the next free location

in the block. K starts at s and is decreased.

V Temporary storage.

eM The character "e" (in general "x" means the character x).

ENTER
ft

INITIALIZE
READ IN THES AND

SUFFIX TREES

SET TO
BYPASS SYNTAX

CALL GCRW
TO PRINT

ERROR MESSAGE
EXIT

WRITE REST OF t
' SYNTAX ON TAPE I
I REVERSING ORDER '

OF BLOCK

^ " E R R O R - - ^ N o i |
^WRlTING?^, > H RETURN }

STORE SENTENCE B WORD
NUMBERS IN 0 ,

l«1 f\ w/«0

TO WRITE ERROR

EXAMINE Vy «l ol TO DECIDE WHICH SPELLING RULES APPLY
STORE STEM DATA ADDRESStS IN M (IF THERE ARE TWO
STORE THE ONE THAT GOES WITH THE LONGER STEM
IN M, THE OTHER IN M*) SET MFIN TO I OR 2 ACCORDING
TO THE NUMBfR OF POSSIBLE CASES

SET i FOR LONGER ENDING, M FOR SHORTER (IF ANY)
S E T M ' I v « X FOR CASE lb o » H j l S f c)
OTHERWISE Q ' S 8

(SEE DISCUSSION OF SPELLING RULES)

-Xs)

L00K

Flowchart 1;

IV-3U

a s wgla) i*

a = Ss

v • X

M / i K

?
I No

XCODE=w(w3(a))
a= M m

STORE SEMANTIC
DATA INw(a)

ANO £(a-1HN Oj

Go To ©
If NOT INTO
THIS BOX

STORE SEMANTIC
1 ANO SYNTACTIC CODES

IN w(a)TO w(o-3)
AND XCODE IN Yj

SET STEM-SUFFIX
CODE TO STEM

SET STEM-SUFFIX
CODE TO SUFFIX

STORE THIS CODE,
i, AND ENGLISH

WORD AND NUMBERS
OF I j AS NEXT
"NOT FOUND" ITEM

1
STORE NOT FOUND

CODE IN 0

j STORE As AS DATA ,
IN Yj CALL RSSX TO I

JLOOK FOR SUFFIXES'

.J
X

, ' ' IS "v.
Y BUFFER V v ^ - - W T)

^ F I L L E D ^ " W

Yes

CALL GCRW« *' ERROR -
I CALL EXIT } -.WRITING V

\ WRITE CONTENTS OF Y I
I BUFFER ONTO TAPE j

"j REVERSING BLOCK AT
THE SAME TIME

Flowchart k (continued)

i=4

ENGLISH OF Yj
INTO t.

COUNT = NUMBER
OF LETTERS IN t.

RETURN-WORD
TOO SHORT TO

LOOK FOR SUFFIX

i=COUNT-9

*1 i ' H-

UNSUCCESSFUL
RETURN

v--\
a = S s

a = «K2(a)

H a* w3(a)

a = w3(a)
STORE w (a)

IN Yj

I SUCCESSFUL
RETURN

RSSX

Flowchart 5>

IV-36

LEGEND FOR FLOWCHARTS h AND $ - L00K, RSSX

The definitions, unless otherwise noted, are those given in the

Legend for Flowcharts 3 and h (SUFTR, TREET, SUFAD, TRADD). I now refers

to input text items. Since in the content of L00K s is ambiguous it will

be subscripted with a t when referring to the start of the thesaurus, and

an s when referring to the start of the suffix tree.

y The block of output used as input to the syntactic programs,

indexed by j (though the buffer for this block is too small

to contain all syntax output).

£ Indexes all of the following information connected with

possible stems.

VI the value of i (the index of the input word).

V has three fields V , Ve, Vy indicating whether

possible stems were distinguished by a blank,

a final l fe% or a final ,fyn respectively•

VB,VE,VY contain the address of the data for the stems

distinguished by blanks, f te% and nyi? respectively.

VL contains the previous letter (i.e. if VI. = i, VL.

" ti-]L,

0 Text output — indexed by j .

XCODE Suffix code .

M Holds addresses of stem data .

m Indexes m .

MFIN Total number of addresses in Mu

M Temporary storage .

Note: The dotted boxes are entered only if syntactic outputs

are desired.

ENTER LEGEND

CALL HEADR TO HEAD
PAGE. WRITE MESSAGE
THAT ALL WORDS FOUND

I RETURN |

SETUP THE
FIRST WORD

OF 0
CALL HEADR

c
5

I
0
i
1
n

The number of words not found
Storoge spoce allotted in I
divided by length per item
Input block from L00K
Output block
Indexes Items in I
Indexes Items in 0
Index of current highest Item
in 0

WRITE J • NO OF WORDS
THAT EXCEEDED STORAGE

LUD-

INCREASE COUNT OF

OCCURRENCES OF WORD

0j. STORE THE

SENTENCE AND WORD NO S

FOR THIS OCCURRENCE

IF THERE IS STILL ROOM

SET OCCURRENCE

COUNT OF 0n TO 1
STORE THIS INPUT ITEM

(I) AS A NEW
OUTPUT WORD (0n)
(STORE THE WHOLE
ITEM-ENGLISH WORD,
STEM-SUFFIX COOE,
NO OF FIRST LETTER

NOT FOUND, SENTENCE
AND WORD NUMBERS)

SETUP OCCURRENCE COUNT,
STEM-SUFFIX CODE, FIRSf

LETTER NOT FOUND, SENTENCE
AND WORD NUMBERS OF 0 j

IN OUTPUT BUFFER •"J

T:
PRINT ENGLISH WORD AND

OUTPUT BUFFER OF ITEM 0 j G PRIN
OUTPl

NOT FOUND BLOCK

flowchart 6

