
\

An integrated fact/document
information system for office

automation
Esen A Ozkarahan and Fazli Can*

After a review o f the needs o f office automation, an
integration model o f an experimental system for testing
various concepts is presented This system aims to
synthesize a relational database management system
(DBMS) and document retrieval system (IR) capable o f
context sensitive full text searches. The IR system relies
on a clustering subsystem for database partitioning and
relation fragmentation. Conceptual data modelling,
forms interface, and query execution in the distributed
database constitute the support architecture o f the
integrated system. Underneath, the support architecture,
there is the integrated DBMS/IR datastructure and
instruction set Efficiency o f the integrated system is
discussed including a future extension that involves the
RAP3 database machine hardware. RAP3 combines the
term matcher and query resolver subsystems.

Keywords: computer networks, database management
systems, database machines, distributed databases,
document clustering, document retrieval, fu ll text
searching, integration o f D BM S/IR office automation

IN T R O D U C T IO N

The need to integrate various facilities of information pro­
cessing is generally well recognized. This need is
expressed more profoundly as the advances of the
present-day computer technology are making things that
could not be done in the past a reality today. The network

Department of Computer Science, Arizona State University, USA
^Department of Electrical Engineering, Middle East Technical
University, Ankara, Turkey
Received: 12 March 1984

information system foreseen by Salton1 is described as a
network of different information facilities such as the
document (or information) retrieval (IR), database
management (DBMS), data analysis, citation indexing,
and text processing systems. Van Rijsbergen2, in his
statement of the future research problems, foresees the IR
and DBMS integration and stresses the fact that such an
integration will be driven by the needs of office
automation. Also, there have been various studies in the
DBMS area to augment a DBMS with some IR
functionalities3,4’5. In the IR area, there are commercial
and experimental systems such as DIALOG, STAIRS,
BRS, MEDLARS, MEDLINE, ORBIT, The
Information Bank, LEXIS, WESTLAW, SMART, etc.,
which are surveyed in6,7, that display the past and present
state of the art in IR.

H ow to integrate IR and D B M S

As the users of the information processing community are
provided with more capabilities, we see that the informa­
tion structures and data manipulation requirements of
applications are getting more and more sophisticated.
This would mean that an information scientist responsible
for data definition and creation will be faced with the
representations of complex relationships of facts as well
as documents. We can immediately realize that past
efforts that simplified the integration problem by confining
one system within the framework of the other or simply
combining IR and DBMS in a semantically disjoint
manner will not be sufficient, effective, or efficient within
the context of the requirements of present applications.
We cannot merely incorporate some string operations into
a DBMS data language or store keywords as an attribute
of a formatted database. We cannot implement DBMS

142 0144-817X/84/030142-15$03.00 © 1984 Butterworth & Co (Publishers) Ltd information technology

functionalities as file programs embedded within an IR
system. Such an effort would lack the advantages of
DBMS such as data independence, real time response,
and ad hoc query formulation capability. On the other
hand, the unique features of IR cannot be fitted into the
deterministic, non-iterative nature of DBMS data
manipulations.

The answer for the proper integration lies in a synthesis
that will combine IR and DBMS by preserving their
unique features in such a way that the advantages of both
systems can be shared. In such a general purpose system,
one would like to see conceptual data modelling,
relational algebra power (or equivalent) of DBMS, and at
the same time, automatic indexing and classification
(clustering), partial and/or full text search, and query
feedback features of IR

Office automation

Office automation is a relevant target application that can
tap the resources of an integrated information system —
not only relevant but also with immediate prospects for
exploitation in real life. We can define office automation
as the pioneer of a (relatively) paperless society. This is
because, with office automation, we are not merely
automating manual systems of the present but introducing
a new model for the office of the future. In such a model,
we see electronic mailing, automatic forms handling, form
driven database manipulation including full text
processing. Because an automated office will embody
workstations distributed throughout an organization, we
can envisage a local network of workstations.

In the model of an automated office, we can describe
the following: on the user resource network level, we have
various modem office equipment linked to workstations.
Workstations, in addition to their local intelligence, will
be tied to network servers. User’s interaction with the
system will be via forms and electronic mail handling
facilities. These facilities will be supported by a
distributed environment of integrated information system
onto which the forms processing system is mapped. More
specifically, in this model, we see distributed databases in
which DBMS and IR are integrated. For automated
offices, besides formatted data of DBMS, processing of
unformatted data in the form of full text searching is very
important The latter would fall within the realm of IR in
which document classification, indexing and keyword
based retrieval would be supported by the database
server, whereas the full text processing capability would
rest in workstations. In hardware description, a
workstation can be a powerful microcomputer linked to
the network server through the local network. The
network server can be a powerful mini- or mainframe
computer. One can think of cascaded local networks of
such systems for larger environments.

The purpose o f this research

The purpose of our research is to define a model of an
integrated fact and document information system and to
implement an operational experimental system in which
various components of this model can be tested. We
believe that the benefits of such an integration would be
multifold. We cannot only gain insight into the integration

issues and problems, but also experiment with the
individual components of the system such as database
design, network query execution, forms interface, and full
text processing in conjunction with cluster based retrieval.

Because full text processing is important for specialized
applications such as law, medicine, etc., we consider the
inclusion of context sensitive, full text processing in the
integrated information system model important This does
not preclude, however, keyword based document retrieval
incorporating clustering at the network server level. In
fact, in the proposed environment, the upper hierarchy of
the unformatted retrieval rests within the database server.

As a tool for DBMS in our system, we will utilize the
RAP relational DBMS (which will be introduced in the
sequel) because of the following three important reasons:
• RAP relational DBMS goes beyond implementing

string processing within DBMS. It supports
associative, context sensitive, text search operations
based on internal string processing as primitive
commands of the DBMS.

• Besides its efficient software implementation, which
can be compared with other existing systems, it has the
option of being mapped onto the hardware of a
database computer.

• Third but not least, it is the available facility which
can easily be serviced and altered, if necessary, by
ourselves.
In the remainder of this paper, we will present the

model of the proposed integrated information system. In
this model, we will see the abstract view of the query
processing environment at various steps of processing
from the input to the delivery of results. This will be
followed by the description of the underlying support
system structure. This involves the distributed database
architecture, conceptual data modelling, and the handling
of unformatted structures. Because of space considera­
tions, we will try to keep the discussion at the descriptive
level.

The support system structure will be followed by the
description of the operational system that runs on the
support system. The context sensitive full text operations
using RAP will be demonstrated.

In the performance section, we will address the
efficiency of the proposed integration model. While the
performance of a pure software approach will reach a limit
at some point, the potential performance improvements of
text retrieval hardware will set the ultimate goal. This will
be the topic of the final section.

IN TEG R A TIO N M O D E L

In the integrated information system, a common
framework has been established for the physical data-
structure so that both formatted and unformatted data can
be manipulated together under an instruction set that
embodies DBMS as well as context sensitive, full text
processing power. A given user request such as

On the documents written by the authors who are
referenced by the papers written by JOHN DOE after
1970, search for those with the phrase SEMANTIC
DATA MODEL and AGGREGATION

would require both DBMS and IR specific operations in
an interrelated sequence of processing steps (see below).

vol 3 no 3 1984 143

In the notation that will follow, a user query such as the
one quoted will be denoted as Q, whereas the subsets of it
dealing with DBMS and IR will be indicated by QR and
Qt respectively. QT is the portion of the request that deals
with the context sensitive search such as the SEMANTIC
DATA MODEL and AGGREGATION in the same
sentence. While QT will be preserved for final processing
in the workstations, a query called the system query Qs
will be derived from QT to initiate a search of the relevant
clusters in the database. This search is carried out by the
database server on the network in an effort to narrow the
search space, before the full text search can be conducted.

In simple terms, a Qs query will include those terms of
Q t that are included in the set of index terms of the
collection with a possible inclusion of certain other
components to increase system precision and/or recall.
Figure 1 shows an abstract view of the query processing
environment With Qs, a hierarchy of clusters will be
searched and the corresponding dataDQS will be returned
when the cluster search is optimally terminated. The two
resulting sets of data, DQR and DQS, corresponding to
DBMS and IR operations, respectively, will be jointly
processed by the integrated system to produce the user’s
response. The user, screening this response, may ask the
system to repeat the operation by providing an indication
of the relevant/irrelevant documents. With this informa­
tion, Qs will be modified and the previous cluster selection
will be refined.

M athematical m odel o f query processing

The integrated information retrieval system, IS, consists
of a set of hierarchies and is described by a 6-tuple:

IS = <R, D, Q, C, E, T>
where R represents a set of relations which contain
structured data about the documents or document entities.
The nature of the interrelationships among the structured
entities will be described by means of a conceptual
datamodel.

D represents the set of documents stored as unstructured
entities. The relationships of these unstructured entities

Figure 1. Abstract view o f the query processing environ­
ment

among themselves and/or with those of R also will be
presented in the conceptual datamodel.

Q is a set of user queries. A given query, Q, is
defined as

Q = {Qt Qr}
where QT is the part of the query that holds the context
sensitive, document search specification.

Qr is the part of the query that holds search specifica­
tion on the (R, D) set operable by the DBMS instruction
set As can be seen, the simplistic implication of QR -*
(IR on D) and/or (DBMS on R) is not always true. As
shown in the example of the previous section, a search
navigation threads through bothi? andD several times in
an interrelated manner. This is an important point that
shows that the integration is not achievable by a simple
coexistence of two different systems in a semantically
disjoint manner.

C is a hierarchical structure of clusters for D.
E is a mapping function, called the evaluation function,

E:Q -» 2°, used to find the relevant documents to a query.
In reality, a subset of the range of this mapping is reached
through the complex operations of clustering, building
hierarchies of clusters, implementing search functions for
these hierarchies, and using feedback. All these opera­
tions will be briefly discussed in the following.

T represents the terms used for the description of
documents.

Creation o f system queries

As shown earlier, a query Q consists of two parts Qt and
Qr where QR is the relational DBMS operable subquery
and Qt corresponds to the context sensitive, document
retrieval subquery. Related with QT, there are a set of
words, Tq, such that:

Tq n T C Tu T2, . . . , Tn where n = |7’| > 0
We cannot expect all of T q to appear in the filtered

search query (system query) for the simple reason that not
all of the words would be included in T since there are
conditions for a word to be an (index) term8,9. In QT, some
terms will be used in the positive context, some others in
the negative context, and some in both. For the reason that
will be clear in what follows, QT, therefore, will be
expressed as:

Qt = Qtp U Qtn

where QTp and Qtn correspond to the parts of Qt that
deal with the terms specified in the positive and negative
context respectively, and

Qtp ITtp = T\, T2, . . . , Tk\ k > 0
Qtn I TTn = T\, T2, . . . , 7) | l > 0, k, l < n

and k = l is allowed.
In the filtered search query for Q t , which will be called a

system query Qs, there may be positive and negative term
specifications. If a term T{ is a member of both sets, that is:

Tj (z Ttp and 7/ (z Ttn

then Ti appears as a positive term in the system query.
This selection is due to the fact that the information pro­
vided by the appearance of a term rather than its non-

144 information technology

appearance is more important10. Therefore, a system
query, Qs, is:

Qs = Qsp U Qsn where
Qsp = Qtp
Qsn = Qtn — (Qtn H Qtp)

Hence, for the respective terms:

\TSP\ = \Ttp\, |7 sat| < | 7W | and \Ts\ ^ \Tt \
This is reasonable since, as stated earlier, one cannot
expect all the words used in a context sensitive search
request to appear in the terms used for indexing.

Context sensitive Boolean query structure

The user query Q will be processed as follows:
• The query Q will be converted into a disjunctive

normal form, i.e.,
Q = (Q u A Q l2A . . . A Q lni)V . . .V (Q mlA Q m2A

■■■A QmnJ
where each Qij(i — 1, . . . , m \j = 1, . . . , nm) may be a
single word or a context sensitive, document retrieval
operation of one of {(A B) in Sentence, A . . . B, A.n.B,
<A, B>n, A1V.B, A*B,. . .} as will be discussed later.
Furthermore, each Qy may be either in a positive or
negative context (e.g., —» (A, B) in Sentence implies
(A, B) in Sentence.)

• From the resulting query, a list of subqueries will be
generated such that they will be in an ordered
quadruple < QR QT Qs, Qsr> where QR and QT are
as explained before and Qs and Qsr are obtained in the
following steps.

• The words used in QT will be searched in the thesaurus
corresponding to the terms used in the clusters. Non­
matching words will be dropped and the query, now left
with only the terms, will be a system query Qs.

• Concept hierarchies, continuous word phrases, and/or
citation linkages will be the possible candidates of
additions to Qs if expansion due to recall and precision
will be necessary in the course of the experiments.

• Qsr, referring to Figure 1, is a further retrieval opera­
tion on DQr and DQs and the answer set returned by it
can be expressed as:

A Q sr) = ft^lDQxfQiiDQs))
In other words,A Q sr) is the data returned by a further
retrieval function operating on the product of the
datasets DQR &ndfQi{DQs), which correspond in turn
to the data returned by QR and the context sensitive
operations of QT executed on the dataset returned by
the hierarchical cluster system search.

• Qsr is repeated through the feedback loop (if necess­
ary) until the user and/or certain performance
indicators are satisfied.

In the above procedures, AQ sr) QD will be always
true.

Clustering subsystem*

The clustering subsystem uses a seed oriented,
partitioning type classification based on the new concept
*The reader may like to omit this section on first reading.

called cover coefficient8, 9. The starting point is a
document (m) by term (n) matrix, D, of m by n for m
documents {d \,d2, . . . , dm) in the collection; n is the total
number of terms assigned to describe the collection. The
vector entries can be binary or can use a weighting
scheme. The process will produce p cluster partitions p =
{Ci, C2, . . . , Cp} where C, will be a non-empty cluster and
C, n Cj — 0 for i 7+j,l < i, j < p (i.e., no overlap). Each
cluster C, will have /,■ documents C, = (d(1, d,2, . . . , d(/)
such that li > 1 and

p
E /, = m

/ - I
The properties of the D matrix are:

n
• 2 dr, > 1 1 < / < m, i.e., each document is des-

j= i
cribed by at least one term.

m
• E djj > 1 l < j < n, i.e., each term describes at

i — 1
least one document.
The D matrix is mapped into a cover coefficient matrix,

C. The C matrix indicates the extent with which the docu­
ments of the collection cover each other. If a document is
alone (i.e., unique in the collection), there will only be a
diagonal entry for it in the C matrix. The C matrix is m by
m, a document by document matrix. Each diagonal entry
in this matrix is the decoupling (uniqueness) coefficient,
whereas the sum of the off-diagonal entries yields the
coupling coefficient of a document, corresponding to a
row in the matrix, with the other documents in the
collection. The coupling coefficient enables us to estimate
the number of clusters needed for the collection and
calculate the cluster seed power for the documents.
Clusters start with the seed documents and the other
documents are assigned to the seeds in such a way that a
document joins the cluster whose seed covers it
maximally.

The C matrix is formed as follows. Two matrices S and
S' are defined from the D matrix as follows:

rt m
Sij = dij/ (E dik), s'ij = dfj/ (E dk) for 1 < / < m

k = 1 k = 1 J

and 1 < j < n
These normalizations can be interpreted as:

Sij\ significance of term-/ (tj) for document-/(d,)
Sjj: significance of dt for tj

The C and C' matrices are then obtained as:
C = S x S'T and C' = S 'r x S

where r is the matrix transpose operation. The C and C'
matrices are m by m and n by n, respectively. An element
of C is obtained as:

n n
Ca= E sikx ski'T= E (significance of tk in d,) x

k = \ k = \

(significance of d, for tk)
Each Cy is a cover coefficient that produces, as indicated

earlier, the decoupling and coupling coefficients. The
properties of the C matrix are:
• 0 < cy < 1, c„ > 0: a document may or may not be

covered by other documents, it is certainly covered
by itself.

vol 3 no 3 1984 145

m
• E Cjj = 1 for all / 1 < i < m : each row sum is equal

j= i
to 1 and the sum of all row sums gives the total docu­
ments, m, of the collection.

• For all i, j, 1 <i, j < m, c„ > cy if the D matrix is
binary; c„ can be less than cy in a weighted representa­
tion. If di is unique, then cy = 0 and Cy = 1 (or w„
weight). A document is covered mostly by itself, others
can cover it as much as itself.

• Cjj = 0 implies Cy, = 0 , and cy > 0 implies Cy, > 0 .
However, in the latter case, it is generally cy X Cjj.
Coverage is mutual, however generally, not symmetric.
The decoupling coefficient 5, of c?, is Cy; 1 < / < m, and

m
the coupling coefficient is t/y = E cy = 1 - 8 , where

/ = l
i t* j. A document that shares a large number of terms
with the other documents will have a large ipj, but a low 8,
value. Coupling and decoupling can be computed for the
entire collection as:

m (m m \
8 = E 8j / m, i//= E E cy / m = 1 - 8 where

, -= i v = i y = i /
i ^ J '■

The values of 8 and i[/ range between 0 and 1.
By using the C' matrix, we can cluster terms and

produce the measures 5/, ip(, 8 , i]/ in thesaurus con­
struction.

The theoretically implied number of clusters, nc,
needed for the collection can be produced as:

nc = (decoupling coefficient of the collection) x
(number of documents)

“ m
= 8 x m = E 8,

i= 1
(Similarly, the number of term clusters, n'c is S' x n)

The average number of documents per cluster, dc, is
given by dc = m / { 8 X m) = 1/5.

The cluster seeds are determined by a new concept
called the cluster seed power. The cluster seed power, pj,

n
of document-/ is obtained asp, = 5, ̂ ,-r, where /, = E dy

i = 1
is the number of terms in the document description
vectors. In pj, 5, contributes to the separation of clusters,
i[/(contributes to the connection among the members of a
cluster, and provides normalization.

The documents are assigned to the cluster seeds with
respect to either a single pass or a multi-pass algorithm. In
the single pass algorithm, what is done mainly is:
• Determine the first nc cluster seeds from the first

highest py
• Repetitively do: if d, is not a cluster seed then find the

cluster which maximally covers it, i.e., max(efs) where
Sj, 1 < j < nc, is the seed documents.

• For the remaining unclustered documents, either form
a ragbag (common) cluster or compare the documents
with the documents of the clusters already formed to
find a maximal cover for each document and add the
document into the respective cluster.
In this clustering process, the estimated number of docu­

ments in cluster-/ initiated by the seed ds. is «, which is
given by:

"c
= (Pi/ 2 Pk)*m for 1 < / < nc

k = l

In the forming of centroids for the clusters, a centroid
Gy = (giugn, ■ ■ ■ ,gin), 1 < / < nc, is constructed by
applying the state of existence rule for each^,y This rule
states that a centroid entry will be 1, iff]8j > fjavg8' holds,
otherwise 0 where:

f j is the frequency of tj within the document vectors
of cluster-/.
fjsyg is the average number of occurrences of tj within
the cluster containing i t It is the document frequency

m
of tj (ie., E dy) divided by the number of clusters

/ = 1
whose document vectors contain tj.
8'j is the diagonal entry of the C' (i.e., S ’T X S) matrix
for tj, which indicates the uniqueness of tj.
8 is the overall decoupling coefficient of all the terms.

The existence rule can be made to emphasize term
uniqueness in a varying manner by introducing a multiplier
r into the condition (i.e.,/-5y > r/)avg 8).

In this clustering scheme, we have the advantage of
knowing the number of clusters needed for the collection.
The document distribution in the clusters is rather uniform
and clustering is order independent This is because the
cover coefficient has no dependence on the arrival of
documents. The complexity, similarity and stability
analyses of the clustering scheme can be seen in other
detailed publications8,9’1 .

Cluster hierarchy

Once the clusters are formed, the database server can
search them by comparing the centroid vectors with that
of Qs returning DQS for the full text search. If, however,
there are a very large number of clusters making the linear,
single level, cluster search prohibitive we can construct a
hierarchy of clusters (tree), HCT for a sublinear
search. Also, in dynamic environments of very large
databases where clustering becomes a bottleneck, we can
select a sample of documents and construct a HCT of core
clusters as discussed in10,12. The remaining documents
can be assigned to the nodes of this HCT by using the
same search strategy applied for user queries.

In our case, we can easily compute the theoretically
implied number of clusters, nc, for the collection with a
procedure of 0 (mnavg) complexity9, where «avg is the
average number of terms in the documents. In the search
of the HCT, we may stop at an intermediate node, as will
be seen in the search strategy to follow. However, we
should get to the lowest level (leaf) cluster under that node
to add the document being processed. In such cases, we
can pick the cluster with the maximum cluster seed
power for the seed document.

In the mathematical model, C represents a hierarchical
type cluster structure forD with / levels. This is shown in
Figure 2. In this structure, if a node c, has n children
Cn, c/2, . . . , c,„, then the documents contained in c,
are:

DC = D C X U D c . U . . . U Dc
Furthermore,

Dcy Pi Dcik = 0 (null) for j ^ k
which leads to

Dci Cl Dcik Dcik

146 information technology

Figure 2. Hierarchical clustering

These properties hold for all levels because the clustering
algorithms used are non-overlapping.

As to the terms, if Tci is the set of terms used for the
description of the centroid of cluster c* then
TciJ D Tcik = 0 is not necessary true for j ^ k since a
given term can also be used in the description of docu­
ments in a different cluster. Similarly, Tcii U Tci2 U . . .
U Tein = Tci is not necessarily true for any i where
1 < i < l for an l level hierarchy because we cannot
assume that all documents on both sides of the
relationship are isomorphic.

The hierarchical document cluster implies a partial
ordering relation. Assume R is a generalization relation
for all the documents related with node-i R will be the
generalization of both the documents of the node as well
as all the documents contained in the descendants of that
node since the following conditions of reflexivity,
antisymmetry, and transitivity will be applicable:
• Every node c, is a generalization of itself by reflexivity,

CjRcj.
• If CjRcj and CjRci then this implies that c, = Cj (anti­

symmetry).
• If CjRcj and CjRc ̂ then this implies that

(transitivity).

Cluster search

The nodes of the cluster hierarchy and the system query,
Qs, will be represented as vectors equal in length to that of
the document definition vectors. In the query definition
vector corresponding to Qs, each element can have one of
the three possible values of 1, — 1, and 0 corresponding to
the use of the related term in the positive context, negative
context, and non-use of it, respectively. As stated earlier,
terms appearing in both contexts are assumed to be in the
positive context The search process will employ a top
down search on a search tree. Depending upon the values
of nc and dc, and the required precision/recall levels, the
following two search strategies will be experimented with:
• Narrow search: at each node, the descendant that gives

the highest value for the matching function is taken.
The search terminates when none of the descendants of
the processed node can exceed in match function value
that of the node10. With this strategy, we always take a
single branch out of a node.

• Broad search strategy: from a node, descend to
children nodes that satisfy the match criterion (e.g., a
similarity threshold). Stop when no child satisfies the
match and send the parent to full text search.

Accordingly, in this search, we may send multiple
nodes from different branches of the tree to full text
search.

M atching function

Two measures are being investigated for the matching
function. One is the coupling function and the other is a
similarity measure. The coupling function comes from the
idea of the coupling coefficient in our clustering scheme.
Accordingly, we can start with an m by n matrix D qc
whose first row would be the query vector and the
remaining m-1 rows would correspond to the centroid
vectors of the lower level subclusters of the node(s)
identified in the search of the HCT. By obtaining the cover
coefficient matrix Cqc corresponding to the Dqc matrix, we
can produce the coupling values. A query would be covered
by itself (i.e., cqCj. > 0) and the centroids identified as a
result of the HCT search. Those cac.. that exceed aH'-tj
threshold would identify the centroids of the target
clusters.

The second measure would be a similarity function of
the following form:

' SIM(Q& C) = ^ i i F 1(qj, c ;) J /^ § i (F ,(?> cj)

+ F 2(qj, cj)) |

where
{Vi x Sj if qj > 0 (1)

F M j. cj): 0 if qj = 0
(abs(<7y) X (|c| - g j) if qj < 0 (2)

f « / x (M - gj) if qj > 0 (3)
Filqj, cj): 0 if qj = 0

(abs(^y) xg j if qj < 0 (4)
In (1), we are saying that if a query term, qj, position is a

1, then F\ gives the number of documents containing that
term under that centroid; gj is the centroid entry. In (2),
| c | indicates the number of documents under the node,
abs means absolute value and F\ gives the number of
documents that do not contain the negative query term. In
(3), F2 gives the number of documents in the nodes that do
not contain the query term. In (4), F2 gives the number of
documents in the nodes that contain the query term. The
SIM function is the conditional probability of hitting a one
on the centroid vector of the HCT node given that a one
was given in the query vector and hitting a zero on the
centroid vector of the HCT node given that a minus one
was given in the query vector.

Query feedback

The query feedback to be explored in this research differs
in some respects from the other studies. This difference
is motivated by the very fact that the integrated system
will be concentrated on the context sensitive, search
specifications of the type discussed in this paper. Accor­
dingly, in this feedback scheme, the user query is kept
fixed, but the system query, Qs, is modified. There­
fore, after each feedback process, a new cluster is chosen,
which would be most related with the modified Qs,
and the documents are processed with respect to Qr
(and Qsr later). The feedback process will depend on the

vol 3 no 3 1984 147

user choice although various measures of performance
also will be employed. The user will have the choice of
accepting the results or triggering the feedback loop by
giving an indication of the relevant and irrelevant
documents. In the refinement procedure of the feedback
subsystem, the terms appearing in the relevant documents
will be emphasized while those in the irrelevant
documents are de-emphasized. The following criteria can
be used for this purpose. If | qlx | denotes the number of
appearances of term-/ in set x where x can be one of
system query, relevant documents (R L), or non-relevant
documents (NR), then if

Itf/sl + \<Ur l \ > \<]Fn r \ j

that is, if the sum of term-fs used in the positive context in
the system query and those that appear in the relevant
documents is greater than the number of positive context
term-z’s that appear in the non-relevant documents, then
we would keep term-/ in the refined query, otherwise we
would drop it (or reduce its weight). Also, if +
| qwR\ > \<1 wl\ . that is, if the sum of tertn-z’s used in
the negative context in the system query and those that
appear in the non-relevant documents is greater than the
number of negative context term-/’s that appear in the
relevant documents, then we would drop term-/ (or reduce
its weight) in the refined query.

The main goal of this feedback scheme is to preserve
the context sensitive nature of the user query so that the
advantages of full text search can be properly exploited.

SU PPO R T SYSTEM ST R U C TU R E

Conceptual modelling and an example application

The universe of discourse of an integrated DBMS/IR
application will be defined by means of the enhanced
entity/relationship (E/R) model13, which will allow
representation of aggregates and generalizations as well
as documents. These concepts of E /R and its
implementation in a generalized environment are covered
in our earlier studies14, 15. Presently, a data definition
facility for an E /R interface is available that generates
various system dictionaries. The diagrammatic
representation of the E /R model uses rectangles to
represent entities, diamonds for multidimensional
relationships among entities, labels to indicate the type of
relationships or mappings (e.g., one to many, many to
many etc.), double lined rectangles for weak entities (or
relationships), etc. In our case, an entity will correspond
to a conceptualization whose representation will be in
terms of formatted structures (i.e., a record type or
specifically a relation) or a document whose representa­
tion will be in terms of unformatted structures. In the
latter, the rectangle will be marked by an asterisk. For
each datamodel, there corresponds a data definition
language (DDL). Figure 3 shows the conceptualization of
the example application environment To give an
appreciation of the information conveyed by this diagram,
let us list some important relationships:
• AUTHOR is a weak entity, for him (her) to exist in

the document database, he (she) should either have
written a document or be referenced by at least one
document

• AUTHOR and DOCUMENT entities are related
through the DOC-REF relationship in a many-to-
many manner. That is, an author can reference several
documents and can also be referenced by several docu­
ments.

• A specific journal is published by one publisher, yet
that publisher can publish several journals.

Figure 3. Conceptual representation o f the integrated
application environment

H ow to support unformatted data in database
architectures

In the contemporary full text storage structures that store
genuine text without inversion, sectors or page blocks are
used as the units of storage of document files. We can
think of tuples of normalized relations, 1024 bytes or
longer, as the equivalent of those units in a stored relation.
In fact, there is almost one-to-one correspondence
between a (flat) file and a normalized relation. Therefore,
in our system, we have made the following changes in the
relation data type of the RAP. 3 database computer so that
both the formatted and unformatted structures can be
supported. The main change allows a literal data type to
be as long as a tuple itself (i.e., resulting in a unary
relation). This provides us with a variable length literal
data type, within a fixed length tuple, that stores the
unstructured document attribute. The following is the
format specification for text representation in the RAP. 3
relations16:
• Each tuple contains one (or more) complete sentences.
• The first tuple of each document starts with a blank
• As with standard typing rules, at least one blank should

follow a punctuation mark
• At the end of a sentence an end-of-sentence (EOS)

marker is placed following the period. EOS must be
followed with at least one blank

• The last tuple of the document terminates with an end-
of-document (EOD) character.

148 information technology

The following is the layout of a RAP. 3 tuple:

D Mark A
F Bits Long text

attribute
(variable
length)

AD! a d 2 D4 A

Accordingly, a document file corresponds to a RAP. 3
relation. This relation can hold one or more clusters of
documents, or for large clusters also can be horizontally
split. The associated storage overhead is the same
as in file representations with the exception of one or two
words per tuple reserved for tagging (marking) of data.
Complete sentences from the documents are mapped into
the D1 attribute of consecutive tuples.

The AD i and AD2 attributes of the integer domain are
needed for the internal use of the context sensitive, text
retrieval operations. D4 is the key attribute, which is a
unique document identifier (DOCID). D 5 throughD„ are
the attributes reserved for formatted data. That is, in one
relation, we can store both the formatted and unformatted
data if they are needed for the convenience and efficiency
of processing. Figure 4 shows the relational representa­
tion of the example application conceptualized in Figure
3. This relational representation conforms with the RAP. 3
format specifications. According to Figure 4, the
DOCUMENT entity is mapped into four tabular
structures DOCUMENT, CITATION, ABSTRACTS,
and SUB-HEADING. The rest of the mapping is one to
one. In the list of relations, the key attributes are in bold
characters. The ABSTRACT attribute holds the full text
of the corresponding document’s abstract As shown in
Figure 4, each tuple holds one or more sentences of the
corresponding document and the TUPID attribute links
multiple sentences (tuples) of one document The unary
relation DOCUM ENT is added into the representation to
increase the speed of database navigations (i.e., chain of
mappings by semi-join). In this way, large unformatted
data need not be kept in the system for the sake of the link
attribute (i.e., DOCID).

DOCUMENT < D O C ID >
CITATION<DOCID, TITLE, DATA, JCODEN,

VOLUME, PAGES, A D I, AD2>
ABSTRACT<DOCID, TUPID, ABSTRACT,

A D I, AD2>
SUB-HEADING<DOCID, STITLE, A D I, AD 2>
AUTHOR<AUTID, NAME, NPAPER>
DOC-AUT<DOCID, A U TID >
DOC-REF<D OCID , AUTID, N R EF>
KEYW ORD<KEYID, KEY, KFREQ >
DOC-KEY<DOCID, KEYID, W EIGHT>
CATEGORY<CATID, CATCODE, CFREQ >
DOC-CAT<DOCID, CATID>
JOURNALCJCODEN, JNAME, NPAPER>
DOC-JOUR<DOCID, JC O D EN >
PUBLISHER<PUBID, PNAME, NPUB>
JOUR-PUB<JCODEN, PU B ID >

Explanations of the abbreviated attribute names
DOCID = Document identifier, uniquely identifies

a document
JCODEN = Journal code
TUPID = Tuple identifier
STITLE = Subtitle
NPAPER = Number of papers written by an author
NREF = Number of times an author is referenced

in a document
AUTID = Author identifier, uniquely identifies an

author
KFREQ = Number of times a keyword is used in the

documents (keyword frequency)
CFREQ = Number of times a category is used in the

documents
NPAPER = Number of pages in a published journal
NPUB = Number of journals published by the

publisher of a journal
A D I, AD2 = Full text search attributes

Figure 4. A relational representation o f the conceptual
structure

Language for the integrated D B M S and IR system

The language for the integrated system is the RAP. 3
relational DBMS data language. This language is
associative and high level (i.e., self-iterative). It contains
the power of relational algebra and, in addition, there are
commands for select and arithmetic update, select and
compute aggregate function, etc. This language is also
provided with the instructions for associative full text
search.

To summarize, the following presents the main features
necessary for integrating IR with DBMS:
(a) Domain type must support literals.
(b) Domain length must be variable for literal types.
(c) Efficient string search primitives must be incorporated.
(d) Sentence structure and adj acency must be recognized.
(e) A way of processing unformatted data with formatted

structures must be found.
(f) Resolution capability must be added to the operations

supported in (c) and (d).
We have been discussing items (a) and (b) so far and

with regard to (c), (d), and (f), we will detail, in the follow­

ing, the syntax and semantics of the IR related instructions
as well as query resolution for the context sensitive, full
text search operations. Item (e) has already been discussed
in datastructure and the language aspects will be included
in the following discussion.

As can be seen from the RAP. 3 text mapping scheme,
an important problem of text retrieval is the need to
maintain text contiguity both in string searches and
context resolutions. This problem has been solved, to a
great extent, by the variable length text attribute feature of
RAP. 3. By this feature, some context resolution
problems, such as splitting a text word between tuples
(called term overflow) and passing overflow status and
data to subsequent tuples to finalize the search, are
inherently solved. However, there still remains the pro­
blem of context resolution for the text retrieval operations
of the type A . .. B and <A, B >n, which correspond to
variable adjacency in number of words and proximity,
respectively. This is because the specified context might
not be satisfied within a tuple. The necessary information
for context resolution is passed from tuple to tuple by a
feature referred to as link passing. The following gives the
syntax definition of the new RAP. 3 DBMS/IR Assembler

vol 3 no 3 1984 149

commands needed to perform the text search, and link
pass operations:

MATCH (tc)[rel(atrl{,atr2{,atr3}}):qual]{[lit]}
MATCH _ WS (tc)[rel(atrl{,atr2}):qual]{[lit]}
MATCH _ WWC (tc)[rel(atrl{,atr2{,atr3}}):

qual]{[lit]}{[int]}
L IN K _ PASS (tc\, tc2)[rel({atrl,}atr2)]

where

tCj 1 < i < 13 are the tag (mark) bits,
rel is the relation name of the document.
atr; 1 < i < n (maximum tuple length is 1024 bytes)

are the attributes of the relation corresponding to
D\, N D i, NDi, L>4, . . . , D n in the RAP.3 tuple
layout shown earlier.

qual Boolean qualification expression, examples of
which can be found in the operations section,

int is a positive integer.
{} indicate options.
lit is the literal constant corresponding to the search

pattern. The examples of search pattern are:
‘AA'TBB’, *‘A ,V.‘B B *iAA,V.‘B B ’V.‘C’ where *
and ? correspond to variable length don’t care
(VLDC) and fixed length don’t care (FLDC)
character respectively, and int? indicates the
repetitions of ?.

The first match instruction searches for the equality of
the search pattern, in the text stored in ah-! and tc marks all
the qualifying tuples within the cells storing the document;
atr2 gives the beginning search offset within the text string
(i.e., atri). If atr2 is not specified, then the search offset is
taken as 0. If atr3 is specified, all occurrences of the search
pattern within atr3 are determined and the total number of
occurrences is stored in atr3, within each tuple. The
difference of the second match instruction is that the first
occurrence of the search pattern is found within the
sentences of atri. The entire match should be contained
within a sentence. The third match instruction finds the
first occurrence of the search pattern, bypassing at most
int number of words of the text. The value of int can be
specified explicitly, or implicitly by atr3.

During execution of the third match instruction, if the
search pattern is not found and the search context
specified by the word count is not satisfied within a tuple,
then the tl 4 mark bit of that tuple is set This specific case
is called an overflow condition and can occur only during
the execution of the M A TCH__WWC instruction, since
the context of a match is always satisfied in the other types
of the match instructions. The L IN K __PASS instruction
takes one memory cycle to execute and resolves the
overflow condition in those tuples marked for overflow.
The resolution requires resetting the fl4 mark bit (tc2 in
the instruction syntax) of the tuples marked for overflow,
setting tc\ bits of the subsequent tuples, and passing the
unprocessed (i.e., remaining) count values into the
predetermined attributes of the subsequent tuples.

In the other use of the L IN K __PASS instruction,
when the literal attribute atrt is specified, if a tuple is tc2
marked and its atrj does not contain an end-of-text
character, then the following tuple(s) of this document
will be tc 1 marked and their atr2 is se to zero. This feature
of the L IN K __PASS instruction is used to set the search
context of the text retrieval operation A . . . B.

It is assumed that the don’t care character will not
match an end-of-sentence character. This semantic

property of search patterns prevents the occurrence of
an overflow during term matching.

Query resolution in RAP.3

In the RAP.3 text retrieval system, a great proportion of
the context dependent query resolution takes place in the
operation of the new text retrieval commands the basic
task of which is term matching. As seen in the semantics of
the instructions described above, sentence structure and
adjacency are recognized as an integral part of the
operations. Such resolution operations constitute a totally
separable task in most other text retrieval systems. For the
execution of the context sensitive, text retrieval
operations of the more complex nature, however, more
sophisticated resolutions are required. These operations
are:

A and B in sentence (specified context)
<A. n. B > (directed proximity)
<A, B > n (undirected proximity)
AV.B (fixed length don’t care)
A . .. B (immediate adjacency or variable

number of words in between)
A * B (variable length embedded don’t care)

The resolution for these operations requires that small
RAP.3 programs be written using both the DBMS and IR
instructions of the RAP.3 language. In other words, these
resolutions are embedded in the logic of RAP.3 programs
in which MATCH and L IN K __PASS operations are
directed10. To aid the user, all these programs are made
general purpose, full text retrieval macros running under
the macro processor RAPMAC. Appendix 1 presents a
list of these macros, which also gives an idea of the type of
context sensitive, full text operations supported in the
system. Appendix 2, shows the algorithmic expansion of
the ‘Search (Match) A and B in sentence macro, which
demonstrates resolution on the entire document relation
level. More details on these can be found in reference16.
One important note here, however, is that in a RAP
instruction qualification, there is no practical limit on the
number of predicates in a Boolean expression. This means
that we can have a large number of terms specified for a
text search. However, in terms of the macros listed in
Appendix 1, this applies, at the present, to macros # 3 and
4 only. The limitation on the number of predicates is
determined by the buffer and parameter storage space set
for the implementation of the RAP.3 DBMS.

Distributed database architecture

As we indicated at the beginning, a local computer
network consisting of a network server and several
workstations is the basic hardware architecture. More
complex configurations can be obtained by cascading
such networks. In the software counterpart, we can
envision the centralized DBMS/IR as the basic software
architecture. In this architecture, the network server acts
as the central node. When local networks are cascaded,
however, the software architecture can be expanded into a
distributed DBM S/IR

Figure 5 depicts the local computer network facility
used for the experimental DBMS/IR integrated system.

150 information technology

Intel NDS-II

Figure 5. Local computer network

In this system, the Intel equipment is used. There is an
NRM wih the three workstations (two SYSTEM-4’s and
a SYSTEM-2) in a star network based on Ethernet. In
addition, on the same network, there is a single board
computer attached to SYSTEM-2 and a transaction
processing computer (iTPS). Currently, the RAP. 3
DBMS/IR software and the RAPNET distributed
database query execution monitor are operational on all
the processors of the network. As a core application, a
centralized DBMS/IR based on NRM with the three
workstations is being carried out. The second phase will
include iTPS as the network server with which a
homogeneously distributed DBMS/IR system will be
made operational. The third phase will include the
networking of one VAX 11/780 Unix based system into
the configuration. The Unix-C based versions of RAP. 3
DBMS/IR and RAPNET software are nearing comple­
tion.

The distributed database (DDB) versions of RAP
software were published earlier15,17. In the homogeneous
RAP DDB, RAP query programs are decomposed into
subqueries and network execution is monitored with
respect to a dataflow driven query graph17. In this way,
parallelism inherent even in a single query program can be
exploited. The RAPNET software is the monitor written
for the homogeneous DDB. It is responsible for query
decomposition, query graph construction, and distributed
query execution on the network.

O PER A TIO N A L SYSTEM

Database creation and query execution

The RAP.3 DBMS/IR language can be used either as a
stand-alone query language, or as a data sublanguage
embedded in PLM/86 for the Intel based network
processors or in the C language in the VAX 11/780
version. The simple example shown below defines and
creates two relations and performs two simple retrievals,
using the stand-alone version.

*JOB/*Creation of two relations*/
AU THO RIZE<‘U 101’>
RELATION<LOCATION (20)

DEPARTMENT: LITERAL, 12, KEY
FLOOR: INTEGER, 1 X G R A N T __

READ>
RELATION <EMPLOYEE (500)

NAME:LITERAL, 25, KEY
DEPARTMENT LITERAL, 12

INDEXED
SALARY IN TEG ER , 4> <PRIVATE>

LOCK <LOCATION>
c r e a t e < L o c a t i o n > r e l e a s e

<LOCATION>
LOCK <EM PLOYEE>

CREATE <EMPLOYEE >RELE ASE
<EM PLOYEE>

e q q
*DATA

& LOCATION<‘PERSONNEL’ 1>
< ‘SALES’ 2> & END

& EMPLOYEE/*3 tuples follow*/
< ‘KING’ ‘PERSONNEL’ 4500>
< “L’HOM E” ‘SALES’ 1500>
‘JONES’ ‘SALES’ 25000> & END

*JOB /*Query-A = Employees on 2nd floor*/
AU THO RIZE<‘U101’>
MARK(T1)<LOCATION: FLOOR

= 2>
CROSS _ M ARK(Tl)<EM PLOYEE:

DEPARTMENT = LOCATION.
D E P A R T M E N T <M KED(T1)>
EQQ

*JOB /*Query-B*/
/♦Employees in the SALES department,

and the one with the highest salary*/
AUTHORIZE<‘U101’>
MARK(T1)<EMPLOYEE:

DEPARTMENT 1= ‘SALES’>
READ<EMPLOYEE(NAME):

M KED(T1)>
MAX<EMPLOYEE(SALARY):

M KED(T1)> <R EG F _ 4>
READ<EMPLOYEE(NAME):

SALARY = R E G F _ 4 >
EQQ

As can be seen from the RELATION command defining
a relation, the user can declare a primary key by the KEY
keyword, which is repeated for compound keys. Also, the
INDEXED option is used for directing the system to build
a secondary key index for the attribute being declared
(e.g., DEPARTMENT). GRANT _ READ, PRIVATE,
etc. are for security/integrity control. The CREATE
command populates the database with respect to the
RELATION declaration by inputing the data following
♦DATA (or from a disc file). We see examples of tagging
selections, by the MARK; semi-joins, by the
CROSS__MARK; associative and set oriented selection
in the MARK, MAX (maximum), and READ instruc­
tions. Up to this point, we have not seen the use of full text
retrieval. Let us point out that if we are interested in
simple keyword based retrieval by using inverted indices
we can use this formatted version of RAP. All we have to
do is to declare a binary relation POSTINGS with the

vol 3 no 3 1984 151

KEYWORD and DOCADDRESS attributes and use a
READ <POSTINGS(DOCADDRESS): KEYWORD
= ‘DATABASE’> instruction to retrieve document
addresses of documents containing the term DATA­
BASE from the POSTINGS relation. For merging and/or
intersecting indices, we can either define an rc’ary relation
and say READ <POST(DOCADDRESS): KEY-
W ORDI = ‘A ’ & (OR) KEYWORD2 = ‘B ’>, or
equivalently, write the following program between the two
binary relations, POST1 and POST2:

MARK (tl)< P O S T l: KEYWORD = ‘A ’>
CROSS _ MARK(t2)<POST2: DOCADDRESS =

PO STl.DOCADDRESS> <PO S T l.M K E D (d)>
READ<POST2(DOCADDRESS): KEYWORD =

‘B ’ & MKED (t2)>
The second operation is a semi-join through the match­

ing document addresses and the READ combines this
mapping indicated by MKED (t2) with those tuples
containing the keyword B. The result is a chain of
selection, semi-join, and output using conjunctive selec­
tion (restriction). This scheme can be extended to include
the concepts of weighted Boolean retrievals18, 19 and
ranked output20 by using all the capabilities of the RAP
instruction set.

D B M S /IR integrated retrieval

At this point, we can go back to the example application
presented at the beginning. Based on Figures 3 and 4 and
the query statement given at the beginning of the
integration model, a possible execution sequence can be
given as follows (using the relations of Figure 4 and with
no regard to semi-join optimization):

1. SELECT AUTHOR with name JOHN DOE
2. SEMI-JOIN AUTHOR to DOC-AUT via AUTID
3. SEMI-JOIN DOC-AUT to DOC-REF via AUTID
4. SEMI-JOIN DOC-REF to DOC-AUT via DOCID
5. SEMI-JOIN DOC-AUT to ABSTRACT via

DOCID
6. IR search for‘SEMANTIC DATA MODEL’AND

‘AGGREGATION’
7. SEMI-JOIN ABSTRACT to DOCUMENT via

DOCID
8. READ DOCUMENT

As can be seen in this query, operations 1 through 5,
and 7, 8 are DBMS operations and 6 is an IR operation,
and yet everything is linked and consequence of each
other in the execution sequence. Although operation 6 is a
single item in the list, it corresponds to a set of operations
implemented as a RAP macro call which uses DBMS/IR
instructions. To follow these, let us refer to Figure 1,
which is the abstract representation of the integrated
system. In this figure, Q represents the query program
shown above (i.e., operations 1 through 8), g*
corresponds to DBMS operations (operations 1 through
5 ,7 ,8) and QT to IR operation 6. In terms of the datasets
and data manipulation functions, the following corres­
pondences can be seen:

DQr: (D O C -A U T)* DQS: (ABSTRACT)* —
subscript R indicates restriction — f(D Q R): step 5,
f(D Q s): step 6, QSR: step 7, (DOCUMENT)* =
A Q sr)

The following is another example of a DBMS/IR
operation at the RAP program level:

*JOB
/ * . . .* * 1 -) Give the DOCID of the documents that

contain RAP and DATABASE MACHINE within
the same sentence. */

%MATCHAANDBIN$SENT‘RAP’, ‘DATA­
BASE MACHINE’, ABSTRACT, ABSTRACT*

N D 1, 7T, T3, T4
CROSS _ M A R K (ri) [DOCUMENT: DOCID =

ABSTRACTS. DOCID][MKED(7T)]
READ[DOCUMENT(DOCID): M KED(Tl)]
EOQ

Form s interface

Presently, there is a basic forms interface that creates
forms, retrieves, updates, and deletes form instances.
Specifically, a form corresponds to a RAP. 3 relation. A
form instance corresponds to a relation tuple. By entering
values and parameters at the specified columns of an
accessed form frame, the user can specify: selection and
output corresponding to MARK and READ; semi-join
corresponding to CROSS MARK (with a form destina­
tion); arithmetic updates ADD, SUB, MUL or DIV; and
the scalar aggregates SUM, COUNT, MAX, MIN,
and AVERAGE.

It is the goal of the experimental system to enhance the
forms interface with the functionality of context sensitive,
full text operations, which would link to RAP macro
generation, and user query feedback.

PE R FO R M A N C E A N D TH E F U T U R E

Efficiency o f integration

The proposed integration, apart from its effectiveness and
general purpose utility, which offers several important
functionalities, is expected to be efficient because of the
following main features:

• It uses an efficient implementation of a relational
DBMS.

• IR features are integrated with DBMS at the primitive
level.

• The IR primitives are based on the efficient string
search operations and the context sensitive, full text
instructions carry out query resolution.

• Clustering is used as an efficient IR index in addition
to the secondary key indexing of the RAP. 3 DBMS.

• Integration of DBMS and IR at the primitive level
results in minimum layers of software, which con­
tributes to overall system efficiency.

• There is no need for a separate computer for query
resolution and the necessary communication of term
matches since all of these functions are handled in the
RAP. 3 system.
To elaborate some of these further, we can point out

the following. The RAP. 3 DBMS system is a software
emulation of a database computer on the present-day
computers. This implementation is transparent to the user
since the language is what the user sees and uses. This
language is implemented in the emulator by using efficient

152 information technology

means of file organization. Relations are stored as hash
addressed files based on keys. In addition, secondary key
indices are constructed on the frequently needed
attributes, as directed by the user.

As mentioned earlier, mapping of full text into long
tuples where a long variable length literal attribute is
allowed is not much different from the flat file
implementations that use sector or page based indexing
and storage. The document relation can be horizontally
fragmented for access efficiency in much the same way as
flat files are partitioned. In the distributed system archi­
tecture, fragments can be distributed according to user
profiles.

In addition to secondary indexing, as directed by the
INDEXED attribute, clustering is used as an effective
means of document indexing. As opposed to indexing
techniques such as E-trees, the indexing based on
clustering uses semantic information, that is, coupling
among the documents of a collection. A cluster can be a
RAP. 3 relation or a horizontal fragment of a larger
relation. In the former, the relation can be further
fragmented depending on the size of data. In any case, one
can define a secondary index within a cluster because a
cluster is a relation for which the INDEXED attributed
can be declared.

As can be seen in the way the system is integrated,
clustering is essential for the efficiency of the overall
system. We will come back to this issue in the future
hardware solutions for text retrieval.

The semi-join construct of the RAP.3 system (i.e.,
CROSS_MARK) is an important operation. In an inte­
grated system where formatted and unformatted data are
cross selected, the join operation must be implemented
efficiently. The semi-join operation does not create a new
relation to store the result and transmits a minimum
amount of data between relations. The advantage of semi­
join comes into the picture more importantly in distributed
databases. As we have indicated earlier, office
automation uses DDB as the underlying architecture.

We have also indicated the way of handling simple
inverted file based keyword indices. Because indices are
nothing but relations, one does not need to resort to an
additional system to have a simple IR for certain
applications.

D ocum ent retrieval hardware o f the future

For a survey and analysis of various hardware proposals
for document retrieval, one can start from the recently
published summary21. In this section, we want to present
the latest assessment of the work covered in the referenced
survey with the addition of the RAP.3 database computer
solution, which is not covered in that survey.

Text (document) retrieval related hardware varies from
partial to reasonably complete solutions to the problem.
In the partial category, we can mention the proposals on
constructing fast index processors to speed inverted list
intersection and merge. As can be realized, this approach
is a component solution without altering the basic
characteristics of conventional text retrieval.

In the complete system category, we see two major
system components specialized for text retrieval, they are
the term matcher and query resolver subsystems. Because
the query resolver does not require much novel hardware

and the system bottleneck rests in the term matcher, various
proposals have concentrated on the term matcher. The
following are the techniques used by the various proposals
made to date:
• parallel comparators,
• associative memories,
• cellular arrays,
• finite state automata.

We can consider the first two together. In the parallel
comparators approach, the term detector sits in series
with the datastream, which is read off a mass memory
such as disc. The data, in passing, are buffered in a
window and simultaneously made available to a number
of parallel comparators. The associative memory
technique is a more advanced version of the former.
Search terms are stored in an associative memory, which
acts as a term matcher synchronous with the data. The
advantage of this is the ability to store a large number of
search terms, each of which corresponds to a comparator
in the former approach. In reality, one uses a fast random
access memory that emulates an associative memory. The
majority of commercial systems of text retrieval hardware
use this associative memory approach. Two points to
realize in this approach are: the difficulty of implementing
context sensitive, full text operations, especially those
using fixed and variable length don’t cares, and the serial
nature of the system.

The cellular arrays approach aims to dynamically
construct search patterns by using cells capable of
comparing a particular character or pattern. The system is
serial with data, and cells operate by communicating with
their immediate neighbours so that when a match occurs a
number of logically consecutive cells produce match
signals. This approach requires too much dynamism and a
large number of cells. The dynamic interconnection
problem and data streaming for a large number of cells are
non-trivial and costly issues.

The finite state automata (FSA) approach has been
implemented in various experimental systems21. The
clarity of the FSA abstraction and its efficient
implementation do not go together. There have been
various optimizations for FSA implementations ranging
from constructing separate FSA’s for the starter, sequen­
tial, and index states to efficient addressing of the state
blocks. Recently, a partitioned FSA (PFSA) has been
proposed with the aim of synchronizing with the data­
stream at disc speed using a minimum amount of buffer
memory. A PFSA can be at more than one state at a time
and a non-conflicting partitioning scheme of the state
table has been found so that a PFSA can be cast modularly
into VLSI. From this point on, we will refer to the VLSI
based FSA or PFSA as the FSA filter. One needs a
structure consisting of a ring of FSA filters and a match
controller for each serial datastream21. For a complete
system, the query resolver microcomputer, in addition to
the standard I/O system, and the host computer are
needed.

In the RAP.3 database machine/computer app­
roach22, 23, the entire integrated DBMS/IR system
described thus far is supported with the RAP.3 database
machine. As far as the user is concerned, there would be
no difference between the software version running on the
emulator, and the hardware version running on the actual
machine, with the exception of further efficiency
introduced by the specialized hardware.

vol 3 no 3 1984 153

The RAP. 3 database machine uses parallel cells and
parallel microprocessors in each cell. Each micro­
processor executes firmware of query routines
implementing DBMS and IR instructions. The entire
device memory, which is equal to the union of cell
memories, is made to work like an associative memory.
The microprocessors of each cell execute query routines
on the tuples of the cell memory in parallel. The difference
between the associative memory approach discussed
earlier and the RAP.3 (associative) database machine
approach is that in the former, search terms are placed in
the associative memory and the text is streamed through
it, whereas in the database machine the text is stored in the
device memory which is a quasi associative memory so
that it can be large to accommodate bulk data. In the
microprocessors of each cell, efficient string search is
performed16. The complexity of this operation is of the
order O(m) character comparisons where m is the length
of the literal text attribute in a RAP. 3 tuple. The increase
in efficiency due to hardware will be by a factor (k x n)
where n is the number of parallel cells in the device and k
is the number of parallel microprocessor (subcells) within
each cell.

The advantage of the RAP. 3 database machine
approach is the ability to provide both a relational DBMS
and the IR system in an integrated manner in the basic
architecture and the integration of the query resolver
which is an important component in the other systems.

To maintain a steady flow of data into the database
machine, a disc cache, as in the Japanese fifth generation
computer’s database machine, or an alternate cell
memory, as in the RAP virtual memory architecture, is
needed.

In cases where physical device dimensions reach a
limit, partitioning of very large databases into multiple
discs so that each disc can be connected to a dedicated
special purpose hardware would be a viable solution. This
is what the datastreaming techniques discussed earlier
and the FSA filter rely on for performance. There will be a
factor of difference between the point where one
duplicates an FSA filter and a database machine because
of the difference in the cut-off points as determined by the
sizes and speeds of the respective devices.

SU M M A R Y A N D C O N C L U SIO N S

We have presented an integrated fact/document
information system for office automation. We started with
the need to synthesize DBMS and IR into a complete and
general purpose system, in such a way that no one system
would be reduced into the other, by losing its unique
features and advantages. We have seen that the offices of
the future will need and use services of DBMS and IR
extensively, in a distributed computing environment.

An integrated model of the proposed experimental
DBMS/IR system is presented with respect to query
processing. In that model, the execution of Boolean
queries of context sensitive, full text operations and their
relationship to document clustering and query feedback
are discussed. The clustering subsystem and its search
strategy are introduced.

In die support system structure, conceptual data
modelling, ways of supporting formatted and unformatted
data together, and the language for the integrated DBMS/

IR system are described. In the language, we have seen
the context sensitive, full text primitives of the RAP. 3
system that are associative and perform sentence and
adjacency related query resolution. These structures and
operations are embedded into RAP. 3 relations and
DBMS language, respectively.

The distributed database architecture is the next level
of architecture when an office grows out of the bounds and
capabilities of a single local area network that is managed
centrally with a database server. In such a case,
distributed query processing of the DBMS/IR system
becomes necessary. The RAPNET software is the
distributed query execution monitor of the RAP. 3
DBMS/IR language. RAPNET constructs and executes
a dataflow graph for distributed query execution.

In the operational system, we have seen how to create
relations and to process simple inverted file based
systems. Following that, the integrated DBMS/IR
retrieval example is continued and the forms interface is
outlined.

In performance, the efficiency of integration is
discussed. Besides the effectiveness and utility of the
proposed system, a better efficiency is achieved by
reduction in software, lowering the integrated functionality
towards the primitive hardware level, and combining the
query resolver and text matching subsystems into a single
system.

Clustering is used as an index at the semantic level and
as a means for database partitioning and relation
fragmenting.

In the discussion of hardware approaches, the RAP. 3
database machine approach is indicated as a viable
alternative to other current research such as the FSA
filter. In the case of the RAP. 3 hardware solution, all that
needs to be done is to replace the underlying DBMS/IR
RAP. 3 software emulator with the actual RAP. 3
hardware to further boost the performance of the
integrated system. The sizes of fixe databases would
dictate the issues such as database partitioning, using
multiple hardware, and distributed databases. These are
the common problems to all future hardware regardless of
the specific organization of a given architecture.

A C K N O W L E D G E M E N T

We gratefully acknowledge the computer network grant of
INTEL Corporation of Arizona which made the con­
figuration of Figure 5 a reality.

R E FE R E N C E S

1 Salton, G ‘Some research problems in automatic
information retrieval’ Proc. ACM SIGIR Conf.
(1983) pp 252-265

2 Van Rijsbergen, C J ‘Information retrieval: New
directions: Old solutions’ Proc. ACM SIGIR Conf.
(1983) pp 264-265

3 Crawford, R G ‘The relational model in information
retrieval’ J. Am. Soc. Inf. Sci. (USA) Vol 32 No 1
(1981) pp 51-64

4 Scheck, H J ‘Methods for the administration of
textual data in database systems’ Proc. Joint BCS
and ACM Symp. (1980) pp 218-235

154 information technology

5 Stonebraker, M et al. ‘Document processing in a
relational database system’ A CM Trans. Office Info.
SysL Vol 1 No 2 (1983) pp 143-158

6 Salton, G and McGill, J Introduction to Modem
Information Retrieval McGraw Hill Book Company,
USA (1983)

7 Lancaster, F W and Fayen, E G Information
Retrieval On-line Melville Publishing Company,
USA (1973)

8 Can, F and Ozkarahan, E A ‘A clustering scheme’
Proc. ACM SIGIR Conf. (1983) pp 115-121

9 Can, F and Ozkarahan, E A ‘Two partitioning type
clustering algorithms’ J. Am. Soc. Inf. Sci. (USA)
Vol 35 No 4

10 Van Rqsbergen, C J Information Retrieval (2nd
edn) Butterworths, UK (1979)

11 Can, F and Ozkarahan, E A ‘ Similarity and stability
analysis of the two partitioning type clustering
algorithms’ J. Am. Soc. Inf. Sci. (USA) Vol 35
No 5

12 Van Rijsbergen, C J ‘Further experiments with
hierarchical clustering in document retrieval’ Info.
Storage and Retr. Vol 10 (1974) pp 1-14

13 Chen, P P ‘The entity relationship model — toward a
unified view of data’ ACM Trans. Database SysL
Vol 1 No 1 (1976) pp 9-36

14 Dogac, A and Ozkarahan, E A ‘A generalized
DBMS application in a database machine’ Proc.
ACM SIGMOD Conf. (1980) pp 133-143

15 Ozkarahan, E A and Kerschberg, L ‘A heterogeneous
distributed database system architecture incorporat­
ing data semantics and a relational database machine
interface’ Dept. Computer Science, Technical Report
TR82-06, Arizona State University

16 Ozkarahan, E A and Can, F ‘Integration of fact/
document retrieval systems within a database
machine’ Dept. Computer Science, Technical Report
TR-82-02, Arizona State University (1982)

17 Ozkarahan, E A, Tansel, A U and Smith, K C
‘Database machine/computer based distributed
databases’ Proc. 2 n d ln t Symp. Distrib. Databases
(1982) pp 61-79, North Holland, The Netherlands

18 Waller, W G and Kraft, D H ‘A mathematical
model of a weighted Boolean retrieval system’ Info.
Process, and Manage. Vol 15 (1979) pp 235-245

19 Buell, D A and Kraft, D H ‘A model for a weighted
retrieval system’/. Am. Soc. Inf. Sci. (USA) (1981)
pp 211-216

20 Noreault, T, Koll, M and McGill, M J ‘Automatic
ranked output from Boolean searches in SIRE’/. Am.
Soc. Inf. Sci. (USA) (1977) pp 333-339

21 Hollaar, L A ‘Hardware systems for text informa­
tion retrieval’ Proc. ACM SIGIR Conf. (1983) pp
3-9

22 Ozkarahan, E A ‘Desirable functionalities of
database architectures’ Proc. IFIP World Congr.
Paris (1983)

23 Ozkarahan, E A ‘The implementations of the
relational associative processor (RAP) and its system
configurations’ D ept Computer Science, Technical
Report, TR82-05, Arizona State University

A P P E N D IX 1

The text retrieval applications in the RAP system are
programmed with the use of the RAP instruction set and

nine available text retrieval macros that are listed in the
following:
• MATCHSA: Finds any document that contains the

word A.
• MATCHALLA: Finds any document that contains

the word A. Different from MATCHSA because it
searches for all occurrences of A.

• MATCHSASORSB: Finds any document that con­
tains the word A and the word B.

• MATCHSASANDSB: Finds any document that con­
tains the word A and the word B.

• MATCHSASANDSNOTSB: Finds any document
that contains the word A but not the word B.

• MATCHSASANDSBSINSSENT: Finds any docu­
ment that contains both the word A and the word B
within the same sentence.

• MATCHSASANYWORDSSB: Finds any document
that contains the word A (either immediately or after
an arbitrary number of words) followed by the word B.

• MATCHSASNWORDSSB: Finds any document
that contains the word A followed by the word B
within n words of the former.

• MATCHSTHRESHOLDSOR: Finds any document
that contains at least n of the m distinct words:
A i, Ai, . . . , A m; where n< m .
In the following, the meanings of the macro parameters

are explained together with their actual use in the two
example macro call statements.

STRING, (z < 2): the strings to be matched (e.g., A
and B) in the text
the relation name containing the
text to be searched,
the literal attribute of relation REL
that corresponds to the literal
domain that holds the text to be
searched.
the number of attributes of relation
REL that are needed during the
execution of the macro body,
the distinct mark bits of relation
REL that are needed for the
execution of the macro body. Before
calling a text retrieval macro, all of
the mark bits specified in the macro
call statement should be cleared.
After execution of the macro body,
the first mark bit indicates (shown
as Tx in the call statements) the
qualified tuples for the text retrieval
operation.
the tuples for text retrieval are
selected with respect to this qualifier
which is a literal constant and
contains a RAP qualification
expression. If all the tuples of
relation REL are to be considered,
this parameter is omitted. A typical
QUAL specification would be
:MKED (71).

The two macro call statements for the text retrieval
operations corresponding to macros number 1, and 9
above are demonstrated in the following:

For Macro MATCHSA:
MATCHSA STRING, REL, LA, Tu QUAL

REL:

LA:

NAj (i < 2):

Ti(i<5):

QUAL:

vol 3 no 3 1984 155

For Macro MAT CHS A$ ANDBIN $ SENT:
MATCHAANDBIN$SENT STRINGh

STRING2, REL, LA, N A b
T u T2, T3, T4, QUAL

After the execution of the macro body, the mark bits T2
through T3 remain clear.

A P P E N D IX 2

Search for A and B in sentence

In this text retrieval operation, a tuple containing the first
term (e . g A) may be considered more than once; for the
current occurrence of A, the second term may not occur in
the specified word proximity. In that case the unprocessed
portion of the tuple will be considered for the occurrence
of A again and, if found, the tuple will be re-examined for
the occurrence of the second term within the same
sentence. The algorithm is as follows:

1. Mark all the tuples of the text relation for an A
match.

2. Set the search offset for the term A to zero in all the
tuples.

3. Test if there are tuples to be considered for a pending
A match, if not, go to step 11.

4. Reset the mark bits which were set in a previous A
match operation.

5. Perform a match operation for term A on the tuples
that may be eligible. If there is no match, go to step 11.

6. Discard the unqualified tuples at the end of the match
operation, so that they do not take part in the possible
re-executions of step 5.

7. Perform a match-within-sentence operation for the
second term B on the tuples that were selected in
step 5.

8. Test if any B match exists, if not go to step 3 (note that
in a tuple, there might be more than one sentence and
any one of these sentences may contain term A).

9. Mark all the tuples of the qualified documents and do
not process them for an A match again.

10. Go to step 3.
11. Exit.

156 information technology

