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An integrated fact/document 
information system for office

automation
Esen A Ozkarahan and Fazli Can*

After a review o f the needs o f office automation, an 
integration model o f an experimental system for testing 
various concepts is presented This system aims to 
synthesize a relational database management system 
(DBMS) and document retrieval system (IR) capable o f 
context sensitive full text searches. The IR  system relies 
on a clustering subsystem for database partitioning and 
relation fragmentation. Conceptual data modelling, 
forms interface, and query execution in the distributed 
database constitute the support architecture o f the 
integrated system. Underneath, the support architecture, 
there is the integrated DBMS/IR datastructure and 
instruction set Efficiency o f the integrated system is 
discussed including a future extension that involves the 
RAP3 database machine hardware. RAP3 combines the 
term matcher and query resolver subsystems.
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IN T R O D U C T IO N

The need to integrate various facilities of information pro­
cessing is generally well recognized. This need is 
expressed more profoundly as the advances of the 
present-day computer technology are making things that 
could not be done in the past a reality today. The network
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information system foreseen by Salton1 is described as a 
network of different information facilities such as the 
document (or information) retrieval (IR), database 
management (DBMS), data analysis, citation indexing, 
and text processing systems. Van Rijsbergen2, in his 
statement of the future research problems, foresees the IR 
and DBMS integration and stresses the fact that such an 
integration will be driven by the needs of office 
automation. Also, there have been various studies in the 
DBMS area to augment a DBMS with some IR 
functionalities3,4’5. In the IR  area, there are commercial 
and experimental systems such as DIALOG, STAIRS, 
BRS, MEDLARS, MEDLINE, ORBIT, The 
Information Bank, LEXIS, WESTLAW, SMART, etc., 
which are surveyed in6,7, that display the past and present 
state of the art in IR.

H ow to integrate IR  and D B M S

As the users of the information processing community are 
provided with more capabilities, we see that the informa­
tion structures and data manipulation requirements of 
applications are getting more and more sophisticated. 
This would mean that an information scientist responsible 
for data definition and creation will be faced with the 
representations of complex relationships of facts as well 
as documents. We can immediately realize that past 
efforts that simplified the integration problem by confining 
one system within the framework of the other or simply 
combining IR and DBMS in a semantically disjoint 
manner will not be sufficient, effective, or efficient within 
the context of the requirements of present applications. 
We cannot merely incorporate some string operations into 
a DBMS data language or store keywords as an attribute 
of a formatted database. We cannot implement DBMS
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functionalities as file programs embedded within an IR 
system. Such an effort would lack the advantages of 
DBMS such as data independence, real time response, 
and ad hoc query formulation capability. On the other 
hand, the unique features of IR cannot be fitted into the 
deterministic, non-iterative nature of DBMS data 
manipulations.

The answer for the proper integration lies in a synthesis 
that will combine IR and DBMS by preserving their 
unique features in such a way that the advantages of both 
systems can be shared. In such a general purpose system, 
one would like to see conceptual data modelling, 
relational algebra power (or equivalent) of DBMS, and at 
the same time, automatic indexing and classification 
(clustering), partial and/or full text search, and query 
feedback features of IR

Office automation

Office automation is a relevant target application that can 
tap the resources of an integrated information system — 
not only relevant but also with immediate prospects for 
exploitation in real life. We can define office automation 
as the pioneer of a (relatively) paperless society. This is 
because, with office automation, we are not merely 
automating manual systems of the present but introducing 
a new model for the office of the future. In such a model, 
we see electronic mailing, automatic forms handling, form 
driven database manipulation including full text 
processing. Because an automated office will embody 
workstations distributed throughout an organization, we 
can envisage a local network of workstations.

In the model of an automated office, we can describe 
the following: on the user resource network level, we have 
various modem office equipment linked to workstations. 
Workstations, in addition to their local intelligence, will 
be tied to network servers. User’s interaction with the 
system will be via forms and electronic mail handling 
facilities. These facilities will be supported by a 
distributed environment of integrated information system 
onto which the forms processing system is mapped. More 
specifically, in this model, we see distributed databases in 
which DBMS and IR are integrated. For automated 
offices, besides formatted data of DBMS, processing of 
unformatted data in the form of full text searching is very 
important The latter would fall within the realm of IR in 
which document classification, indexing and keyword 
based retrieval would be supported by the database 
server, whereas the full text processing capability would 
rest in workstations. In hardware description, a 
workstation can be a powerful microcomputer linked to 
the network server through the local network. The 
network server can be a powerful mini- or mainframe 
computer. One can think of cascaded local networks of 
such systems for larger environments.

The purpose o f this research

The purpose of our research is to define a model of an 
integrated fact and document information system and to 
implement an operational experimental system in which 
various components of this model can be tested. We 
believe that the benefits of such an integration would be 
multifold. We cannot only gain insight into the integration

issues and problems, but also experiment with the 
individual components of the system such as database 
design, network query execution, forms interface, and full 
text processing in conjunction with cluster based retrieval.

Because full text processing is important for specialized 
applications such as law, medicine, etc., we consider the 
inclusion of context sensitive, full text processing in the 
integrated information system model important This does 
not preclude, however, keyword based document retrieval 
incorporating clustering at the network server level. In 
fact, in the proposed environment, the upper hierarchy of 
the unformatted retrieval rests within the database server.

As a tool for DBMS in our system, we will utilize the 
RAP relational DBMS (which will be introduced in the 
sequel) because of the following three important reasons:
•  RAP relational DBMS goes beyond implementing 

string processing within DBMS. It supports 
associative, context sensitive, text search operations 
based on internal string processing as primitive 
commands of the DBMS.

•  Besides its efficient software implementation, which 
can be compared with other existing systems, it has the 
option of being mapped onto the hardware of a 
database computer.

•  Third but not least, it is the available facility which 
can easily be serviced and altered, if necessary, by 
ourselves.
In the remainder of this paper, we will present the 

model of the proposed integrated information system. In 
this model, we will see the abstract view of the query 
processing environment at various steps of processing 
from the input to the delivery of results. This will be 
followed by the description of the underlying support 
system structure. This involves the distributed database 
architecture, conceptual data modelling, and the handling 
of unformatted structures. Because of space considera­
tions, we will try to keep the discussion at the descriptive 
level.

The support system structure will be followed by the 
description of the operational system that runs on the 
support system. The context sensitive full text operations 
using RAP will be demonstrated.

In the performance section, we will address the 
efficiency of the proposed integration model. While the 
performance of a pure software approach will reach a limit 
at some point, the potential performance improvements of 
text retrieval hardware will set the ultimate goal. This will 
be the topic of the final section.

IN TEG R A TIO N  M O D E L

In the integrated information system, a common 
framework has been established for the physical data- 
structure so that both formatted and unformatted data can 
be manipulated together under an instruction set that 
embodies DBMS as well as context sensitive, full text 
processing power. A given user request such as

On the documents written by the authors who are 
referenced by the papers written by JOHN DOE after 
1970, search for those with the phrase SEMANTIC 
DATA MODEL and AGGREGATION

would require both DBMS and IR specific operations in 
an interrelated sequence of processing steps (see below).
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In the notation that will follow, a user query such as the 
one quoted will be denoted as Q, whereas the subsets of it 
dealing with DBMS and IR will be indicated by QR and 
Qt respectively. QT is the portion of the request that deals 
with the context sensitive search such as the SEMANTIC 
DATA MODEL and AGGREGATION in the same 
sentence. While QT will be preserved for final processing 
in the workstations, a query called the system query Qs 
will be derived from QT to initiate a search of the relevant 
clusters in the database. This search is carried out by the 
database server on the network in an effort to narrow the 
search space, before the full text search can be conducted.

In simple terms, a Qs query will include those terms of 
Q t  that are included in the set of index terms of the 
collection with a possible inclusion of certain other 
components to increase system precision and/or recall. 
Figure 1 shows an abstract view of the query processing 
environment With Qs, a hierarchy of clusters will be 
searched and the corresponding dataDQS will be returned 
when the cluster search is optimally terminated. The two 
resulting sets of data, DQR and DQS, corresponding to 
DBMS and IR operations, respectively, will be jointly 
processed by the integrated system to produce the user’s 
response. The user, screening this response, may ask the 
system to repeat the operation by providing an indication 
of the relevant/irrelevant documents. With this informa­
tion, Qs will be modified and the previous cluster selection 
will be refined.

M athematical m odel o f  query processing

The integrated information retrieval system, IS, consists 
of a set of hierarchies and is described by a 6-tuple:

IS  = <R, D, Q, C, E, T>
where R  represents a set of relations which contain 
structured data about the documents or document entities. 
The nature of the interrelationships among the structured 
entities will be described by means of a conceptual 
datamodel.

D  represents the set of documents stored as unstructured 
entities. The relationships of these unstructured entities

Figure 1. Abstract view o f the query processing environ­
ment

among themselves and/or with those of R  also will be 
presented in the conceptual datamodel.

Q is a set of user queries. A given query, Q, is 
defined as

Q =  {Qt Qr}
where QT is the part of the query that holds the context 
sensitive, document search specification.

Qr is the part of the query that holds search specifica­
tion on the (R, D) set operable by the DBMS instruction 
set As can be seen, the simplistic implication of QR -* 
(IR on D) and/or (DBMS on R) is not always true. As 
shown in the example of the previous section, a search 
navigation threads through bothi? andD several times in 
an interrelated manner. This is an important point that 
shows that the integration is not achievable by a simple 
coexistence of two different systems in a semantically 
disjoint manner.

C is a hierarchical structure of clusters for D.
E  is a mapping function, called the evaluation function, 

E:Q -» 2°, used to find the relevant documents to a query. 
In reality, a subset of the range of this mapping is reached 
through the complex operations of clustering, building 
hierarchies of clusters, implementing search functions for 
these hierarchies, and using feedback. All these opera­
tions will be briefly discussed in the following.

T  represents the terms used for the description of 
documents.

Creation o f  system queries

As shown earlier, a query Q consists of two parts Qt and 
Qr where QR is the relational DBMS operable subquery 
and Qt corresponds to the context sensitive, document 
retrieval subquery. Related with QT, there are a set of 
words, Tq, such that:

Tq n  T  C Tu T2, . . . , Tn where n =  |7’| >  0
We cannot expect all of T q  to appear in the filtered 

search query (system query) for the simple reason that not 
all of the words would be included in T  since there are 
conditions for a word to be an (index) term8,9. In QT, some 
terms will be used in the positive context, some others in 
the negative context, and some in both. For the reason that 
will be clear in what follows, QT, therefore, will be 
expressed as:

Qt =  Qtp U Qtn

where QTp and Qtn correspond to the parts of Qt that 
deal with the terms specified in the positive and negative 
context respectively, and

Qtp ITtp = T\, T2, . . . , Tk\ k >  0
Qtn I TTn =  T\, T2, . . . , 7) | l > 0, k, l < n

and k = l is allowed.
In the filtered search query for Q t , which will be called a 

system query Qs, there may be positive and negative term 
specifications. If a term T{ is a member of both sets, that is:

Tj (z Ttp and 7/ (z Ttn

then Ti appears as a positive term in the system query. 
This selection is due to the fact that the information pro­
vided by the appearance of a term rather than its non-

144 information technology



appearance is more important10. Therefore, a system 
query, Qs, is:

Qs = Qsp U Qsn where 
Qsp =  Qtp
Qsn =  Qtn — (Qtn H Qtp)

Hence, for the respective terms:

\TSP\ = \Ttp\, |7 sat| <  | 7W  | and \Ts\ ^  \Tt \
This is reasonable since, as stated earlier, one cannot 
expect all the words used in a context sensitive search 
request to appear in the terms used for indexing.

Context sensitive Boolean query structure

The user query Q will be processed as follows:
•  The query Q will be converted into a disjunctive 

normal form, i.e.,
Q = ( Q u A Q l2A . . . A Q lni)V . . .V (Q mlA Q m2A  

■■■A QmnJ
where each Qij(i — 1, . . . ,  m \j =  1, . . . ,  nm) may be a 
single word or a context sensitive, document retrieval 
operation of one of {(A B) in Sentence, A . . .  B, A.n.B, 
<A, B>n, A1V.B, A*B,. . .} as will be discussed later. 
Furthermore, each Qy may be either in a positive or 
negative context (e.g., —» (A, B) in Sentence implies 
(A, B) in Sentence.)

•  From the resulting query, a list of subqueries will be 
generated such that they will be in an ordered 
quadruple <  QR QT Qs, Qsr> where QR and QT are 
as explained before and Qs and Qsr are obtained in the 
following steps.

•  The words used in QT will be searched in the thesaurus 
corresponding to the terms used in the clusters. Non­
matching words will be dropped and the query, now left 
with only the terms, will be a system query Qs.

•  Concept hierarchies, continuous word phrases, and/or 
citation linkages will be the possible candidates of 
additions to Qs if expansion due to recall and precision 
will be necessary in the course of the experiments.

•  Qsr, referring to Figure 1, is a further retrieval opera­
tion on DQr and DQs and the answer set returned by it 
can be expressed as:

A Q sr) =  ft^lDQxfQiiDQs))
In other words,A Q sr) is the data returned by a further 
retrieval function operating on the product of the 
datasets DQR &ndfQi{DQs), which correspond in turn 
to the data returned by QR and the context sensitive 
operations of QT executed on the dataset returned by 
the hierarchical cluster system search.

•  Qsr is repeated through the feedback loop (if necess­
ary) until the user and/or certain performance 
indicators are satisfied.

In the above procedures, AQ sr) QD  will be always 
true.

Clustering subsystem*

The clustering subsystem uses a seed oriented, 
partitioning type classification based on the new concept
*The reader may like to omit this section on first reading.

called cover coefficient8, 9. The starting point is a 
document (m) by term (n) matrix, D, of m by n for m 
documents {d \,d2, . . . , dm) in the collection; n is the total 
number of terms assigned to describe the collection. The 
vector entries can be binary or can use a weighting 
scheme. The process will produce p cluster partitions p =  
{Ci, C2, . . . ,  Cp} where C, will be a non-empty cluster and 
C, n  Cj — 0 for i 7+j,l  < i, j  < p (i.e., no overlap). Each 
cluster C, will have /,■ documents C, =  (d(1, d,2, . . . ,  d(/) 
such that li >  1 and

p
E /, =  m

/ - I
The properties of the D  matrix are:

n
•  2  dr, > 1  1 <  / <  m, i.e., each document is des-

j= i
cribed by at least one term.

m
•  E djj > 1 l < j  < n, i.e., each term describes at

i —  1
least one document.
The D matrix is mapped into a cover coefficient matrix, 

C. The C matrix indicates the extent with which the docu­
ments of the collection cover each other. If a document is 
alone (i.e., unique in the collection), there will only be a 
diagonal entry for it in the C matrix. The C matrix is m by 
m, a document by document matrix. Each diagonal entry 
in this matrix is the decoupling (uniqueness) coefficient, 
whereas the sum of the off-diagonal entries yields the 
coupling coefficient of a document, corresponding to a 
row in the matrix, with the other documents in the 
collection. The coupling coefficient enables us to estimate 
the number of clusters needed for the collection and 
calculate the cluster seed power for the documents. 
Clusters start with the seed documents and the other 
documents are assigned to the seeds in such a way that a 
document joins the cluster whose seed covers it 
maximally.

The C matrix is formed as follows. Two matrices S  and 
S' are defined from the D matrix as follows:

rt m
Sij = dij/ ( E dik), s'ij =  dfj/  ( E dk) for 1 < / < m

k =  1 k =  1 J

and 1 <  j  < n
These normalizations can be interpreted as:

Sij\ significance of term-/ (tj) for document-/(d,)
Sjj: significance of dt for tj

The C and C' matrices are then obtained as:
C =  S  x S'T and C' = S 'r x S

where r  is the matrix transpose operation. The C and C' 
matrices are m by m and n by n, respectively. An element 
of C is obtained as:

n n
Ca= E sikx ski'T= E (significance of tk in d,) x

k = \  k = \

(significance of d, for tk)
Each Cy is a cover coefficient that produces, as indicated 

earlier, the decoupling and coupling coefficients. The 
properties of the C matrix are:
•  0 <  cy < 1, c„ >  0: a document may or may not be 

covered by other documents, it is certainly covered 
by itself.
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m
•  E Cjj = 1 for all /  1 < i < m :  each row sum is equal

j= i
to 1 and the sum of all row sums gives the total docu­
ments, m, of the collection.

•  For all i, j, 1 <i, j  < m, c„ >  cy if the D matrix is 
binary; c„ can be less than cy in a weighted representa­
tion. If di is unique, then cy =  0 and Cy =  1 (or w„ 
weight). A document is covered mostly by itself, others 
can cover it as much as itself.

•  Cjj = 0 implies Cy, =  0 , and cy >  0 implies Cy, >  0 . 
However, in the latter case, it is generally cy X Cjj. 
Coverage is mutual, however generally, not symmetric.
The decoupling coefficient 5, of c?, is Cy; 1 <  / <  m, and

m
the coupling coefficient is t/y =  E cy = 1 - 8 ,  where

/ = l
i t* j. A document that shares a large number of terms 
with the other documents will have a large ipj, but a low 8, 
value. Coupling and decoupling can be computed for the 
entire collection as:

m ( m m \
8 =  E 8j /  m, i//= E E cy /  m =  1 -  8 where

, -= i  v  =  i y = i  /
i ^ J '■

The values of 8 and i[/ range between 0 and 1.
By using the C' matrix, we can cluster terms and 

produce the measures 5/, ip(, 8 , i]/ in thesaurus con­
struction.

The theoretically implied number of clusters, nc, 
needed for the collection can be produced as:

nc = (decoupling coefficient of the collection) x 
(number of documents)

“ m
=  8 x m = E 8,

i= 1
(Similarly, the number of term clusters, n'c is S' x n) 

The average number of documents per cluster, dc, is 
given by dc =  m / { 8  X m) =  1/5.

The cluster seeds are determined by a new concept 
called the cluster seed power. The cluster seed power, pj,

n
of document-/ is obtained asp, =  5, ̂ ,-r, where /, =  E dy

i = 1
is the number of terms in the document description 
vectors. In pj, 5, contributes to the separation of clusters, 
i[/( contributes to the connection among the members of a 
cluster, and provides normalization.

The documents are assigned to the cluster seeds with 
respect to either a single pass or a multi-pass algorithm. In 
the single pass algorithm, what is done mainly is:
•  Determine the first nc cluster seeds from the first 

highest py
•  Repetitively do: if d, is not a cluster seed then find the 

cluster which maximally covers it, i.e., max(efs) where
Sj, 1 < j < nc, is the seed documents.

•  For the remaining unclustered documents, either form 
a ragbag (common) cluster or compare the documents 
with the documents of the clusters already formed to 
find a maximal cover for each document and add the 
document into the respective cluster.
In this clustering process, the estimated number of docu­

ments in cluster-/ initiated by the seed ds. is «, which is 
given by:

"c
=  (Pi/  2  Pk)*m for 1 <  / <  nc

k = l

In the forming of centroids for the clusters, a centroid 
Gy =  (giugn, ■ ■ ■ ,gin), 1 <  / <  nc, is constructed by 
applying the state of existence rule for each^,y This rule 
states that a centroid entry will be 1, iff]8j  > fjavg8' holds, 
otherwise 0 where:

f j  is the frequency of tj within the document vectors 
of cluster-/.
fjsyg is the average number of occurrences of tj within 
the cluster containing i t  It is the document frequency

m
of tj (ie., E dy) divided by the number of clusters

/ = 1
whose document vectors contain tj.
8'j is the diagonal entry of the C' (i.e., S ’T X S) matrix 
for tj, which indicates the uniqueness of tj.
8  is the overall decoupling coefficient of all the terms.

The existence rule can be made to emphasize term 
uniqueness in a varying manner by introducing a multiplier 
r into the condition (i.e.,/-5y >  r/)avg 8 ).

In this clustering scheme, we have the advantage of 
knowing the number of clusters needed for the collection. 
The document distribution in the clusters is rather uniform 
and clustering is order independent This is because the 
cover coefficient has no dependence on the arrival of 
documents. The complexity, similarity and stability 
analyses of the clustering scheme can be seen in other 
detailed publications8,9’1 .

Cluster hierarchy

Once the clusters are formed, the database server can 
search them by comparing the centroid vectors with that 
of Qs returning DQS for the full text search. If, however, 
there are a very large number of clusters making the linear, 
single level, cluster search prohibitive we can construct a 
hierarchy of clusters (tree), HCT for a sublinear 
search. Also, in dynamic environments of very large 
databases where clustering becomes a bottleneck, we can 
select a sample of documents and construct a HCT of core 
clusters as discussed in10,12. The remaining documents 
can be assigned to the nodes of this HCT by using the 
same search strategy applied for user queries.

In our case, we can easily compute the theoretically 
implied number of clusters, nc, for the collection with a 
procedure of 0 (mnavg) complexity9, where «avg is the 
average number of terms in the documents. In the search 
of the HCT, we may stop at an intermediate node, as will 
be seen in the search strategy to follow. However, we 
should get to the lowest level (leaf) cluster under that node 
to add the document being processed. In such cases, we 
can pick the cluster with the maximum cluster seed 
power for the seed document.

In the mathematical model, C represents a hierarchical 
type cluster structure forD with / levels. This is shown in 
Figure 2. In this structure, if a node c, has n children 
Cn, c/2, . . . , c,„, then the documents contained in c, 
are:

DC = D C X U D c . U . . . U Dc 
Furthermore,

Dcy Pi Dcik =  0 (null) for j  ^  k 
which leads to

Dci Cl Dcik Dcik
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Figure 2. Hierarchical clustering

These properties hold for all levels because the clustering 
algorithms used are non-overlapping.

As to the terms, if Tci is the set of terms used for the 
description of the centroid of cluster c* then 
TciJ D Tcik =  0 is not necessary true for j ^ k  since a 
given term can also be used in the description of docu­
ments in a different cluster. Similarly, Tcii U Tci2 U . . . 
U Tein = Tci is not necessarily true for any i where 
1 <  i < l for an l level hierarchy because we cannot 
assume that all documents on both sides of the 
relationship are isomorphic.

The hierarchical document cluster implies a partial 
ordering relation. Assume R  is a generalization relation 
for all the documents related with node-i R  will be the 
generalization of both the documents of the node as well 
as all the documents contained in the descendants of that 
node since the following conditions of reflexivity, 
antisymmetry, and transitivity will be applicable:
•  Every node c, is a generalization of itself by reflexivity, 

CjRcj.
•  If CjRcj and CjRci then this implies that c, =  Cj (anti­

symmetry).
•  If CjRcj and CjRc  ̂ then this implies that 

(transitivity).

Cluster search

The nodes of the cluster hierarchy and the system query, 
Qs, will be represented as vectors equal in length to that of 
the document definition vectors. In the query definition 
vector corresponding to Qs, each element can have one of 
the three possible values of 1, — 1, and 0 corresponding to 
the use of the related term in the positive context, negative 
context, and non-use of it, respectively. As stated earlier, 
terms appearing in both contexts are assumed to be in the 
positive context The search process will employ a top 
down search on a search tree. Depending upon the values 
of nc and dc, and the required precision/recall levels, the 
following two search strategies will be experimented with:
•  Narrow search: at each node, the descendant that gives 

the highest value for the matching function is taken. 
The search terminates when none of the descendants of 
the processed node can exceed in match function value 
that of the node10. With this strategy, we always take a 
single branch out of a node.

•  Broad search strategy: from a node, descend to 
children nodes that satisfy the match criterion (e.g., a 
similarity threshold). Stop when no child satisfies the 
match and send the parent to full text search.

Accordingly, in this search, we may send multiple 
nodes from different branches of the tree to full text 
search.

M atching function

Two measures are being investigated for the matching 
function. One is the coupling function and the other is a 
similarity measure. The coupling function comes from the 
idea of the coupling coefficient in our clustering scheme. 
Accordingly, we can start with an m by n matrix D qc 
whose first row would be the query vector and the 
remaining m-1 rows would correspond to the centroid 
vectors of the lower level subclusters of the node(s) 
identified in the search of the HCT. By obtaining the cover 
coefficient matrix Cqc corresponding to the Dqc matrix, we 
can produce the coupling values. A query would be covered 
by itself (i.e., cqCj. > 0) and the centroids identified as a 
result of the HCT search. Those cac.. that exceed aH'-tj
threshold would identify the centroids of the target 
clusters.

The second measure would be a similarity function of 
the following form:

' SIM(Q& C) = ^ i i F 1(qj, c ; ) J /^ § i (F ,(?> cj)

+ F 2(qj, cj)) |

where
{Vi x Sj if qj >  0 (1)

F M j. cj): 0 if qj =  0
( abs(<7y) X ( |c| - g j )  if qj < 0 (2)

f « / x ( M - gj) if qj > 0 (3)
Filqj, cj): 0 if qj =  0

( abs(^y) xg j if qj <  0 (4)
In (1), we are saying that if a query term, qj, position is a 

1, then F\ gives the number of documents containing that 
term under that centroid; gj is the centroid entry. In (2),
| c | indicates the number of documents under the node, 
abs means absolute value and F\ gives the number of 
documents that do not contain the negative query term. In 
(3), F2 gives the number of documents in the nodes that do 
not contain the query term. In (4), F2 gives the number of 
documents in the nodes that contain the query term. The 
SIM  function is the conditional probability of hitting a one 
on the centroid vector of the HCT node given that a one 
was given in the query vector and hitting a zero on the 
centroid vector of the HCT node given that a minus one 
was given in the query vector.

Query feedback

The query feedback to be explored in this research differs 
in some respects from the other studies. This difference 
is motivated by the very fact that the integrated system 
will be concentrated on the context sensitive, search 
specifications of the type discussed in this paper. Accor­
dingly, in this feedback scheme, the user query is kept 
fixed, but the system query, Qs, is modified. There­
fore, after each feedback process, a new cluster is chosen, 
which would be most related with the modified Qs, 
and the documents are processed with respect to Qr 
(and Qsr later). The feedback process will depend on the
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user choice although various measures of performance 
also will be employed. The user will have the choice of 
accepting the results or triggering the feedback loop by 
giving an indication of the relevant and irrelevant 
documents. In the refinement procedure of the feedback 
subsystem, the terms appearing in the relevant documents 
will be emphasized while those in the irrelevant 
documents are de-emphasized. The following criteria can 
be used for this purpose. If | qlx | denotes the number of 
appearances of term-/ in set x  where x  can be one of 
system query, relevant documents (R L ), or non-relevant 
documents (NR), then if

Itf/sl + \<Ur l \ > \<]Fn r \ j

that is, if the sum of term-fs used in the positive context in 
the system query and those that appear in the relevant 
documents is greater than the number of positive context 
term-z’s that appear in the non-relevant documents, then 
we would keep term-/ in the refined query, otherwise we 
would drop it (or reduce its weight). Also, if +
| qwR\ >  \<1 wl\ . that is, if the sum of tertn-z’s used in 
the negative context in the system query and those that 
appear in the non-relevant documents is greater than the 
number of negative context term-/’s that appear in the 
relevant documents, then we would drop term-/ (or reduce 
its weight) in the refined query.

The main goal of this feedback scheme is to preserve 
the context sensitive nature of the user query so that the 
advantages of full text search can be properly exploited.

SU PPO R T SYSTEM  ST R U C TU R E

Conceptual modelling and an example application

The universe of discourse of an integrated DBMS/IR 
application will be defined by means of the enhanced 
entity/relationship (E/R) model13, which will allow 
representation of aggregates and generalizations as well 
as documents. These concepts of E /R  and its 
implementation in a generalized environment are covered 
in our earlier studies14, 15. Presently, a data definition 
facility for an E /R  interface is available that generates 
various system dictionaries. The diagrammatic 
representation of the E /R  model uses rectangles to 
represent entities, diamonds for multidimensional 
relationships among entities, labels to indicate the type of 
relationships or mappings (e.g., one to many, many to 
many etc.), double lined rectangles for weak entities (or 
relationships), etc. In our case, an entity will correspond 
to a conceptualization whose representation will be in 
terms of formatted structures (i.e., a record type or 
specifically a relation) or a document whose representa­
tion will be in terms of unformatted structures. In the 
latter, the rectangle will be marked by an asterisk. For 
each datamodel, there corresponds a data definition 
language (DDL). Figure 3 shows the conceptualization of 
the example application environment To give an 
appreciation of the information conveyed by this diagram, 
let us list some important relationships:
•  AUTHOR is a weak entity, for him (her) to exist in 

the document database, he (she) should either have 
written a document or be referenced by at least one 
document

•  AUTHOR and DOCUMENT entities are related 
through the DOC-REF relationship in a many-to- 
many manner. That is, an author can reference several 
documents and can also be referenced by several docu­
ments.

•  A specific journal is published by one publisher, yet 
that publisher can publish several journals.

Figure 3. Conceptual representation o f the integrated 
application environment

H ow to support unformatted data in database 
architectures

In the contemporary full text storage structures that store 
genuine text without inversion, sectors or page blocks are 
used as the units of storage of document files. We can 
think of tuples of normalized relations, 1024 bytes or 
longer, as the equivalent of those units in a stored relation. 
In fact, there is almost one-to-one correspondence 
between a (flat) file and a normalized relation. Therefore, 
in our system, we have made the following changes in the 
relation data type of the RAP. 3 database computer so that 
both the formatted and unformatted structures can be 
supported. The main change allows a literal data type to 
be as long as a tuple itself (i.e., resulting in a unary 
relation). This provides us with a variable length literal 
data type, within a fixed length tuple, that stores the 
unstructured document attribute. The following is the 
format specification for text representation in the RAP. 3 
relations16:
•  Each tuple contains one (or more) complete sentences.
•  The first tuple of each document starts with a blank
•  As with standard typing rules, at least one blank should 

follow a punctuation mark
•  At the end of a sentence an end-of-sentence (EOS) 

marker is placed following the period. EOS must be 
followed with at least one blank

•  The last tuple of the document terminates with an end- 
of-document (EOD ) character.
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The following is the layout of a RAP. 3 tuple:

D Mark A
F Bits Long text 

attribute 
(variable 
length)

AD! a d 2 D4 A

Accordingly, a document file corresponds to a RAP. 3 
relation. This relation can hold one or more clusters of 
documents, or for large clusters also can be horizontally 
split. The associated storage overhead is the same 
as in file representations with the exception of one or two 
words per tuple reserved for tagging (marking) of data. 
Complete sentences from the documents are mapped into 
the D1 attribute of consecutive tuples.

The AD i and AD2 attributes of the integer domain are 
needed for the internal use of the context sensitive, text 
retrieval operations. D4 is the key attribute, which is a 
unique document identifier (DOCID). D 5 throughD„ are 
the attributes reserved for formatted data. That is, in one 
relation, we can store both the formatted and unformatted 
data if they are needed for the convenience and efficiency 
of processing. Figure 4 shows the relational representa­
tion of the example application conceptualized in Figure
3. This relational representation conforms with the RAP. 3 
format specifications. According to Figure 4, the 
DOCUMENT entity is mapped into four tabular 
structures DOCUMENT, CITATION, ABSTRACTS, 
and SUB-HEADING. The rest of the mapping is one to 
one. In the list of relations, the key attributes are in bold 
characters. The ABSTRACT attribute holds the full text 
of the corresponding document’s abstract As shown in 
Figure 4, each tuple holds one or more sentences of the 
corresponding document and the TUPID attribute links 
multiple sentences (tuples) of one document The unary 
relation DOCUM ENT is added into the representation to 
increase the speed of database navigations (i.e., chain of 
mappings by semi-join). In this way, large unformatted 
data need not be kept in the system for the sake of the link 
attribute (i.e., DOCID).

DOCUMENT < D O C ID >
CITATION<DOCID, TITLE, DATA, JCODEN,

VOLUME, PAGES, A D I, AD2>
ABSTRACT<DOCID, TUPID, ABSTRACT,

A D I, AD2>
SUB-HEADING<DOCID, STITLE, A D I, AD 2> 
AUTHOR<AUTID, NAME, NPAPER> 
DOC-AUT<DOCID, A U TID > 
DOC-REF<D OCID , AUTID, N R EF> 
KEYW ORD<KEYID, KEY, KFREQ > 
DOC-KEY<DOCID, KEYID, W EIGHT> 
CATEGORY<CATID, CATCODE, CFREQ > 
DOC-CAT<DOCID, CATID> 
JOURNALCJCODEN, JNAME, NPAPER> 
DOC-JOUR<DOCID, JC O D EN > 
PUBLISHER<PUBID, PNAME, NPUB> 
JOUR-PUB<JCODEN, PU B ID >

Explanations of the abbreviated attribute names
DOCID =  Document identifier, uniquely identifies 

a document 
JCODEN =  Journal code 
TUPID =  Tuple identifier 
STITLE =  Subtitle
NPAPER =  Number of papers written by an author 
NREF =  Number of times an author is referenced 

in a document
AUTID =  Author identifier, uniquely identifies an 

author
KFREQ =  Number of times a keyword is used in the 

documents (keyword frequency) 
CFREQ =  Number of times a category is used in the 

documents
NPAPER =  Number of pages in a published journal 
NPUB =  Number of journals published by the 

publisher of a journal 
A D I, AD2 =  Full text search attributes

Figure 4. A relational representation o f the conceptual 
structure

Language for the integrated D B M S and IR  system

The language for the integrated system is the RAP. 3 
relational DBMS data language. This language is 
associative and high level (i.e., self-iterative). It contains 
the power of relational algebra and, in addition, there are 
commands for select and arithmetic update, select and 
compute aggregate function, etc. This language is also 
provided with the instructions for associative full text 
search.

To summarize, the following presents the main features 
necessary for integrating IR with DBMS:
(a) Domain type must support literals.
(b) Domain length must be variable for literal types.
(c) Efficient string search primitives must be incorporated.
(d) Sentence structure and adj acency must be recognized.
(e) A way of processing unformatted data with formatted 

structures must be found.
(f) Resolution capability must be added to the operations 

supported in (c) and (d).
We have been discussing items (a) and (b) so far and 

with regard to (c), (d), and (f), we will detail, in the follow­

ing, the syntax and semantics of the IR related instructions 
as well as query resolution for the context sensitive, full 
text search operations. Item (e) has already been discussed 
in datastructure and the language aspects will be included 
in the following discussion.

As can be seen from the RAP. 3 text mapping scheme, 
an important problem of text retrieval is the need to 
maintain text contiguity both in string searches and 
context resolutions. This problem has been solved, to a 
great extent, by the variable length text attribute feature of 
RAP. 3. By this feature, some context resolution 
problems, such as splitting a text word between tuples 
(called term overflow) and passing overflow status and 
data to subsequent tuples to finalize the search, are 
inherently solved. However, there still remains the pro­
blem of context resolution for the text retrieval operations 
of the type A . .. B  and <A, B >n, which correspond to 
variable adjacency in number of words and proximity, 
respectively. This is because the specified context might 
not be satisfied within a tuple. The necessary information 
for context resolution is passed from tuple to tuple by a 
feature referred to as link passing. The following gives the 
syntax definition of the new RAP. 3 DBMS/IR Assembler
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commands needed to perform the text search, and link 
pass operations:

MATCH (tc)[rel(atrl{,atr2{,atr3}}):qual]{[lit]}
MATCH _  WS (tc)[rel(atrl{,atr2}):qual]{[lit]}
MATCH _  WWC (tc)[rel(atrl{,atr2{,atr3}}): 

qual]{[lit]}{[int]}
L IN K _  PASS (tc\, tc2)[rel({atrl,}atr2)] 

where

tCj 1 <  i <  13 are the tag (mark) bits, 
rel is the relation name of the document. 
atr; 1 <  i < n (maximum tuple length is 1024 bytes) 

are the attributes of the relation corresponding to 
D\, N D i, NDi, L>4, . . . , D n in the RAP.3 tuple 
layout shown earlier.

qual Boolean qualification expression, examples of 
which can be found in the operations section, 

int is a positive integer.
{} indicate options.
lit is the literal constant corresponding to the search 

pattern. The examples of search pattern are:
‘AA'TBB’, *‘A ,V.‘B B \*iAA,V.‘B B ’V.‘C’ where * 
and ? correspond to variable length don’t care 
(VLDC) and fixed length don’t care (FLDC) 
character respectively, and int? indicates the 
repetitions of ?.

The first match instruction searches for the equality of 
the search pattern, in the text stored in ah-! and tc marks all 
the qualifying tuples within the cells storing the document; 
atr2 gives the beginning search offset within the text string 
(i.e., atri). If atr2 is not specified, then the search offset is 
taken as 0. If atr3 is specified, all occurrences of the search 
pattern within atr3 are determined and the total number of 
occurrences is stored in atr3, within each tuple. The 
difference of the second match instruction is that the first 
occurrence of the search pattern is found within the 
sentences of atri. The entire match should be contained 
within a sentence. The third match instruction finds the 
first occurrence of the search pattern, bypassing at most 
int number of words of the text. The value of int can be 
specified explicitly, or implicitly by atr3.

During execution of the third match instruction, if the 
search pattern is not found and the search context 
specified by the word count is not satisfied within a tuple, 
then the tl 4 mark bit of that tuple is set This specific case 
is called an overflow condition and can occur only during
the execution of the M A TCH__WWC instruction, since
the context of a match is always satisfied in the other types
of the match instructions. The L IN K __PASS instruction
takes one memory cycle to execute and resolves the 
overflow condition in those tuples marked for overflow. 
The resolution requires resetting the fl4  mark bit (tc2 in 
the instruction syntax) of the tuples marked for overflow, 
setting tc\ bits of the subsequent tuples, and passing the 
unprocessed (i.e., remaining) count values into the 
predetermined attributes of the subsequent tuples.

In the other use of the L IN K __PASS instruction,
when the literal attribute atrt is specified, if a tuple is tc2 
marked and its atrj does not contain an end-of-text 
character, then the following tuple(s) of this document 
will be tc 1 marked and their atr2 is se to zero. This feature
of the L IN K __PASS instruction is used to set the search
context of the text retrieval operation A . . .  B.

It is assumed that the don’t care character will not 
match an end-of-sentence character. This semantic

property of search patterns prevents the occurrence of 
an overflow during term matching.

Query resolution in RAP.3

In the RAP.3 text retrieval system, a great proportion of 
the context dependent query resolution takes place in the 
operation of the new text retrieval commands the basic 
task of which is term matching. As seen in the semantics of 
the instructions described above, sentence structure and 
adjacency are recognized as an integral part of the 
operations. Such resolution operations constitute a totally 
separable task in most other text retrieval systems. For the 
execution of the context sensitive, text retrieval 
operations of the more complex nature, however, more 
sophisticated resolutions are required. These operations 
are:

A  and B  in sentence (specified context)
<A. n. B > (directed proximity)
<A, B >  n (undirected proximity)
AV.B (fixed length don’t care)
A . ..  B  (immediate adjacency or variable 

number of words in between)
A *  B  (variable length embedded don’t care)

The resolution for these operations requires that small 
RAP.3 programs be written using both the DBMS and IR 
instructions of the RAP.3 language. In other words, these 
resolutions are embedded in the logic of RAP.3 programs
in which MATCH and L IN K __PASS operations are
directed10. To aid the user, all these programs are made 
general purpose, full text retrieval macros running under 
the macro processor RAPMAC. Appendix 1 presents a 
list of these macros, which also gives an idea of the type of 
context sensitive, full text operations supported in the 
system. Appendix 2, shows the algorithmic expansion of 
the ‘Search (Match) A and B  in sentence macro, which 
demonstrates resolution on the entire document relation 
level. More details on these can be found in reference16. 
One important note here, however, is that in a RAP 
instruction qualification, there is no practical limit on the 
number of predicates in a Boolean expression. This means 
that we can have a large number of terms specified for a 
text search. However, in terms of the macros listed in 
Appendix 1, this applies, at the present, to macros #  3 and 
# 4  only. The limitation on the number of predicates is 
determined by the buffer and parameter storage space set 
for the implementation of the RAP.3 DBMS.

Distributed database architecture

As we indicated at the beginning, a local computer 
network consisting of a network server and several 
workstations is the basic hardware architecture. More 
complex configurations can be obtained by cascading 
such networks. In the software counterpart, we can 
envision the centralized DBMS/IR as the basic software 
architecture. In this architecture, the network server acts 
as the central node. When local networks are cascaded, 
however, the software architecture can be expanded into a 
distributed DBM S/IR

Figure 5 depicts the local computer network facility 
used for the experimental DBMS/IR integrated system.
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Intel NDS-II

Figure 5. Local computer network

In this system, the Intel equipment is used. There is an 
NRM wih the three workstations (two SYSTEM-4’s and 
a SYSTEM-2) in a star network based on Ethernet. In 
addition, on the same network, there is a single board 
computer attached to SYSTEM-2 and a transaction 
processing computer (iTPS). Currently, the RAP. 3 
DBMS/IR software and the RAPNET distributed 
database query execution monitor are operational on all 
the processors of the network. As a core application, a 
centralized DBMS/IR based on NRM with the three 
workstations is being carried out. The second phase will 
include iTPS as the network server with which a 
homogeneously distributed DBMS/IR system will be 
made operational. The third phase will include the 
networking of one VAX 11/780 Unix based system into 
the configuration. The Unix-C based versions of RAP. 3 
DBMS/IR and RAPNET software are nearing comple­
tion.

The distributed database (DDB) versions of RAP 
software were published earlier15,17. In the homogeneous 
RAP DDB, RAP query programs are decomposed into 
subqueries and network execution is monitored with 
respect to a dataflow driven query graph17. In this way, 
parallelism inherent even in a single query program can be 
exploited. The RAPNET software is the monitor written 
for the homogeneous DDB. It is responsible for query 
decomposition, query graph construction, and distributed 
query execution on the network.

O PER A TIO N A L SYSTEM

Database creation and query execution

The RAP.3 DBMS/IR language can be used either as a 
stand-alone query language, or as a data sublanguage 
embedded in PLM/86 for the Intel based network 
processors or in the C language in the VAX 11/780 
version. The simple example shown below defines and 
creates two relations and performs two simple retrievals, 
using the stand-alone version.

*JOB/*Creation of two relations*/ 
AU THO RIZE<‘U 101’>
RELATION<LOCATION (20)

DEPARTMENT: LITERAL, 12, KEY
FLOOR: INTEGER, 1 X G R A N T __

READ>
RELATION <EMPLOYEE (500) 

NAME:LITERAL, 25, KEY 
DEPARTMENT LITERAL, 12 

INDEXED
SALARY IN TEG ER , 4>  <PRIVATE> 

LOCK <LOCATION>
c r e a t e < L o c a t i o n > r e l e a s e

<LOCATION>
LOCK <EM PLOYEE>

CREATE <EMPLOYEE >RELE ASE 
<EM PLOYEE>

e q q
*DATA

& LOCATION<‘PERSONNEL’ 1> 
< ‘SALES’ 2>  & END 

& EMPLOYEE/*3 tuples follow*/ 
< ‘KING’ ‘PERSONNEL’ 4500> 
< “L’HOM E” ‘SALES’ 1500> 
‘JONES’ ‘SALES’ 25000> & END

*JOB /*Query-A =  Employees on 2nd floor*/ 
AU THO RIZE<‘U101’>
MARK(T1 )<LOCATION: FLOOR

=  2>
CROSS _  M ARK(Tl)<EM PLOYEE: 

DEPARTMENT =  LOCATION. 
D E P A R T M E N T  <M KED(T1)> 
EQQ

*JOB /*Query-B*/
/♦Employees in the SALES department, 

and the one with the highest salary*/ 
AUTHORIZE<‘U101’>
MARK(T1 )<EMPLOYEE:

DEPARTMENT 1= ‘SALES’>  
READ<EMPLOYEE(NAME): 

M KED(T1)>
MAX<EMPLOYEE(SALARY): 

M KED(T1)> <R EG F _  4> 
READ<EMPLOYEE(NAME): 

SALARY =  R E G F _ 4 >
EQQ

As can be seen from the RELATION command defining 
a relation, the user can declare a primary key by the KEY 
keyword, which is repeated for compound keys. Also, the 
INDEXED option is used for directing the system to build 
a secondary key index for the attribute being declared 
(e.g., DEPARTMENT). GRANT _  READ, PRIVATE, 
etc. are for security/integrity control. The CREATE 
command populates the database with respect to the 
RELATION declaration by inputing the data following 
♦DATA (or from a disc file). We see examples of tagging 
selections, by the MARK; semi-joins, by the
CROSS__MARK; associative and set oriented selection
in the MARK, MAX (maximum), and READ instruc­
tions. Up to this point, we have not seen the use of full text 
retrieval. Let us point out that if we are interested in 
simple keyword based retrieval by using inverted indices 
we can use this formatted version of RAP. All we have to 
do is to declare a binary relation POSTINGS with the
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KEYWORD and DOCADDRESS attributes and use a 
READ <POSTINGS(DOCADDRESS): KEYWORD 
=  ‘DATABASE’>  instruction to retrieve document 
addresses of documents containing the term DATA­
BASE from the POSTINGS relation. For merging and/or 
intersecting indices, we can either define an rc’ary relation 
and say READ <POST(DOCADDRESS): KEY- 
W ORDI = ‘A ’ & (OR) KEYWORD2 =  ‘B ’>, or 
equivalently, write the following program between the two 
binary relations, POST1 and POST2:

MARK (tl)< P O S T l: KEYWORD =  ‘A ’>
CROSS _  MARK(t2)<POST2: DOCADDRESS =  

PO STl.DOCADDRESS> <PO S T l.M K E D (d)>  
READ<POST2(DOCADDRESS): KEYWORD =  

‘B ’ & MKED (t2)>
The second operation is a semi-join through the match­

ing document addresses and the READ combines this 
mapping indicated by MKED (t2) with those tuples 
containing the keyword B. The result is a chain of 
selection, semi-join, and output using conjunctive selec­
tion (restriction). This scheme can be extended to include 
the concepts of weighted Boolean retrievals18, 19 and 
ranked output20 by using all the capabilities of the RAP 
instruction set.

D B M S /IR  integrated retrieval

At this point, we can go back to the example application 
presented at the beginning. Based on Figures 3 and 4 and 
the query statement given at the beginning of the 
integration model, a possible execution sequence can be 
given as follows (using the relations of Figure 4 and with 
no regard to semi-join optimization):

1. SELECT AUTHOR with name JOHN DOE
2. SEMI-JOIN AUTHOR to DOC-AUT via AUTID
3. SEMI-JOIN DOC-AUT to DOC-REF via AUTID
4. SEMI-JOIN DOC-REF to DOC-AUT via DOCID
5. SEMI-JOIN DOC-AUT to ABSTRACT via 

DOCID
6. IR search for‘SEMANTIC DATA MODEL’AND 

‘AGGREGATION’
7. SEMI-JOIN ABSTRACT to DOCUMENT via 

DOCID
8. READ DOCUMENT

As can be seen in this query, operations 1 through 5, 
and 7, 8 are DBMS operations and 6 is an IR operation, 
and yet everything is linked and consequence of each 
other in the execution sequence. Although operation 6 is a 
single item in the list, it corresponds to a set of operations 
implemented as a RAP macro call which uses DBMS/IR 
instructions. To follow these, let us refer to Figure 1, 
which is the abstract representation of the integrated 
system. In this figure, Q represents the query program 
shown above (i.e., operations 1 through 8), g* 
corresponds to DBMS operations (operations 1 through 
5 ,7 ,8 )  and QT to IR operation 6. In terms of the datasets 
and data manipulation functions, the following corres­
pondences can be seen:

DQr: (D O C -A U T )*  DQS: (ABSTRACT)* — 
subscript R indicates restriction — f(D Q R): step 5, 
f(D Q s): step 6, QSR: step 7, (DOCUMENT)* =
A Q sr)

The following is another example of a DBMS/IR 
operation at the RAP program level:

*JOB
/ * . . .* *  1 -)  Give the DOCID of the documents that 

contain RAP and DATABASE MACHINE within 
the same sentence. */

%MATCH$A$AND$B$IN$SENT‘RAP’, ‘DATA­
BASE MACHINE’, ABSTRACT, ABSTRACT* 

N D 1, 7T, T3, T4
CROSS _  M A R K (ri) [DOCUMENT: DOCID =  

ABSTRACTS. DOCID][MKED(7T)]
READ[DOCUMENT(DOCID): M KED(Tl)]
EOQ

Form s interface

Presently, there is a basic forms interface that creates 
forms, retrieves, updates, and deletes form instances. 
Specifically, a form corresponds to a RAP. 3 relation. A 
form instance corresponds to a relation tuple. By entering 
values and parameters at the specified columns of an 
accessed form frame, the user can specify: selection and 
output corresponding to MARK and READ; semi-join 
corresponding to CROSS MARK (with a form destina­
tion); arithmetic updates ADD, SUB, MUL or DIV; and 
the scalar aggregates SUM, COUNT, MAX, MIN, 
and AVERAGE.

It is the goal of the experimental system to enhance the 
forms interface with the functionality of context sensitive, 
full text operations, which would link to RAP macro 
generation, and user query feedback.

PE R FO R M A N C E  A N D  TH E F U T U R E  

Efficiency o f  integration

The proposed integration, apart from its effectiveness and 
general purpose utility, which offers several important 
functionalities, is expected to be efficient because of the 
following main features:

•  It uses an efficient implementation of a relational 
DBMS.

•  IR features are integrated with DBMS at the primitive 
level.

•  The IR primitives are based on the efficient string 
search operations and the context sensitive, full text 
instructions carry out query resolution.

•  Clustering is used as an efficient IR index in addition 
to the secondary key indexing of the RAP. 3 DBMS.

•  Integration of DBMS and IR at the primitive level 
results in minimum layers of software, which con­
tributes to overall system efficiency.

•  There is no need for a separate computer for query 
resolution and the necessary communication of term 
matches since all of these functions are handled in the 
RAP. 3 system.
To elaborate some of these further, we can point out 

the following. The RAP. 3 DBMS system is a software 
emulation of a database computer on the present-day 
computers. This implementation is transparent to the user 
since the language is what the user sees and uses. This 
language is implemented in the emulator by using efficient
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means of file organization. Relations are stored as hash 
addressed files based on keys. In addition, secondary key 
indices are constructed on the frequently needed 
attributes, as directed by the user.

As mentioned earlier, mapping of full text into long 
tuples where a long variable length literal attribute is 
allowed is not much different from the flat file 
implementations that use sector or page based indexing 
and storage. The document relation can be horizontally 
fragmented for access efficiency in much the same way as 
flat files are partitioned. In the distributed system archi­
tecture, fragments can be distributed according to user 
profiles.

In addition to secondary indexing, as directed by the 
INDEXED attribute, clustering is used as an effective 
means of document indexing. As opposed to indexing 
techniques such as E-trees, the indexing based on 
clustering uses semantic information, that is, coupling 
among the documents of a collection. A cluster can be a 
RAP. 3 relation or a horizontal fragment of a larger 
relation. In the former, the relation can be further 
fragmented depending on the size of data. In any case, one 
can define a secondary index within a cluster because a 
cluster is a relation for which the INDEXED attributed 
can be declared.

As can be seen in the way the system is integrated, 
clustering is essential for the efficiency of the overall 
system. We will come back to this issue in the future 
hardware solutions for text retrieval.

The semi-join construct of the RAP.3 system (i.e., 
CROSS_MARK) is an important operation. In an inte­
grated system where formatted and unformatted data are 
cross selected, the join operation must be implemented 
efficiently. The semi-join operation does not create a new 
relation to store the result and transmits a minimum 
amount of data between relations. The advantage of semi­
join comes into the picture more importantly in distributed 
databases. As we have indicated earlier, office 
automation uses DDB as the underlying architecture.

We have also indicated the way of handling simple 
inverted file based keyword indices. Because indices are 
nothing but relations, one does not need to resort to an 
additional system to have a simple IR for certain 
applications.

D ocum ent retrieval hardware o f the future

For a survey and analysis of various hardware proposals 
for document retrieval, one can start from the recently 
published summary21. In this section, we want to present 
the latest assessment of the work covered in the referenced 
survey with the addition of the RAP.3 database computer 
solution, which is not covered in that survey.

Text (document) retrieval related hardware varies from 
partial to reasonably complete solutions to the problem. 
In the partial category, we can mention the proposals on 
constructing fast index processors to speed inverted list 
intersection and merge. As can be realized, this approach 
is a component solution without altering the basic 
characteristics of conventional text retrieval.

In the complete system category, we see two major 
system components specialized for text retrieval, they are 
the term matcher and query resolver subsystems. Because 
the query resolver does not require much novel hardware

and the system bottleneck rests in the term matcher, various 
proposals have concentrated on the term matcher. The 
following are the techniques used by the various proposals 
made to date:
•  parallel comparators,
•  associative memories,
•  cellular arrays,
•  finite state automata.

We can consider the first two together. In the parallel 
comparators approach, the term detector sits in series 
with the datastream, which is read off a mass memory 
such as disc. The data, in passing, are buffered in a 
window and simultaneously made available to a number 
of parallel comparators. The associative memory 
technique is a more advanced version of the former. 
Search terms are stored in an associative memory, which 
acts as a term matcher synchronous with the data. The 
advantage of this is the ability to store a large number of 
search terms, each of which corresponds to a comparator 
in the former approach. In reality, one uses a fast random 
access memory that emulates an associative memory. The 
majority of commercial systems of text retrieval hardware 
use this associative memory approach. Two points to 
realize in this approach are: the difficulty of implementing 
context sensitive, full text operations, especially those 
using fixed and variable length don’t cares, and the serial 
nature of the system.

The cellular arrays approach aims to dynamically 
construct search patterns by using cells capable of 
comparing a particular character or pattern. The system is 
serial with data, and cells operate by communicating with 
their immediate neighbours so that when a match occurs a 
number of logically consecutive cells produce match 
signals. This approach requires too much dynamism and a 
large number of cells. The dynamic interconnection 
problem and data streaming for a large number of cells are 
non-trivial and costly issues.

The finite state automata (FSA) approach has been 
implemented in various experimental systems21. The 
clarity of the FSA abstraction and its efficient 
implementation do not go together. There have been 
various optimizations for FSA implementations ranging 
from constructing separate FSA’s for the starter, sequen­
tial, and index states to efficient addressing of the state 
blocks. Recently, a partitioned FSA (PFSA) has been 
proposed with the aim of synchronizing with the data­
stream at disc speed using a minimum amount of buffer 
memory. A PFSA can be at more than one state at a time 
and a non-conflicting partitioning scheme of the state 
table has been found so that a PFSA can be cast modularly 
into VLSI. From this point on, we will refer to the VLSI 
based FSA or PFSA as the FSA filter. One needs a 
structure consisting of a ring of FSA filters and a match 
controller for each serial datastream21. For a complete 
system, the query resolver microcomputer, in addition to 
the standard I/O system, and the host computer are 
needed.

In the RAP.3 database machine/computer app­
roach22, 23, the entire integrated DBMS/IR system 
described thus far is supported with the RAP.3 database 
machine. As far as the user is concerned, there would be 
no difference between the software version running on the 
emulator, and the hardware version running on the actual 
machine, with the exception of further efficiency 
introduced by the specialized hardware.
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The RAP. 3 database machine uses parallel cells and 
parallel microprocessors in each cell. Each micro­
processor executes firmware of query routines 
implementing DBMS and IR instructions. The entire 
device memory, which is equal to the union of cell 
memories, is made to work like an associative memory. 
The microprocessors of each cell execute query routines 
on the tuples of the cell memory in parallel. The difference 
between the associative memory approach discussed 
earlier and the RAP.3 (associative) database machine 
approach is that in the former, search terms are placed in 
the associative memory and the text is streamed through 
it, whereas in the database machine the text is stored in the 
device memory which is a quasi associative memory so 
that it can be large to accommodate bulk data. In the 
microprocessors of each cell, efficient string search is 
performed16. The complexity of this operation is of the 
order O(m) character comparisons where m is the length 
of the literal text attribute in a RAP. 3 tuple. The increase 
in efficiency due to hardware will be by a factor (k x n) 
where n is the number of parallel cells in the device and k 
is the number of parallel microprocessor (subcells) within 
each cell.

The advantage of the RAP. 3 database machine 
approach is the ability to provide both a relational DBMS 
and the IR system in an integrated manner in the basic 
architecture and the integration of the query resolver 
which is an important component in the other systems.

To maintain a steady flow of data into the database 
machine, a disc cache, as in the Japanese fifth generation 
computer’s database machine, or an alternate cell 
memory, as in the RAP virtual memory architecture, is 
needed.

In cases where physical device dimensions reach a 
limit, partitioning of very large databases into multiple 
discs so that each disc can be connected to a dedicated 
special purpose hardware would be a viable solution. This 
is what the datastreaming techniques discussed earlier 
and the FSA filter rely on for performance. There will be a 
factor of difference between the point where one 
duplicates an FSA filter and a database machine because 
of the difference in the cut-off points as determined by the 
sizes and speeds of the respective devices.

SU M M A R Y  A N D  C O N C L U SIO N S

We have presented an integrated fact/document 
information system for office automation. We started with 
the need to synthesize DBMS and IR into a complete and 
general purpose system, in such a way that no one system 
would be reduced into the other, by losing its unique 
features and advantages. We have seen that the offices of 
the future will need and use services of DBMS and IR 
extensively, in a distributed computing environment.

An integrated model of the proposed experimental 
DBMS/IR system is presented with respect to query 
processing. In that model, the execution of Boolean 
queries of context sensitive, full text operations and their 
relationship to document clustering and query feedback 
are discussed. The clustering subsystem and its search 
strategy are introduced.

In die support system structure, conceptual data 
modelling, ways of supporting formatted and unformatted 
data together, and the language for the integrated DBMS/

IR system are described. In the language, we have seen 
the context sensitive, full text primitives of the RAP. 3 
system that are associative and perform sentence and 
adjacency related query resolution. These structures and 
operations are embedded into RAP. 3 relations and 
DBMS language, respectively.

The distributed database architecture is the next level 
of architecture when an office grows out of the bounds and 
capabilities of a single local area network that is managed 
centrally with a database server. In such a case, 
distributed query processing of the DBMS/IR system 
becomes necessary. The RAPNET software is the 
distributed query execution monitor of the RAP. 3 
DBMS/IR language. RAPNET constructs and executes 
a dataflow graph for distributed query execution.

In the operational system, we have seen how to create 
relations and to process simple inverted file based 
systems. Following that, the integrated DBMS/IR 
retrieval example is continued and the forms interface is 
outlined.

In performance, the efficiency of integration is 
discussed. Besides the effectiveness and utility of the 
proposed system, a better efficiency is achieved by 
reduction in software, lowering the integrated functionality 
towards the primitive hardware level, and combining the 
query resolver and text matching subsystems into a single 
system.

Clustering is used as an index at the semantic level and 
as a means for database partitioning and relation 
fragmenting.

In the discussion of hardware approaches, the RAP. 3 
database machine approach is indicated as a viable 
alternative to other current research such as the FSA 
filter. In the case of the RAP. 3 hardware solution, all that 
needs to be done is to replace the underlying DBMS/IR 
RAP. 3 software emulator with the actual RAP. 3 
hardware to further boost the performance of the 
integrated system. The sizes of fixe databases would 
dictate the issues such as database partitioning, using 
multiple hardware, and distributed databases. These are 
the common problems to all future hardware regardless of 
the specific organization of a given architecture.

A C K N O W L E D G E M E N T

We gratefully acknowledge the computer network grant of 
INTEL Corporation of Arizona which made the con­
figuration of Figure 5 a reality.

R E FE R E N C E S

1 Salton, G ‘Some research problems in automatic 
information retrieval’ Proc. ACM  SIGIR Conf. 
(1983) pp 252-265

2 Van Rijsbergen, C J  ‘Information retrieval: New 
directions: Old solutions’ Proc. ACM  SIGIR Conf. 
(1983) pp 264-265

3 Crawford, R G ‘The relational model in information 
retrieval’ J. Am. Soc. Inf. Sci. (USA) Vol 32 No 1 
(1981) pp 51-64

4 Scheck, H  J  ‘Methods for the administration of 
textual data in database systems’ Proc. Joint BCS 
and ACM  Symp. (1980) pp 218-235

154 information technology



5 Stonebraker, M et al. ‘Document processing in a 
relational database system’ A CM Trans. Office Info. 
SysL Vol 1 No 2 (1983) pp 143-158

6 Salton, G and McGill, J Introduction to Modem 
Information Retrieval McGraw Hill Book Company, 
USA (1983)

7 Lancaster, F W and Fayen, E G Information 
Retrieval On-line Melville Publishing Company, 
USA (1973)

8 Can, F and Ozkarahan, E A ‘A clustering scheme’ 
Proc. ACM  SIGIR Conf. (1983) pp 115-121

9 Can, F  and Ozkarahan, E A ‘Two partitioning type 
clustering algorithms’ J. Am. Soc. Inf. Sci. (USA) 
Vol 35 No 4

10 Van Rqsbergen, C J Information Retrieval (2nd 
edn) Butterworths, UK (1979)

11 Can, F and Ozkarahan, E A ‘ Similarity and stability 
analysis of the two partitioning type clustering 
algorithms’ J. Am. Soc. Inf. Sci. (USA) Vol 35 
No 5

12 Van Rijsbergen, C J ‘Further experiments with 
hierarchical clustering in document retrieval’ Info. 
Storage and Retr. Vol 10 (1974) pp 1-14

13 Chen, P P ‘The entity relationship model — toward a 
unified view of data’ ACM  Trans. Database SysL 
Vol 1 No 1 (1976) pp 9-36

14 Dogac, A and Ozkarahan, E A ‘A generalized 
DBMS application in a database machine’ Proc. 
ACM  SIGMOD Conf. (1980) pp 133-143

15 Ozkarahan, E A and Kerschberg, L ‘A heterogeneous 
distributed database system architecture incorporat­
ing data semantics and a relational database machine 
interface’ Dept. Computer Science, Technical Report 
TR82-06, Arizona State University

16 Ozkarahan, E A and Can, F ‘Integration of fact/ 
document retrieval systems within a database 
machine’ Dept. Computer Science, Technical Report 
TR-82-02, Arizona State University (1982)

17 Ozkarahan, E A, Tansel, A U and Smith, K C 
‘Database machine/computer based distributed 
databases’ Proc. 2 n d ln t Symp. Distrib. Databases
(1982) pp 61-79, North Holland, The Netherlands

18 Waller, W G and Kraft, D  H ‘A mathematical 
model of a weighted Boolean retrieval system’ Info. 
Process, and Manage. Vol 15 (1979) pp 235-245

19 Buell, D  A and Kraft, D  H ‘A model for a weighted 
retrieval system’/. Am. Soc. Inf. Sci. (USA) (1981)
pp 211-216

20 Noreault, T, Koll, M and McGill, M J ‘Automatic 
ranked output from Boolean searches in SIRE’/. Am. 
Soc. Inf. Sci. (USA) (1977) pp 333-339

21 Hollaar, L A ‘Hardware systems for text informa­
tion retrieval’ Proc. ACM  SIGIR Conf. (1983) pp 
3-9

22 Ozkarahan, E A ‘Desirable functionalities of 
database architectures’ Proc. IFIP World Congr. 
Paris (1983)

23 Ozkarahan, E A ‘The implementations of the 
relational associative processor (RAP) and its system 
configurations’ D ept Computer Science, Technical 
Report, TR82-05, Arizona State University

A P P E N D IX  1

The text retrieval applications in the RAP system are
programmed with the use of the RAP instruction set and

nine available text retrieval macros that are listed in the 
following:
•  MATCHSA: Finds any document that contains the 

word A.
•  MATCH$ALL$A: Finds any document that contains 

the word A. Different from MATCHSA because it 
searches for all occurrences of A.

•  MATCHSASORSB: Finds any document that con­
tains the word A and the word B.

•  MATCHSASANDSB: Finds any document that con­
tains the word A and the word B.

•  MATCHSASANDSNOTSB: Finds any document 
that contains the word A but not the word B.

•  MATCHSASANDSBSINSSENT: Finds any docu­
ment that contains both the word A and the word B  
within the same sentence.

•  MATCHSASANYWORDSSB: Finds any document 
that contains the word A  (either immediately or after 
an arbitrary number of words) followed by the word B.

•  MATCHSASNWORDSSB: Finds any document 
that contains the word A  followed by the word B 
within n words of the former.

•  MATCHSTHRESHOLDSOR: Finds any document 
that contains at least n of the m distinct words: 
A i, Ai, . . . , A m; where n< m .
In the following, the meanings of the macro parameters 

are explained together with their actual use in the two 
example macro call statements.

STRING, (z <  2): the strings to be matched (e.g., A 
and B) in the text 
the relation name containing the 
text to be searched, 
the literal attribute of relation REL 
that corresponds to the literal 
domain that holds the text to be 
searched.
the number of attributes of relation 
REL that are needed during the 
execution of the macro body, 
the distinct mark bits of relation 
REL that are needed for the 
execution of the macro body. Before 
calling a text retrieval macro, all of 
the mark bits specified in the macro 
call statement should be cleared. 
After execution of the macro body, 
the first mark bit indicates (shown 
as Tx in the call statements) the 
qualified tuples for the text retrieval 
operation.
the tuples for text retrieval are 
selected with respect to this qualifier 
which is a literal constant and 
contains a RAP qualification 
expression. If all the tuples of 
relation REL are to be considered, 
this parameter is omitted. A typical 
QUAL specification would be 
:MKED (71).

The two macro call statements for the text retrieval 
operations corresponding to macros number 1, and 9 
above are demonstrated in the following:

For Macro MATCHSA:
MATCHSA STRING, REL, LA, Tu QUAL

REL:

LA:

NAj (i <  2): 

Ti(i<5):

QUAL:
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For Macro MAT CHS A$ AND$B$IN $ SENT: 
MATCH$A$AND$B$IN$SENT STRINGh 

STRING2, REL, LA, N A b 
T u T2, T3, T4, QUAL

After the execution of the macro body, the mark bits T2 
through T3 remain clear.

A P P E N D IX  2

Search for A  and B  in sentence

In this text retrieval operation, a tuple containing the first 
term ( e . g A) may be considered more than once; for the 
current occurrence of A, the second term may not occur in 
the specified word proximity. In that case the unprocessed 
portion of the tuple will be considered for the occurrence 
of A  again and, if found, the tuple will be re-examined for 
the occurrence of the second term within the same 
sentence. The algorithm is as follows:

1. Mark all the tuples of the text relation for an A 
match.

2. Set the search offset for the term A to zero in all the 
tuples.

3. Test if there are tuples to be considered for a pending 
A match, if not, go to step 11.

4. Reset the mark bits which were set in a previous A 
match operation.

5. Perform a match operation for term A on the tuples 
that may be eligible. If there is no match, go to step 11.

6. Discard the unqualified tuples at the end of the match 
operation, so that they do not take part in the possible 
re-executions of step 5.

7. Perform a match-within-sentence operation for the 
second term B  on the tuples that were selected in 
step 5.

8. Test if any B  match exists, if not go to step 3 (note that 
in a tuple, there might be more than one sentence and 
any one of these sentences may contain term A).

9. Mark all the tuples of the qualified documents and do 
not process them for an A match again.

10. Go to step 3.
11. Exit.
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