Iniormation retrieval

Direct file organization for
lemmatized text retrieval

K Devine and F J Smith describe a system based on hash ordering and recording of
semantic relationships between words

This paper discusses the design of a text retrieval system

based on a direct file with hash ordering and including
Jacilities for the explicit recording of semantic relation-

ships between words, including grouping into lemmas.

This design offfers fast and accurate retrieval of groups of
related words in return for an extra effort on the part of
the indexer in defining the relations. Methods based on

stem searching in an alphabetically-ordered file of
indexed-sequential type are slow and imprecise by
comparison. Two simultaneous indexes, one incorporat-

ing the semantic relations and the other omitting them,

produce a particularly flexible retrieval environment, at
acceptable cost with present-day hardware. The design

has been proved in a working system, QUILL, which is
in everyday use at Queen’s University.

Keywords: information retrieval, file organization,
lemmas, indexing

INVERTED FILES

Software systems for text retrieval have been in existence
since the late 1960s. There have been numerous surveys
of the field, including those by Martin and Parker! and by
Hall®. A recent comparison of four systems is given by
Goldsmith?, o
The present paper is concerned with systems which
store material in full text form, and permit access to it
through the original uncontrolled vocabulary, and which
work in interactive mode, using an inverted file structure.
-We will discuss the implications of including in such

systems semantic relations such as synonymy and -

Department of Computer Science, The Queen’s University of Belfast,
Belfast BT7 INN, UK
Received 7 October 1983

vol 3 no 1 january 1984

homography, and we describe the design options for a
system where such linguistic features are to be included.

Typically, an inverted file is located on two separate
physical files. A word-list file (or index file, or types file)
usually contains a fixed-length record for each type (i.e.,
distinct graphic word), and is organized in such a way that
the record for any given word type can be quickly located.
Each word record in the word-list file contains (amongst
other things) a pointer to an area of the second file, the
reference file (also known as the tokens or postings or
concordance file), where a list of references is held to the
locations of the word in the document texts.

Each physical disc block of the word-list file will have
the capacity to hold a number of word records (typically
20-40), and the retrieval response time of the system will
be largely determined by the number of blocks which have
to be read in order to find a particular word record. There
are two fundamentally different ways in which the word-.
list file may be structured to permit fast retrieval of the
record for a specific word.

The first method is based on sorting the word records
into alphabetic order. They may then be scanned with a
binary search; or for greater efficiency, a single-level or
multi-level index may be constructed. This is the popular
indexed-sequential structure. If the ordering is achieved
by means of pointers from index blocks to lower-level
index blocks and ultimately to datablocks rather than by
phys1cally ordering the records on the file, we have B
trees*. B tree structure has been proposed for the SIFT
system®. At any time, most blocks are not full; if a block
becomes full, half the records are moved to a new block
and the index is amended.

HASHING

An alternative method of organization for the word-list
file is division hashing®, which has been used in systems

0144-817X/84/010025-09$03.00 © 1984 Butterworth & Co. (Publishers) Ltd. 25

Information retrieval

designed at Queen s Umver51ty since 1969’; the latest of
these systems is QUILLE. In hashing, we estimate in
advance how many disc blocks will be required to store
the word-list file. We form a numerical representation of
the word (for example, using the ordinal values of its
characters in the ASCII sequence), and divide this by the
total number of blocks. The remainder is taken to be the
number of the block in which this word record should be
stored. We found from practical experience that it is
satisfactory to use eight letters of each word in our hashing
algorithm; hash keys based on the first four letters give a
poor distribution’.

The same range of options presents itself with regard to
the order of records within a block: a second hash process,
alphabetic ordering, or no ordering (i.e., as encountered in
actual text). In the last case (which is the method used in
QUILL), the block has to be scanned sequentially during
retrieval; the optimal order is then decreasing frequency
order, to which the text-derived order ought to be a
reasonable approximation.

OVERFLOW

As with the B trees, hash blocks are filled gradually, and
an overflow situation arises when a new word record is
directed to a block which is already full. One solution
(employed in QUILL) is to reserve a set of overflow
blocks. An alternative method is to redirect the record by
algorithm to a different primary hash block We have
found'? that the linear quotxent method!! is convenient. If
the number of blocks is a prime, this method will probe
every block without repetition.

A hash file of insufficient size will result in much
overflow and may require to be reorganized. If overflow is
handled by reusing the primary hash blocks, a high degree
of overflow will slow down retrieval, and eventually the
file will be completely filled. On the other hand, when a
separate overflow area is used, this may grow until it
becomes comparable in length with the hash area, and
again retrieval performance will deteriorate. A utility
program is therefore required which can extend the hash
file and recalculate block addresses for all records. Such a
module is provided as part of QUILL.

The main advantage of hash files is their intrinsic speed
of retrieval. In the absence of overflow, only one disc
access is required to retrieve a word record. Even with
overflow, if the most frequent words can be placed in the
primary hash blocks, the average number of disc accesses
can normally be kept below 1.1!% 12, The main disad-
vantages relate to storage space: hash files may be rather
sparsely populated, and furthermore, it is necessary to
keep an alphabetically-ordered vers1on for user infor-
mation purposes.

SEMANTIC RELATIONS

The static nature of hash files (in contrast to indexed-
sequential files, or even B trees) is particularly useful if
semantic relations between words, such as lemma-
membership, synonymy, homography or hierarchical

26

relations, are to be built into a database. Then pointers
(‘thesaurus pointers’) must be set up between word
records in the inverted file. For example, ‘mouse’ and
‘mice’ belong to the same lemma, but would be stored in
unrelated locations. So with each of these words we would
have to store the address of the other. With hash files such

pointers are easily maintained. The only occasion when

hash records are relocated is during extension of the file,
and the QUILL module for this purpose preserves the

_semantic linkages.

We now discuss the usefulness and implementation of
some linguistic facilities.

SYNONYMS AND LEMMAS

There are two principal ways in which word records may
enter the word-list file: they may be deliberately inserted
independently of any text, or they may be encountered in
the process of scanning new text. In either case, words
which are morphologically related (e.g., man, men or sing,
sang, sung) will be treated as distinct by the system.

However, a user searching for a particular word will
generally wish to retrieve references to plural forms, past
tenses, etc. as well as to the cited form. QUILL accor-
dingly allows a group of word types to be declared as
equivalent; in effect, a single list of references is main-
tained for each whole group so defined, and this list is
produced in response to a search request for any of the
words in the group. (Homographs require different treat-
ment as we describe in the next section.) QUILL accords
no special status to any word in the group; all are treated
as equal.

The choice of which words are declared to be
equivalent is left to the user. It is envisaged that the facility
will be mainly used to gather together members of lexical
lemmas, as in the examples quoted above, but it could
equally well be applied to words which are formally
unrelated (e.g., buy, purchase). This is perhaps closer to
what is usually understood by synonyms. However, we
will confine ourselves to the lemma application in the
remainder of this paper.

The ability to retrieve with individual words belonging
to alemma may be retained by creating two indexes within
the same database, based on the same text material, with
the lemma structure built into one index (which may be
described as ‘lemmatized’) and with each word type
separately indexed in the other (‘unlemmatized’) index.

To set up a lemma group, the user simply supplies a list
of the words, which will generally be derived from
inspection of the vocabulary accumulated from scanned
text, although the list is allowed to contain words which
are new to the database. Then, each word of the lemma:
will have, in its word record, a pointer to the word record
of the next word of the lemma, and so on, until the circle is
completed by a pointer back to the first word record.
Further, each word record of the lemma points to the com-
bined list on the reference file.

Each word record also contains the frequency of the
word, or if the word belongs to a lemma, the frequency of

information technology

Information retrieval

the lemma. This is convenient when we want to retrieve
the frequency without the other reference information, as
it avoids consultation of the reference file, but it is a
drawback for indexing, since when a reference is added for
one of the words in a lemma each word record of the
lemma must be updated.

For example, to add an occurrence of a word which
belongs in a lemma with five members will require two
accesses (read and write) to the reference file and ten
accesses to the word-list file, which amounts to an
increase of 200% in disc activity simply to update the
stored frequencies. The alternative is to store the
frequency on the reference file only, although this will cost
an extra disc access during retrieval if the frequency alone
is required to be displayed. '

A similar consideration applies to the pointer to the
reference file which is stored in the word record. Indexing
requires that we access the end of the list, not the start, but
if we store the end position in each word record of a group,
we have to change it whenever a reference is added.
Instead in QUILL we store the start position (which is
unchanged by updating), and the current next free position
in the list is stored at the start of the list itself on the
reference file. Note that the length of the reference list is
not necessarily simply related to the frequency if
references have been deleted by editing, leaving ‘holes’.

HOMOGRAPHS

Homographs are ambiguous words, that is, word types
belonging to more than one lemma. For example, the type
‘lead’ may mean ‘to go ahead of and share a lemma with
types such as ‘leads’, ‘leading’, ‘led’, etc.; or it may refer to
ametal and share a lemma with ‘leaden’. Homographs are
especially difficult to deal with in an information retrieval
system. Automatic disambiguation using syntactic or
semantic context may be possible in some cases, but not in
general with present knowledge. We therefore choose to
separate multiple meanings manually, and to provide in
QUILL a mechanism to do this as easily as possible.

An ambiguous word is not assigned to a lemma group
when using QUILL, but is declared to be ambiguous, and
a list of ‘alternative meanings’ is provided for it by the
user: these are terms, one for each distinct sense of the
ambiguous word. These alternative terms may be words
already in the inverted file, or if not, they will be
introduced at this stage. Alternatives are permitted to
belong to a lemma. For example, in the case of ‘lead’, a
suitable declaration might be

Lead: lead-led, lead-leaden

The list of alternatives is stored as a piece of free text on a
file called the ‘comments file’, which is also used to hold
other textual information about the database. A pointer is
set in the word record of the ambiguous word, to give the
address on the comments file at which the list of
alternatives is stored. During retrieval, if the user asks for
an ambiguous word, the list of alternatives is printed out,
and the user is asked to choose one of them instead.

vol 3 no 1 january 1984

While indexing new text, occurrences of an ambiguous
word are formed into a reference list in the normal way,
but access to this list is denied during retrieval. Instead,
the indexer must periodically process the references
stored for ambiguous words, and assign them manually to
one or other of the declared alternative terms. Lists of the
unprocessed references to ambiguous words with their
contexts may be obtained to assist in this process.

We have found that this technique may not be
practicable with large databases because of the human
time required to distribute the ambiguous occurrences.
We now believe that a better solution in such cases may be
simply to associate each occurrence of an ambiguous
word with all of its alternative terms. This will maintain
high recall, but at the expense of precision. This is
preferable to having a database in which the ambiguous
words have their occurrences only partially distributed,
because the indexer is short of time, thus losing recall. We
plan to introduce this additional facility to QUILL.

WORDS WITH COMMENTS

Any piece of textual information may be associated with a
word in the form of a free-text comment. This is stored on
the comments file, and a pointer to it is set in the word
record. During retrieval, the user can ask if a certain word
has a comment associated with it, and if so the comment
can be displayed. The comment may contain any chosen
information; examples might be a list of near synonyms or
a list of hierarchically superior or inferior terms.

If parts of this comments file are given a formal
structure, with a precise syntax, the file can be used for
purposes other than comments. For example, it might be
divided into separate sections, e.g., for synonyms, for
alternative meanings, for superior terms or for inferior
terms. Each section can be introduced by a keyword,
which could be detected by the retrieval program. The
comment would be thus interpretable both to the user, if it
is displayed, and to the computer.

For example:

cow: synonyms; cattle, kine, bovine;
superior terms: mammal, animal, livestock;
inferior terms: bull, heifer, bullock, calf;
comment: this word belongs to several semantic
fields.

This example shows how the important semantic relations
vary with the orientation of the database, in this case,
whether towards zoology or agriculture. A mechanism of
this sort was successfully implemented in an earlier
retrieval system (QUOBIRD 2) in Belfast.

For synonyms, this method could complement the
mechanism of lemmas, if it was felt that irreversible
merging of some reference lists of individual words was
not acceptable. For hierarchic relations, the use of
comments will be much simpler than setting up many-to-
many pointers between word records, and deciding
whether or not to merge permanently the lists of
references.

27

Information retrieval

STEMS

It is useful in any text retrieval system to be able to access
the word types in alphabetic order. One use of such a
facility would be the production of complete printed lists
or concordances; another would be the provision of online
assistance in the form of lists of words with a common
stem. As aresult of hash ordering it is no longer possible to
do this directly.

For this reason, QUILL maintains a second copy of the
word-list file, sorted in alphabetic order. This file is purely
for user information and for offline listing purposes; it is
not involved in the online search process. It may be
significantly smaller than the hash-ordered copy, since the
latter may have a low packing density. In any case, the
word-list file will be the smallest of the main files (smaller
than the text file, or the reference file), for any but the
smallest database.

Systems which have their word-list file in alphabetic

form may use stems as an approximation to searching for

alemma, and this is in general a good approximation fora

language like English. Cases like ‘man’ and ‘men’, where a
stem cannot be found to include all the members of a
lemma without excessive irrelevant material, are the

exception. But searches with short stems can give low pre-

cision; for example, the stem ‘cat’ will retrieve many
words of widely differing meanings (including for example
‘catalogue’) in a reasonably-sized English database, while
words like ‘kitten’, which ought to be included for high
recall, will be missed.

Table 1 gives some examples of using searches based
on stems in a particular database. It can be seen that the
stem ‘law’, for example, retrieves irrelevant items such as
‘Lawrence’ and ‘Lawrie’, which reduce the precision, and
fails toretrieve ‘legal’ which may decrease the recall. If an
indexer has manually grouped the word types into
lemmas, however, these effects can be avoided, and
further improvement can be achieved by using a still finer
level of distinction: ‘law’ and ‘laws’ can be placed in one
lemma; ‘lawful’, ‘lawfully’ and ‘lawfulness’ in another;
and ‘lawyer’ and ‘lawyers’ in a third. In the following
section, we will compare searches based on stems with
those based on lemmas from the point of view of system
efficiency, leaving considerations of precision and recall
aside.

Languages other than English may pose additional
problems for stem searches. Compound words are found
in German and Swedish, for example, Weltanschauung
(world view). Unless such words are divided at text input
time, they will not be found by a stem search on other than
their first element. In fact it is usually the final element of
such words which is semantically dominant. In a system
such as QUILL they can be treated in the same way as
homographs, and their occurrences can be assigned to all
of the relevant lemmas.

An interesting problem arises in the Celtic languages,
where words may be modified grammatically at the
beginning as well as at the end. While the initial mutations
are quite regular in form and could easily be programmed,

this type of facility is not offered by existing systems.

Some systems may offer left-hand truncation, or more

28

general pattern-matching, which will improve recall, but
as with stems, precison may be poor. In our design, the
mutated and unmutated forms of each word can be
placed together in a lemma.

EFFECT OF LEMMAS ON SYSTEM
EFFICIENCY

The maintenance of a single merged list of references for a
lemma enables those references to be retrieved together in
what we will call a lemma search.. Alternatively if the
reference lists for the individual word types are stored
separately they must be merged during retrieval. This is
the norm with stem-based methods of retrieval and we will
call it a stem search. Clearly, during retrieval, a stem
search for a group of words must be more expensive both
in processor time and in disc accesses than a lemma
search because of the extra merging of lists involved. The
cost of this improvement in retrieval performance is an
overhead during indexing. Another factor is the human

- effort in defining the lemmas, but this should result in

lemmas which give better precision and recall than the use

. of stems.

Experimental evidence

We performed some experiments using QUILL on a
VAX 11/780 computer to compare the numbers of disc
accesses and the amounts of CPU time required for
comparable stem and lemma searches. For this we used a
database containing the first eight issues of the Bulletin of

Northern Ireland Law"® (about 1 Mbyte). A number of

stems were chosen and all words in the database with
these stems were retrieved by both methods, followed in
each case by a print of a minimal amount of information
from the last reference. The test data are listed in Table 1.
QUILL does not provide automatic stem searching, but
the equivalent computations are performed in response to
Boolean requests such as

crimes OR crime OR criminal

where the words are placed in ascending frequency order
for efficiency. The words in each group are then declared
to QUILL to be equivalent, i.e., belonging to one lemma,
and retrieval is repeated.

The results are presented in Table 2. The CPU time
figures are averaged over several trials, while the disc
access figures are invariant. The disc accesses represent
the number of times QUILL attempts to read or write a
block, which may vary in size between 1024 bytes (word-
list file) and 4096 bytes (reference file). No account is
taken of economies resulting from the possibility that a
block to be read may already be in core.

Theory

While the data in the above examples are interesting, we
must ask how typical they are of the resource savings

information technology

Iniormation retrieval

possible with lemma searching. This requires a theoretical
investigation. To this end, suppose a lemma to be
retrieved contains four word types, with frequencies
f1./52./3 and fy. If the references have already been merged,
their retrieval requires that we read

f=h+h+hH+14 (1)

references. On the other hand, if a stem is specified and
causes the four individual reference lists to be read and
merged using workfile areas, the number of references
read and written is

=10+ +56+ 3 (2

This number includes writing the final merged list to
workfile and re-reading it; this will be necessary given the
normal practice in online retrieval of responding to the
user’s search request with summary information only, and
allowing the user further passes through the retrieved
references (e.g., to print some of them).

The formula for /¢ is derived on the assumption that
only two lists can be merged at one time, and the strategy
is such that at any stage the combined list of references for
words already processed is merged with the references for

the next word in sequence. For efficiency, the words
would be arranged so that fi < f, < f; <fi. The ratio

ra =311 (3)

varies between 3 (when one list — the last — is much
longer than the others), and 5.5 (when all the lists are of
about the same length). Other merging strategies are of
course possible.

The general forms of equations (1), (2) and (3) for a
lemma with n word types are

=% @)
f=@n=1fi + Z@0n =) + 3,)
=315 ®

where the f; have been ordered so that
NZLZLS.. 2,

Limits on r, are given in Table 3. The upper limits on the
ratio (all words equally frequent) are given by

rm<n+2-—2/n (7

Table 1. Groups of words making up alemma' and their frequencies (f) in a test database. These lemmas are used
in later comparisons of stem searches with lemma searches. In a lemma search all words of a lemma have their

references stored in a single list

Stem: JUDG? LAW? TERROR
f f

Types: JUDGE 138 LAW 155 TERRORISM
JUDGE’S 5 LAWFUL 8 TERRORIST
JUDGED 4 LAWFULLY 3 TERRORIST-TYPE
JUDGES 3 LAWFULNESS 2 TERRORISTS
JUDGES’ 2 LAWS 6
JUDGMENT 34 LAWYERS 4

JUDGMENTS 38

BENEFIT CRIM OFFENCE
S S S s
13 BENEFIT 147 CRIME 13 OFFENCE 38
10 BENEFITS 53 CRIMES 3 OFFENCES 57
1 BENEFITTED 1 CRIMINAL 66

4 BENEFITTING 1

11t is not implied that all the words in one of these lists would be assigned to a single lemma in practice; precision and recall could in many cases be improved

by other choices of lemma structure.

2JUDGEMENT (one instance) was omitted from both stem and lemma searches for a technical reason.
3LAWRENCE and LAWRIE (one instance each) were omitted from both stem and lemma searches; it would have been inappropriate to include them in
a lemma with the other words, to which they are completely unrelated semantically.

Table2. Experimental comparison of lemma search and simulated stem search for the lemmas in Table 1 and fora

single-member lemma

Disc accesses CPU time
— e —— R e e e
Stem No. of types Stem Lemma Ratio Stem Lemma Ratio
per lemma search search search search

JUDG 7 30 3 10.0 0.61 0.21 2.9
LAW 6 27 3 9.0 0.60 0.25 2.4
TERROR 4 16 3 5.3 0.25 0.11 2.3
BENEFIT 4 15 4 3.8 0.41 0.20 2.1
CRIM 3 13 4 33 0.28 0.13 2.2
OFFENCE 2 6 3 2.0 0.19 0.14 1.4
HIRE-PURCHASE 1 3 3 1.0 0.12 0.12 1.0
vol 3 no 1 january 1984 29

Information retrieval

Table3. Ratior, of reference transactions neededin a
stem search divided by reference transactions needed
in an equivalent lemma search

Number of types Ratio Ratio, Zipf-averaged
per lemma (n) (ry) (F,)
1 r,=1 1.0
2 r,=3 3.0
3 3<r, <43 3.8
4 3<r, <55 4.4
5 3<r,£6.6 49
6 3I<r, 1.7 5.4
7 3<r,<8.7 5.9
8 3<r, <938 6.4

The average ratio 7, for each n has been calculated,
assuming that the frequencies of the n words follow a Zipf
distribution’*

f== (®)

where ¢ is the rank of the word in order of decreasing
frequency. If we substitute the above Zipf formula for the
frequencies in equations (4) to (6) for r,, we obtain r, in
terms of the n ranks, ¢, t,, . . . t,. It is independent of the
Zipf constant K. This formula may be averaged by an n-
dimensional numerical integration over the ranks ¢; as
variables, each ranging from unity to infinity. In this
process the ¢; are independently chosen and then placed in
order: t| = t, > t3, etc., rather than integrating directly
over a restricted region. (The results are insensitive to the
upper limit as long as it exceeds about 500.)

If in addition to the data in Table 3, we knew the
percentages of lemmas of different sizes in a corpus, we
could predict an approximate figure for the average ratio
of references transferred, for that corpus. We have
available one such fully-lemmatized corpus of English-
language legal material, containing 3534 types, arranged
in 1769 lemmas'”. The percentages are given in Table 4.
Weighting the Zipf-averaged values of 7, with these
percentages gives an overall mean ratio of 2.4. This figure
is derived on the basis of the best lemmatization data
available to us, and is probably typical of English text in
general. It predicts that retrieval using predefined lemmas
is less than half as expensive in terms of disc resources
than the use of stems. .

Comparison of theory with our experiment

Some of the results obtained in our experiment presented
in Table 2 appear to be in disagreement with the
theoretical conclusions in Table 3. This is because the
theory counts reference transactions while the experiment

30

measures block accesses, and direct proportionality will
hold only for long lists.

All our test lemmas produce lists of references which
are less than one block in size (which does not make them
untypical). This gives rise to two main factors, working in
opposite directions. Firstly, no workfile transfers are
necessary, as intermediate lists can be held in central
store. If all the workfile activity is eliminated from the
theory, we find that we read

n
i

references in both cases, but as a single list in the lemma
case and as » lists in the stem case.

The second factor now enters: any list, however short,
requires accesses to read or write it. QUILL needs three
accesses to read a list from the word list and reference
files, assuming that the primary hash block on the word-list
file has not overflowed, and that the list on the reference
file does not span blocks. Thus the experimental accesses
reflect the numbers of lists read, and the ratio will
approximate to n, the lemma size.

Indexing efficiency

A lemma structure involves some overheads when
indexing new text, but since this process is not time critical
(and may well be performed offline at off-peak times), we
believe these costs are usually acceptable. When new text
is indexed against a lemmatized word list, this process will
take longer. We found by experiment with QUILL that
disc accesses increased by a factor of about 2.2, and CPU
time by a factor of about 1.2, compared with indexing
without lemmatization. In lemmatized indexing, the
reference lists being manipulated (though fewer) are
longer, and more updating of pointers in word-list records
is required.

If two indexes are maintained, one lemmatized and the
other unlemmatized, indexing time is roughly the sum of
the indexing times for lemmatized and unlemmatized
indexes separately. In this case also, the sizes of the word
list and reference files will be approximately doubled,
compared with those for a single index.

Thus the total indexing resource goes up by a factor of
about 3, somewhat greater than the factor by which it is
reduced during retrieval. Retrieval, however, generally

Table 4. Lemma size distribution for a legal corpus

No. of types % of
per lemma lemmas
1 48
2 27
3 12
4 7
5 3
6 2
7 1

information technology

Iniormation retrieval

takes place at peak times while indexing can be at quiet
times. Which system is more efficient also depends on the
number of queries, and on the weighting attached to user
convenience of faster retrieval with improved precision
and recall.

USE OF THE QUILL SYSTEM

QUILL (Queen’s University Interrogation of Legal
Literature) was originally aimed at retrieval of legal
documents'”, but there is no domain dependence in its
design. It is written in FORTRAN 77 with minor
extensions, and has been implemented on VAX 11/780
and ICL 2900 computers.

QUILL operates on free text, in which it recognizes
three levels of units: words, sentences and documents.
Retrieval criteria are stated in terms of words, and the
retrieved segments which satisfy these criteria may be
either sentences or documents. Besides the sentences
which constitute its text, a document may contain up to
nine other fields. Up to three separate indexes may be
defined, each being based on the vocabulary encountered
in some combination of fields and/or text (i.e., sentences).
Alternatively, a finite chosen vocabulary may be input
into an index before any text is scanned, and the index
closed to any other words subsequently found in the
documents. Indexes may also differ in their structuring of
the vocabulary.

QUILL is presented to the user as two programs: a
management program, which performs all functions
required to establish and maintain the database, and a
retrieval program. People who wish only to retrieve from
the database need only learn to use the second program.
The use of the management program will in general be
confined to the database administrator.

The management program has modules to perform the
following functions:

® to set up the files, and define the document formats
(this is the data definition module),

® to input documents via terminals or offline,

® to index documents,

® to merge new material with existing material,

® to edit documents, whether or not already indexed
and merged,

® to ascribe properties to words in the indexes, or to
change such properties,

@ to produce selective or complete lists of the words in
the indexes.

The retrieval program is the one most likely to be used by
persons with minimal training, and has been designed to
be particularly straightforward in operation, with a help
facility. LIST commands are available to inspect the
words in the indexes (in terms of stems, synonyms,
comments, etc.) SEARCH commands retrieve sentences
or documents containing specified words in Boolean
combination or immediate sequence. Having retrieved
some material, a DISPLAY command may be used, or a
further search may be made and combined with the

vol 3 no 1 january 1984

existing search. The database administrator may tailor the
retrieval language, to suggest more closely the actual
content of a particular database.

A more detailed description of the use of the QUILL
system is given in a manual by Devine and Smith?.

CONCLUSION

We have discussed a design differing from the common
indexed-sequential file structure for text retrieval. This
design is based on a word list in hash order, and provides
facilities for handling semantic relations between words.
In addition to the speed of retrieval which hashing
provides, this system allows a group of related words to be
defined by the indexer (for example, this might consist of
all the word types belonging to a lemma), and a single
merged list of references is then automatically maintained
for the whole group. Retrieval from such a list is at once
faster and more precise than the use of stems.

It was found that a particularly flexible retrieval
environment could be created by establishing both
lemmatized and unlemmatized indexes to the same text,
where the lemmatized index incorporates the semantic
facilities, while the unlemmatized index does not. We
believe that the reduced cost of processor time and the
increased availability of cheaper disc storage in recent
years, as compared with the situation in the 1970s,
justifies the use of an advanced design employing multiple
indexes, where these result in improved speed and
accuracy of retrieval. Indexing is certainly slower, but
retrieval can be faster by a factor greater than two.

The QUILL system is the latest in a series of successful
practical implementations based on these principles. It
has proved that the design we have presented is feasible
with present-day hardware, in a variety of application
domains including legal records, medieval Latin texts,
museum records, gravestone inscriptions, newspaper
indexes, phonetic ‘atlases, medical bibliography and
software documentation.

REFERENCES

1 Martin, T H and Parker E B ‘Comparative analysis
of interactive retrieval systems’ SIGPLAN Notices
Vol 10 (1975) pp 75-85

2 Hall, J L On-line information retrieval 1965-1976:
bibliography with a guide to on-line databases and
systems Aslib, UK (1977)

3 Goldsmith, N ‘An appraisal of factors affecting the
performance of text retrieval systems’ Information
Technology: Research and Development Vol 1
(1982) pp 41-53

4 Ore, T ‘Structural requirements to a free-text
retrieval system’ Paper presented at a Symposium on
Legal Information Retrieval in Europe, Strasbourg
(11-13 June 1979)

5 GIOM SIFT — searching in free text: design
specifications Government Institution of Organiza-
tion and Management (1980)

31

Information retrieval

10

11

32

Maurer, W D ‘An improved hash code for scatter
storage’ Commun. ACM (USA) Vol 11 (1968) pp
35-38

Higgins, L D and Smith, F J ‘On-line subject
indexing and retrieval’ Program (GB) Vol 3 (1969)
pp 147-156

Devine, K and Smith, FJ QUILL: an on-line text
retrieval system The Queen’s University of Belfast,
Department of Computer Science Report No. CS026,
Belfast, UK (1983)

Carville, M A study in on-line text retrieval PhD
thesis, The Queen’s University of Belfast, UK
(1976)

Jamison, J Q Studies in information processing
PhD thesis, The Queen’s University of Belfast, UK
(1977) :

Bell, J R and Kaman, C H ‘The linear quotient
hash code’ Commun. ACM (USA) Vol 13 (1970) pp
675-677

12

13

14

15

16

17

Higgins, L D and Smith, F J ‘Disc access
algorithms’ Comput. J. (GB) Vol 14 (1971) pp 249-
253

Bulletin of Northern Ireland Law, Issues 1-8 SLS
Legal Publications (NI), Faculty of Law, Queen’s
University, Belfast, UK (1981)

Zipf, G K Human Behaviour and the Principle of
Least Effort Addison-Wesley, USA (1949)
Johnston, J A lemmatized dictionary derived from a
legal database The Queen’s University of Belfast,
Department of Computer Science (in preparation)
(1983)

Devine, K, Walsh, M and Smith F J The computer
database system for the Celtic-Latin dictionary. To
be published by the Royal Irish Academy, Dublin
(1983)

Campbell, C M and Smith, F J ‘Students searching
legal texts by computer’ Computers and Law No 11
(1977) pp 6-7

information technology

