Information Technology: Research and Development (1983), 2 (233-238)

LOGIC PROGRAMMING WORKSHOP 83

_ P. F. WILK
Department of Artificial Intelligence, University of Edinburgh, UK

Over 80 delegates from 17 different countries attended the Logic Programming
Workshop 83 in the Algarve, Portugal, from 26 June to 1 July. The workshop was
organized by the Nucleo de Inteligencia Artificial, of Departmento de Informatica,
Universidade Nova de Lisboa. The program chairman was Luis Moniz Pereira.

The workshop consisted of 43 formal presentations (35 of which appear in the
proceedings) and six panel sessions. The sessions were divided into topics on: natural
language; knowledge base systems; logic programming theory; Prolog implementa-
tion; databases and logic programming methodology.

Jan Chomicki (Warsaw University, Poland) discussed the problems related to using
Prolog as an implementation language for databases. In particular the paper discusses
how to organize and access large Prolog databases (based on extendible hashing and
partial match retrieval).

Wlodzimierz Grudzinski (Warsaw University, Poland) described SPOQUEL-a
query language for relational databases (written in Prolog).

Tomasz Pietrzykowski (Acadia University, Wolfville, Canada) presented a
database model of a functional programming language, called PROGRAPH, which
uses a graphical display for the user interface.

Luis Pereira (Universidade Nova de Lisboa, Portugal) presented a relational
database modeller for generating databases. The program uses information gathered
interactively, from the user, to generate specific menu-based consultation programs.

Jan Komorowski (Harvard University, USA) presented a universal display editor
(not in the proceedings) as a software prototyping language tool. An example
application of a Pascal syntax-directed editor was explained.

Patrick Saint-Dizier (IRISA, Universitaire de Beaulieu, France) described a way of
building an intelligent interface between a human and a computer.

Antonio Porto (Universidade Nova de Lisboa, Portugal) gave a talk about the
natural language interface to a garden store assistant (written in Prolog).

Miguel Filgueiras (Universidade Nova de Lisboa, Portugal) described the design of
akernel for a knowledge directed parser of natural languages. To check consistency of
syntax analysis with respect to meaning, non-application dependent semantic tests are
performed during syntax analysis. The application dependent parts of the semantic
analysis are specified in a separate module. Therefore, it is claimed that it is easier to
adapt the interface to new applications.

Paul Sabatier (University of Paris, France) presented a formalism and
implementation technique by which left and/or right contextual constraints (used in
contextual grammars to specify rule ordering) can be easily expressed and efficiently
computed in Prolog II. The implementation technique builds a graph containing

0144-817X/83/03 0233-06 $03.00 © 1983 Butterworth & Co (Publishers) Ltd

234 Logic Programming Workshop 83

contextual information (built during parsing) which may be used to recover the
context when a contextual constraint has to be satisfied.

Veronica Dahl (Simon Fraser University, Canada) chaired the panel on natural
language, the theme of which was current trends in logic grammars. A case was made
for context-sensitivity in grammars contrary to the current trend of augmenting
context-free grammars with new rules during the parse.

Martin Williams (Heriot-Watt University, UK) described the implementation of an
approach to security and integrity in query-by-example based on the idea of
maintaining the consistency of data in the database. The approach extends the
conventional types of integrity constraint to include functional, multivalued and
embedded multivalued dependencies.

Jose Neves (Heriot-Watt University, UK) presented an extension to query-by-
example (written in Prolog) that enables a user of a database to obtain positive and
negative feedback information from queries or updates that are incomplete or
incorrect.

Igor Mozetic (Jozef Stefan Institute, Ljubljana, Yugoslavia) described the
development of an expert system that models the electrical behaviour of the heart. The
model is used to automatically generate a knowledge base of ail physiologically
possible combinations of cardiac arrhythmias and their corresponding ECG
descriptions.

Ferenc Darvas (Szki, Budapest, Hungary) described a logic-based expert system for
mode] building in regression analysis. The system (written in M Prolog and
FORTRAN, which communicate by files) has been used to test drug design per-
formance.

Eugenio de Oliveira (Universidade Nova de Lisboa, Portugal) described a proposal
to develop expert system building tools in Prolog. The system will combine a
knowledge base acquisition subsystem (gathering semantic nets, metaknowledge and
production rules) with a consultation subsystem (which uses metaknowledge to guide
the developer through the presentation of explanations, reasoning and deductions).

Ed Stabler (University of Western Ontario, Canada) discussed the problem of
achieving optimally efficient response to queries addressed to a large deductive
database. Moreover, where the user wishes to interactively optimize the query for
subsequent use, the system permits the interactive addition of general rules
(expressions containing logical variables) as well as particular facts (expressions
containing no variables) to the database.

Jack Minker (University of Maryland, USA) chaired the panel on knowledge based
systems. Current issues in developing expert systems were discussed, in particular:
what distinguishes an expert system from an application program? how is the expert’s
knowledge acquired and represented? how are temporal data handled? what tool-kit
should be provided for the expert system developer? what morals should be applied to
expert systems? how is search controlled in an expert system and what are the criteria
for user acceptability (particularly when different classes of user perceive different
system models)?

Pierre Deransart (INRIA, France) proposed an operational algebraic semantics for
Prolog programs that follows resolution.

Andrzej Lingas (Linkoping University, Sweden) proposed that in order to fully
understand the behaviour of parallel goal execution of logic programs it was necessary
to apply the ideas of Turing-machine complexity theory to the complexity measures of
logic programs, i.e., goal size, goal length, goal depth and conjunctive goal size.

Dan Sanlin (The Royal Institute of Technology, Sweden) described an abstract

P. F. WILK 235

machine called ‘gepr’ (goal, environment, program and resumption register). The
gepr machine is a state transition system. The paper contains a definition for the
transition rules that convert one state to the next. Each rule correspondstoaruleina
natural deduction system.

Patrizia Asirelli (Istituto Elaborazione Informazione, Pisa, Italy) described a fixed-
point semantics of horn clauses with infinite terms—infinite terms are often used to
define parallel communicating processes in Prolog, but current semantic definitions
are incomplete and apply to unwanted infinite terms. Two semantic definitions are
proposed based on least fixed-point construction. A proposed operational semantic
definition generates a unit clause—representing a terminal clause (if non has been
defined). A fixed-point semantics is defined which reflects the idea that non-terminal
symbols are partial approximations of infinite terms.

Patrizia Asirelli then commented on some aspects of the first order semantics of a
connective suitable for expressing concurrency. This is achieved by introducing the
concept of class—a cluster of concurrent atoms—where an atom has a predicate and
‘N’ terms. Processes communicate by semaphores manifested as shared logical
variables.

Maarten van Emden (Imperial College, London, UK) chaired the panel on Logic
Programming Theory. The panel commented on the growth in theory papers. In
particular many ideas had been transferred from other fields such as complexity
theory. The topics discussed included complexity, concurrency, infinite terms,
operational and fixed-point semantics and negation by failure. John Lloyd
(Melbourne University, Australia) announced the release of MU—Prolog, which is
written in ‘C’, has a correct implementation of negation by failure, database support
and a syntax similar to DEC—-10 Prolog.

Gerard Ballieu (Katholieke Universiteit Leuven, Belgium) described a v1rtual
machine to implement Prolog. The machine is based on David Warren’s abstract
Prolog machine but uses a structure copying technique for working storage.

David Bowen (Edinburgh University, UK) described a Prolog implementation,
similar to that of Ballieu, that aims to combine a high degree of portability with speed
and an efficient utilization of memory. The virtual machine for the implementation is
written in the programming language ‘C’. The design is well suited to optimization for
particular machines, because there is a central core which can be translated into
microcode or assembly language.

Paul Wilk (Edinburgh University, UK) described the production and evaluation of
a set of Prolog benchmarks (not in the proceedings). The benchmarks consist of a
number of large Al programs and over 100 small benchmarks. A methodology was
described for producing the small benchmarks (each one of which is designed to
benchmark a particular facet of an implementation) which can be applied to other Al
languages. Benchmarking results were given for four Prolog implementations on six
different computer systems.

Frank McCabe (Imperial College, London, UK) briefly described Lambda Prolog
which is an attempt to unite Lambda Calculus and logic programming. He then
described Abstract Prolog Machine (APM) which will be used as a target architecture
for Lambda Prolog. However, APM is seen mainly as a Prolog architecture for single
user machines.

Hiroshi Nishikawa (Institute for New Generation Computer Technology, Japan)
gave an overview of the design of the Personal Sequential Inference Machine
architecture. PSI has a 40 bit word format (8 bit tag and 32 bit data). It has a 32 bit real
address space (no virtual addressing) with a non-structure sharing implementation of

236 Logic Programming Workshop 83

working storage. The language system consists of a subset of DEC-10 Prolog with
extended abilities for hardware resource handling, interrupt handling and process
control. Notedly, the machine architecture includes provision for garbage collection
and process switching.

Marco Bellia (Universita di Pisa, Italy) proposed a compiler that maps Prolog to a
demand driven architecture. This is done by automatically annotating clauses (similar
to automatic generation of mode declarations) according to functional dependencies.
An annotation distinguishes between an atomic formula that computes a value for a
given variable and one which uses the value of the variable.

Stanislaw Matwin (University of Ottawa, Canada) described an intelligent
backtracking algorithm, applicable to first order logic. Essentially, a depth first
search of the proof tree is directed by information kept in a separate graph structure,
which represents the unifications generated during the proof.

Jack Minker outlined PRISM—A Parallel Inference System for Problem Solving.
PRISM is based on logic programming and is implemented on ZMOB, a parallel
multi-microprocessor system. The system is designed to provide a general experi-
mental tool for the construction of large artificial intelligence problem solvers.

Seif Haridi (The Royal Institute of Technology, Sweden) described a mechanism
that would control the traversal of the search tree in an Or-Parallel token machine
(where a token pool contains processes that are ready to execute but have not yet been
allocated a processor). This is complemented by a mechanism that prunes the search
tree, removing branches that are obsolete computations.

Subsequently Haridi explained a machine architecture (similar to that of ALICE by
John Darlington of Imperial Colilege, UK) for the Or-Parallel token machine.

Maurice Bruynoogne (Katholieke Universiteit Leuven, Belgium) chaired the panel
on Prolog implementation. The talk focused on the effect of a Prolog implementation
on programming style—noting that programming elegance was often sacrificed for
time and space efficiency. The desire for a Prolog standard was mooted because of
Prolog portability problems. But generally, delegates thought that the subject area
was at too early a stage in its evolutionary development to merit this.

E. Elcock (University of Western Ontario, Canada) gave reasons why Prolog
should not be thought of as a specification language. In particular, the procedural
semantics of a Prolog program are incomplete; often it is not clear that a program will
terminate so it is necessary to consider proof of termination of a program.

Pavel Brazdil (Faculdade de Economia, Porto, Portugal) discussed the problems
associated with the development of Prolog programs (not in the proceedings).
Suggestions were made for a Prolog tool-kit similar to that of Interlisp.

Richard O’Keefe described a polymorphic type system for Prolog (obtainable from
DALI, Hope Park Square, Edinburgh University, UK) and how it integrated with other
Prolog development tools written at Edinburgh University. One advantage of a good
type system is that it provides a static tool for determining whether all cases in a Prolog
predicate have been considered. Moreover this type system can be used as a basis for
encapsulation, providing an abstract data type facility.

The panel on databases was chaired by Jack Minker. The panel discussed Herve
Gallaire’s paper (Laboratoires de Marcoussis, France) ‘Logic databases vs. deductive
databases’. Gallaire’s important paper presents a taxonomy of databases formulated
by decomposing logic programming and databases into their component parts and
studying their interconnections. Detailed descriptions of two important contrasting
implementation approaches are described: logic databases and deductive databases.
Logic databases are built above or aside Prolog and have their own description and

P. F. WiLK 237

manipulation languages. The deductive database approach uses logic to provide
extensions to conventional database systems, if only to remove the problem of
implementing query languages with procedural languages. Gallaire expects that the
Japanese Fifth Generation Project will reveal a more precise taxonomy than his,
based on axioms rather than relationships.

Madhur Kohli (University of Maryland, USA) presented a theory for the intelligent
control and execution of function free logic programs based on integrity constraints.
The integrity constraints may be user supplied or automatically generated at run-time
by analysis of goal failure.

Chris Moss (USA) defined a predicate ‘seqof’ that enables the total set of solutions
to a problem to be returned individually, and processed individually, rather than
returned collectively and processed as required.

Harvey Abramson (University of British Columbia, Canada) gave a definition of
HASL (contained in the proceedings; written in Prolog). HASL is a purely applicative
language which uses SASL’s combinator reduction machine in conjunction with
unification based conditional binding expressions.

Ed Sabb (ICL, Stevenage, UK) put forth an alternative philosophy for adapting
resolution for logic programming termed finite computation principle. The principle
maintains the power of symbolic substitution but seeks to manage infinite processes
by combining order independence of predicate execution with infinite process
detection. Management is performed by knowing and detecting the conditions that
lead to infinite processes and then applying axioms of logic to determine a predicate
order that makes the computation finite.

Keith Clark (Imperial College, London, UK) chronicled the historical development
of logic programming in relation to computer science (not in the proceedings). From
this chronology the reasons for the features incorporated into PARLOG (a parallel
logic programming language) were rationalized. The main features of the language
are: modules; and-parallelism; or-parallelism; eager functions; lazy functions; set
expressions and Prolog as a subset (unlike concurrent Prolog).

Ehud Shapiro presented a rationale for the design of Concurrent Prolog. Of
particular note was his reluctance to move away from simplicity until experimentation
had confirmed him of the features that should be added to the language (not in the
proceedings, a copy of the interpreter, written in Prolog, can be obtained from
Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot
76100, Israel).

Akikazu Takeuchi (Institute for New Generation Computer Technology, Japan)
described interprocess communication in Concurrent Prolog. This is realized by
sharing variables amongst processes. Therefore when a shared variable is instantiated
to a message all processes sharing the variable receive the message. However, in
Prolog, destructive assignment of shared variables is not permitted so every time a
message is sent a new shared variable must be generated for the next communication.
This form of communication is known as streaming.

Luis Monteiro (Universidade Nova de Lisboa, Portugal) described work, similar to
that described by Asirelli, for concurrent programs. However, in this work Prolog is
extended with the concept of dn event, which gives a temporal logic programming
language. .

Antonio Porto (Universidade Nova de Lisboa, Portugal) described a concurrent
language design that combines action reduction with logic programming. The main
features of the language are: synchronization; concurrency; action rules and abstract
data types.

238 Logic Programming Workshop 83

The panel on logic programming methodology was chaired by Ehud Shapiro. The
session was oriented to research methodology rather than programming method-
ology. (Delegates noted that there were no good texts available that described
the programming methodology and techniques applicable to logic programming.
However, Ehud Shapiro announced that shortly he would have a book published
suitable for advanced logic programmers. Similarly, Luis Pereira will shortly have a
book published for the naive logic programmer.)

It should be noted that in some cases presentation of work was not given by the
author of the paper that appears in the proceedings. Furthermore, some pépers that
appeared in the proceedings were not presented at the conference and so are not
covered here.

The following list represents the open research areas covered by the conference:
(logic programming is defined here to be synonymous with Prolog) '

Database implementation.

Natural language processing.

Query languages.

Intelligent user interface.

Expert systems.

Expert system building.

Logic programming semantics.

Parallel logic programming machines..
- Sequential logic programming machines.
10. - Abstract logic programming machines.
11. Intelligent proof-tree search.
12. Logic programming tool-kits.
13. Sequential logic programming languages.
14. Parallel logic programming languages.

00N R W

Copies of the conference proceedings can be ordered by sending a personal cheque
of 1700 Escudos (or equivalent) to Luis Moniz Pereira at the Nucleo de Inteligencia
Artificial, of Departmento de Informatica, Universidade Nova de Lisboa, Quintada
Torre, Lisbon, Portugal. Selected papers will soon be published in book form.

