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ABSTRACT

The term ‘semantic network’ has been used to describe a wide variety of
representation techniques within artificial intelligence. We present a
general definition of this kind of structure, and use it as a basis for a survey
of several of these systems. We note some trends within the reviewed
material, and suggest where further formalization and clarification would
be desirable.

1. INTRODUCTION

In the development of computer models for ‘knowledge representation’ or for
‘semantic structures’, the idea of a ‘semantic network’ has frequently been used..
Although this idea is usually regarded as having been introduced to artificial
intelligence as the ‘semantic memory’ of Quillian (1968), and has been used (in a
variety of forms) for several years (see Scragg, 1975, for an introduction, and
Findler, 1979, for a collection of original articles), there does not seem to be any
clear definition of what exactly constitutes. a semantic network. This means that
there is no common formalism within which different versions may be compared,
and there is no way of proving any results about semantic networks. It has also led
to some confusion regarding the meaning of network notations (see Woods, 1975,
for an excellent critique). We will try here to set out such a definition, and discuss
the ways in which it covers various aspects of the network systems commonly
proposed. Although the precise mathematical statement will be presented in the
Appendix, an outline of the salient features will be given (Section 2), followed by a
.discussion of the general characteristics of semantic networks (Section 3). The
definition will then be used as the basis for a survey of several kinds of semantic
network as described in the literature, to demonstrate the generality of the
definition, and to allow some comparisons between systems.
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There will be no treatment here of formalisms which have evolved in the field of
database management (cf. Abrial, 1974; Borkin, 1979), although it seems likely that
there is a great deal of overlap with the concepts of artificial intelligence (see Wong
and Mylopoulos, 1977). A prerequisite of such a comparative study is some kind of
clear characterization of the structures typically used within artificial intelligence,
and this paper contributes to that foundation.

We shall use the terms ‘semantic net’ and ‘semantic network’ interchangeably, as
is common practice. Notice the distinction between a particular semantic net, which
is a graph structure representing a particular state of ‘knowledge’, and a semantic
net formalism, which is a set of rules, labels, etc., for building nets. Each author
(e.g., Quillian, Schank) proposes his own semantic net formalism (e.g., semantic
memory, conceptual dependency), within which an infinite class of particular
semantic nets may be defined. We shall be characterizing both of these ideas here, in
that we give a general definition of what constitutes a semantic net formalism (i.e.,
what it is each author should provide to define his system) and also a general
definition of the kind of structures with which these formalisms deal.

2. SEMANTIC NETWORKS
2.1 Labelled nets

The structure underlying the typical semantic network is not, in fact, a graph in the
strict mathematical sense, since a graph (or directed graph) as normally defined has
at most one link between each ordered pair of nodes. The structure we need is a net
as described in (Harary et al., 1965). A net consists of:

1. (a) A setofnodes, N.
(b) Asetofarcs, A.
(¢) A mapping from A to N, called ‘start’.
(d) A mapping from A to N, called ‘finish’.

This achieves the appropriate degree of separation between the arcs and their
associated nodes. We will use this as the basis for our development of semantic
network definitions, but the actual formal definitions are given in the Appendix.
The reader should be able to follow the exposition here using the informal
commentary and the mnemonic names used.

We shall assume that every node and arc in a network can have at most one
‘label’, where a label is in fact an arbitrary itém (e.g., we may want to label nodes
with procedures). The occurrence of ‘unlabelled’ nodes or arcs can be covered by
including a special ‘null’ marker, BLANK, in the appropriate set of labels (this not
only avoids the use of a labelling function which is partial, it allows a simple
characterization of the notion of an ‘unlabelled node’). Some of the labels will be
‘organizational’; that is, they indicate the structuring within the knowledge network
in a domain-independent way. Other labels will ‘be ‘substantive’ in that they denote
objects, relations or other entities in the subject matter. We will assume that arcs are
never unlabelled, since there seems to be no need for an ‘anonymous’ association
between two structures (the routines for handling the network would have difficulty
interpreting it).

This leads us to the following components for a semantic network S:
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2. (@) Anet (N A, start, finish). .
(b) A node-labelling of the net; that is, a set NL and a function nlab from N to
NL.
(c) An arc-labelling of the net; that is, a set AL and a function alab from A to
AL.

There are also the following conditions:

3. (@) The set NL can be partitioned (disjointly) into three subsets, ONL (the
‘organizational’ labels), SNL (the ‘substantive’ node labels), and PNL (the
‘partition’ labels).

(b) ONL contains a special item, BLANK.
(c) PNL may be empty. If it is not, it contains semantic nets for which the
node, arc and label sets are subsets of those in S (see Section 3.7).

2.2 Semantic network formalisms

The previous section outlined what was necessary in the definition of a particular
semantic net. Now we will try to characterize what is embodied in a semantic net
formalism; this involves specifying what building blocks (e.g., label sets) have to be
given in a semantic net system, to enable the construction of semantic nets as
described in Section 2.1 above. The formalism has to specify the permissible labels
(node and arc), their permissible combinations, and how these labels are to be
interpreted (i.e., what operations are valid). The second of these—the syntax of
semantic nets—seems to have been overlooked, or at least underpublicized, by most
users of networks (see Section 3.2 below). The third aspect (the net operations) will
also not be developed here, owing to a lack of information within the literature.
A semantic net formalism will contain the following:

4. (a) A set ONL (the organizational node labels) containing a special element
BLANK.

(b) A set OAL (the organizational arc-labels).

(c) Aset T of node-types and type-features.

(d) A set of network operations, OP. This will formalize the interpretations of
the various labels, and define the possible manipulations of the networks.
(Notice that this does not involve implementation details—these
‘operations’ are abstract mappings, independent of any particular realiza-
tion of the network structures.)

(e) A set of network formation rules, FR. This is a statement of the ways in
which the various labels can be combined.

(f) A semantic net programming language SPL. This will be necessary in order
to specify procedures (again, at a suitably abstract level), but its details are
not of interest here. The only comment to be made is that the interpreta-
tion (semantics) of this language should be phrased in terms of the network
operations and structures. It may seem spurious to iniclude (even sketchily)
a programming language as a component of the definition of a kind of
datastructure (i.e., a semantic net), but procedural attachment (see Section
3.8 below), should it ever be formalized, will need some such facility. We
have therefore included it for this possible future enhancement.
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Notice that this omits any mention of the set of substantive labels, SNL. This is
because the particular domain-specific categories for a subject area are not part of a
semantic net formalism, any more than they are part of the definition of what
constitutes predicate logic. Specific semantic nets are formed, within a semantic
network system, using the label sets ONL and OAL together with some set of
substantive categories.

3. DISCUSSION OF DEFINITION

The previous section simply outlined the form of a semantic network system,
without explaining the decisions taken in designing the definitions. We now examine
various aspects of semantic networks in slightly greater detail, in order to justify the
approach adopted in Section 2 above. We will start by considering the net structure,
- and how it may be labelled, then proceed to the question of the operations that are
defined on the nets. .

3.1 Graphical notation

Perhaps one reason why artificial intelligence data structures are commonly regarded
as ‘networks’ is that this viewpoint lends itself to a clear, intuitively satisfying
graphical notation. The characteristics normally described in terms of networks
(i.e., by talking of ‘nodes’ and ‘arcs’) could be formally described in some other,
non-graphical terminology with some different mathematical basis. However, we
have tried to stay as close to the accepted outlook as possible, so that our formal
definition has a firm relationship to the existing literature.

Diagrams used to represent semantic networks often leave certain connections or
markings out of the network, where it is obvious how these would be drawn. For
example, Norman and Rumelhart et al. (1975) have an abbreviated notation for
‘secondary’ nodes (instances of relations) whereby the link to the ‘primary’ node
(the relation) is merely indicated by having the name of the primary written inside
the secondary node. Simmons (1973) has several ‘properties’ (e.g., Tense) marked
on to nodes, without regarding these as further nodes and arcs for the purpose of
drawing the diagram. There is nothing wrong with such simplifying conventions (as
long as they do not lead to confusion regarding the actual data connections
required), but a fuller model will have to be more uniform in its approach.
(Brachman, 1977, 1978, shows how more complex diagrams result from making all
connections explicit.) In our formal model, we will assume that all information is
held in the form of network links—the only structures will be nodes, arcs and labels
on these items, without other annotations (e.g., ‘property lists’ attached to nodes).
This means that a ‘node’ will be an atomic item from the point of view of this
definition—it will not be possible to have more than a single item at a node, and the
item will not, in general, have any internal structure which the network functions
can operate on (except in the case of ‘supernodes’—see Sections 4.2.3, 4.2.4).

3.2 Well-formedness of networks

One aspect of semantic networks which has been almost entirely overlooked in
conventional treatments is the syntax of nodes and arcs; that is, the rules which
determine what counts as a valid network. This is a necessary part of a fully formal
definition of semantic nets, but it is difficult to know exactly what form such rules
should take, in view of the lack of examples. The relevant constructs for specifying
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well-formedness are node types, node-labels and arc-labels, since we will want to
include statements such as ‘an ISA-labelled arc must go from an instance-type node
to a concept-type node’. In the absence of evidence, we will not present here a full
formalism for these rules, since it is not clear how they are likely to be used in a
practical system. It is important, nevertheless, to note that such rules would be a
central part of a full definition of semantic net theory.
- For many systems, it will be possible to make the simplifying assumption that
well-formedness can be defined on a very localized basis, in the sense that the syntax
‘rules do not need to describe gross characteristics of large areas of the net. It might
~ be feasible (for most systems) to adopt the convention that a rule specifies only the

‘arcs leading in or out of a node, and the nodes immediately at the ends of these arcs
(together with the labels on these nodes and arcs), no sequences of more than one arc
ever being specified. The rules could then be given as specifications of what
arc-node combinations are allowable from a node of a given type and a given label.
For this purpose, labels could usefully be classified into categories, since we will
often want a rule to refer to a whole class of labels (e.g., ‘inheritance links’).

There are a great many questions to be considered before a scheme can be
formalized. How can we combine the various parts of a specification for a single
node type? How do we specify all the various options—exactly one, at most one, at
least one, none—describing allowable arcs? Are the rules to be interpreted as
constraints which no node-arc-node combination may violate, or as possible
combinations such that every link must satisfy at least one rule? Do we need
categories of node types, so that rules can refer to whole classes of node types? It is
premature to introduce ‘formal notations’, unless we have a better idea of how these
rules are to be used. The rules cannot be given in context-free grammar, for
example, with its usual interpretation, since that would result in the nets being
simply trees. (It might be possible if we regarded the rules as being generalized forms
of the ‘node-admissibility conditions’ suggested by McCawley, 1968, for syntax
trees.)

To illustrate the kind of information which would have to go into these rules, we
shall give informal verbal definitions of the syntax of one or two of the formahsms
in the survey in Section 4.

3.3 Organi’zational and substantive labels

Some writers about semantic networks do not make a clear distinction between the
labels which are used to structure the knowledge representation and those which are
part of the substance of the knowledge being described. For example, the ‘ISA’ link
which was commonly used to connect an instance to its generic type was treated as
being similar to the ‘LOVE’ link which connected two items entering into the
‘LOVE’ relation. The former class of links (‘organizational links’) is a small set of
modes of connection which can be used to structure a network describing any form
of knowledge—instances need to be linked to their generic types whether the subject
matter is a world of building blocks or a world of Chinese submarines. The latter
class of links (‘substantive links’) is a large set, the contents of which depend on .
what is being talked about—the ‘SUPPORT?” relation of the blocks world may not
be relevant to a discussion of submarines. A general theory of semantic networks (as
opposed to a particular computer program using domain-dependent tricks) will have
to specify a set of organizational links, and an interpretation for each such link (i.e.,
a set of rules concerning its use). Such a universal approach to knowledge-
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structuring can then be applied to the construction of semantic networks for any
subject matter. Brachman (1979) argues for a general approach like this, but he
distinguishes two categories of organizational links—‘logical’ and ‘epistemological’.
Our definition will not rule out such a subdivision, but we do not need to build it
into the general framework.

It is interesting to notice that a suitably clean and sophisticated semantic net will
usually have all the substantive labels attached to nodes, and not to arcs, even
though the early illustrative networks often included arcs labelled ‘LOVES’ or
‘SUPPORT’. Any complex network in which relations were more than atomic labels
would need to have the relation names attached to nodes, with the various slot-fillers
(arguments) attached to the relation-node by suitable links (see, for example,
Norman and Rumelhart ef al., 1975; Brachman, 1977, 1978, 1979). We have not
built a stipulation to this effect into our definition.

3.4 Inheritance

Semantic networks have been used in many ways, and it is tempting to conclude that
the notion of ‘semantic network’ is almost vacuous. It often seems to mean simply
‘some form of labelled graph, used to represent a ‘‘meaning’’ or ‘‘knowledge
structure’”’. Since virtually anything can be regarded as a labelled graph, this seems
to be a fairly trivial concept. Nevertheless, there seem to be one or two characteristic
operations carried out on semantic networks, and these may embody the essential
features of the ‘semantic network approach’.

It has become customary, in semantic networks, to link each ‘instance’ of a
‘generic concept’ to the concept in question, and to link concepts to more general
concepts (‘super-concepts’). This linkage indicates that the more specific item (either
instance or sub-concept) takes on some or all of the properties of the more general
concept; this is usually referred to as ‘inheritance’, and appears to be one of the
main ideas underlying semantic network systems. There are various advantages that
result from this arrangement. Not only is the representation more compact (details
common to several sub-concepts can be held on their superordinate concept), but
simply assigning an item to a concept means that the item ‘inherits’ all the properties
of that concept (see Fahlman, 1979, for a fuller discussion). Often, no distinction is
made between the two kinds of inheritance (instance from concept and sub-concept
from super-concept), and the inheriting connection is marked by an ambiguous label
(traditionally, ‘ISA’). We allow for all these possibilities in our model.

Although the traditional networks inherit only along a single link, corresponding
to one of the simple ways just described, more recent versions (e.g., KRL: Bobrow
and Winograd, 1977) allow several inheritance links from a single node, and
Brachman (1978) allows inheritance to happen in various ways along various links.
Once again, the theoretical definition will have to allow all these possibilities.

It does not seem to be customary to link generic concepts to all their instances, but
it is not clear whether this is merely to simplify the diagrams (since the human reader
can work out such details easily), or whether it represents a claim about the way
knowledge should be structured. Certainly, particular implementations are liable to
use this kind of connection to facilitate the network searches, but that does not mean
that it is part of the abstract structure (see Section 3.9 below).

3.5 Node types

Although the characteristics of an arc seem to be wholly embodied in its label, there
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is more that can be said about a node than simply specifying the label that it has.
Norman and Rumelhart et al. (1975) have ‘primary’ nodes (relations) and
‘secondary’ nodes (relation instances), which are presumably treated differently by the
network handling routines. Quillian (1968) had ‘type’ and ‘token’ nodes, although
this distinction is not identical to that used by Norman and Rumelhart. Brachman
(1978) uses various types of nodes, and adopts the graphical convention of drawing
them differently (diamonds, ovals, etc.) to indicate this. Thus it appears that a
semantic net does not have a simple set of nodes, but has a (disjoint) union of several
sets of nodes (corresponding to the different types). Furthermore, some types have
subtypes (for example, FRL: Roberts and Goldstein, 1977, has ‘frame’ nodes which
can be classed as either generic or individual). This could be handled by
decomposing each type into disjoint subtypes, but Fahlman (1979) uses ‘modifiers’
(of which there may be more than one on a node, as subcategorization markings),
and this seems to need a set of ‘type-features’ (rather than the allocation of a node to
a single type). This would allow the rules of a particular system to be phrased in
terms of combinations of these type-features. It might seem to be more uniform to
remove ‘basic types’ from this definition, and simply have a set of ‘type-features’,
but it is noticeable that most written descriptions of semantic nets use the idea of a
node having a ‘basic type’. This leads naturally to the notion of subtypes as
combinations of type-features. The fact that certain features cannot occur together,
or that the presence of one feature may require the presence of another, would be
part of the rules given to define the semantic net system. (The ‘systems network’
notation of Halliday (see Hudson, 1971; Winograd, 1972) would be appropriate for
expressing these constraints.)

3.6 Data items as node labels

The labels in semantic networks will be of various sorts. As well as organizational
arc-labels (e.g., ISA) and substantive node-labels (e.g., SUPPORT), there will be
certain node-labels (both organizational and substantive) which are best regarded as
data items outside the network system, in that they do not have any special network
meaning (e.g., the numeral 3). In many cases, these will require the inclusion, in the
label sets, of large (often infinite) sets of primitive data items (e.g., the integers, the
set of alphabetic strings). Also, there will be cértain special node-labels which are not
part of infinite data types, but which come from small sets of special items (but
which, like the integers, are atomic from the point of view of network structure).
The obvious examples are labels like ‘TRUE’ and ‘FALSE’. None of these kinds of
node-labels are central enough to the notion of ‘semantic network’ for them to be:
built into the definition of what constitutes a semantic network, and we will merely
observe that the semantic net system designer may have to include a wide variety of
data items in his label sets.

3.7 Contexts and partitions

Some artificial intelligence systems (e.g., Conniver: McDermott, 1973) have their
database organized into various ‘contexts’ or ‘states of the world’. There are
operations available for moving between contexts, and creating new contexts, so
that variables may have different values in different contexts (see McDermott,
1975). Typically, the contexts are arranged in a tree-like structure, so that a context
‘inherits’ the state of the world from its ‘parent’ context. (This allows a relatively
efficient implementation in which only changes to the world are recorded, with the
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information from previous contexts being left ‘visible’ until altered.) Since each
context represents an entire ‘state of the world’, which in-a semantic net system
would be an entire semantic net, it is suitable, at our present abstract level, to define
context systems as maintaining trees of semantic nets. That is, .there is a tree
structure, totally outside the definition of the semantic net structure, such that each
vertex of the tree contains a single semantic net (representing the ‘state of the world’
in that context). The context-moving and context-creating operators can thén be
defined on trees of this sort. Should it be necessary, the context configuration could
be generalized from a tree to a general acyclic directed graph, although most actual
systems avoid the complications which arise from this (since it needs the idea of
mergmg two contexts).

This is relatively elegant, but is not sufflclent to cover the case of partmoned
semantic nets’ (Section 4.2.3 below). Hendrix (1979) groups parts of the semantic
net into ‘spaces’ or ‘partitions’, and uses these larger chunks in various ways (mainly
for variable-scoping). In terms of what this means, it is reminiscent of ‘contexts’,
but the exact details of ‘partitioning’ prove to be more complex; in particular, this
technique needs the ‘partitions’ to be referred to within the network (i.e., to be
represented as nodes with arcs leading to them). Hendrix defines ‘supernodes’ for
this purpose, which are different from ordinary nodes in that they indicate whole
chunks of semantic net. It might be possible to form a general formalization of this
scheme and the context-graph idea by allowing the set of ‘supernodes’ to be either
part of the set of nodes (partitioning) or totally disjoint (contexts), but we have not
attempted this here. Since partitioning requires an association between the
supernode and an arbitrary semantic network, it can be handled by letting the node-
label set for a partitioned semantic net include the set of posmble semantic nets
within the system.

3.8 Operations on networks

Although semantic nets take on their meaning only by virtue of the operations that
can be performed on them, there is a tendency in the literature to omit descriptions
of the valid operations on the proposed structures. Those descriptions that do exist
show little in the way of commonality. If we attempt to generalize such ill-defined
and varied systems, we will end up with the near-vacuous statement that a semantic
network system allows arbitrary graph manipulations, operating on datastructures
of the sorts outlined in Section 2 above. Unfortunately, it is difficult to provide a
simple way of specifying semantic net operations, although various ways of defining
data structure operations exist (e.g., using ‘abstract data types’: Guttag and
Horning, 1978). We shall therefore, for simplicity, not attempt to incorporate
formal definitions of operations into our characterization of semantic nets. In the
survey of semantic net systems (Section 4 below), we shall describe some of the
operations,. and the ‘meaning’ of the labels, informally, as is the custom in the
literature. The exposition will, we hope, be suitably clear.

This means that we shall have to gloss over, to a large extent, the question of
‘procedural attachment’ (i.e., the insertion of procedure definitions as executable
items within a data structure). In the absence of a formal definition of the notion of
operations on a semantic net, the idea of a procedure (which can give rise to a
sequence of operation-applications) cannot be considered. In the survey in Section
4, we shall simply note, where necessary, that certain formalisms allow a node-label
which is a procedure.
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3.9 Nature of links

One very hazy aspect of the semantic network literature is what a link between two
nodes indicates, in terms of structure-accessing. (There is also, as Woods, 1975,
points out, some obscurity about what the links represent in terms of semantic
relations—see 3.11 below.) Although early net programs may have identified
semantic net links with simple pointers in the actual implementation, this is not their
import in later systems. However, a link must have some effect on the ease with
which the interpreter can move from one structure to another, otherwise the
traditional ISA link would not contribute to inference. The net may be held in some
uniformly indexed fashion (involving hash-coding, for example), but that level of
machine retrieval is not part of the knowledge structuring. On the other hand, we
must be careful not to assume that the direction of an arc necessarily indicates a one-
directional access path. Although an arc must have direction in order to distinguish
which of the two end-nodes is which (i.e., the order of arguments in the ‘relation’
given by the arc-label), that does not necessarily mean that arcs are one-way access
paths. It might be tempting to adopt the assumption that all arcs are implicitly bi-
directional; that is, that access paths in the network are possible along either
direction of each arc. Careful consideration reveals that this would. lead to some
counterintuitive results. Remember that the purpose of the net is to impose some
(theoretically interesting) structure upon the knowledge, not merely to reflect the
full range of possible associations between all items. Therefore, we want to be able
to state, as part of a semantic net description of some area of knowledge, which
pieces of knowledge are accessible from which others. It is not necessarily the case,
for example, that there should be an access path from every predicate or relation
node to all the ‘assertions’ involving it; although that might be useful for predicates
or relations which represent substantive concepts from the topic being described
(e.g., ‘SUPPORT"), it is not very plausible for the ‘disjunction’ relation (cf.
Schubert et al., 1979), since it is not relevant for the system to be able to retrieve ‘all
the disjunctions within the system’. Hence a diagram like Figure 1, although it has
arcs from the central (‘proposition’) node to the operator (to indicate their
connection), does not necessarily define an access path from the operator to the
arguments.

OR

FiG. 1

The solution seems to be to ciass some arcs as ‘two-way’, and others as ‘one-way’.
We could represent two-way links by inserting another arc explicitly in the net, but
this would move our description further from the diagrams commonly used, and
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require the cumbersome use of inverse labels for these extra arcs. Using ‘one-way’
and ‘two-way’ allows us to distinguish a ‘path’, in the usual graph-theoretic sense
(followmg the directions of all the arcs involved) from an ‘access path’ (where either -
direction of a two-way arc may be used). In some cases (e.g., following transitive'
chains of ISA links), there may be a need for a traditional path;'in other cases, the

more specialized notion of access path may be needed. Authors usually do not '

specify which of their arcs are two-way, which is a remarkable omission in view of
the fact that one of the main purposes of a semantic net is to describe connectiors
between items. :

3.10 Semantic nets and predicate logic

The relationship between logic and semantic networks is a source of constant
confusion, largely because of disagreement about what these terms mean. As Bundy
(1979) observes, the syntactic aspect of predicate logic can be represented in network
notation, either in traditional (quantified) notation (e.g., Schubert et al., 1979) or in
clausal form (e.g., Deliyanni and Kowalski, 1979). Of course, this depends on a
suitable choice of node types and labels—not every semantic net formalism is an
alternative syntactic representation of predicate logic, although it is straightforward
to design one which is. The converse question is equally confusing—can any
semantic net be written as a logic expression? It would be possible, as Bundy points
out, to replace a network arc labelled ‘P’, from node X to node Y, with a term
‘P(X,Y)’. This is not encugh, however, to show that every semantic net formalism is
simply a re-formulation of predicate logic, since we must then consider the
interpretation of these structures, and the operations to be performed on them.
Logic allows the X and Y in ‘P(X,Y)’ to be variables (bound or free) or constants.
Will it always be the case that this reflects the intended use of the semantic net arc
which the predicate-application is replacing? Study of the descriptions given in
Section 4 should be enough -to demonstrate that this is not always the case. For
example, consider the DSUPERC link in Figure 9 (Section 4.3.2 below). If we write
this as

DSUPERC (List-command, Printing-command)

does this have the meaning that there are objects List-command and Printing-
command, with a relation DSUPERC between them? This would be the case only if
we uniformly identify nodes with objects and arcs with relations, which is merely a
re-expression of the network structure in other terms—it says nothing about the
meaning of the net. An alternative argument might be to claim that the meaning of
the DSUPERC link can be expressed as

(vx) (List- command(x) = > Printing-command(x))

Even if we leave aside the question of whether this is the exact meaning mtended by
the net-designer, all that this shows is that predicate logic can be used to describe the
meaning of (parts of) semantic nets; that is, it illustrates the use of predicate calculus
as a meta-language.

Hayes (1977) discusses the question of providing a ‘meaning’ for a notation or
representation, and remarks that some interpretation is needed for semantic nets.
He goes on to argue that if this meaning is specified in terms of objects and relations
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(as in model theoretic semantics for logic) then semantic nets are merely another
form of logic. This line of argument seems to depend on two assertions—that the
only valid form of interpretation that can be provided is a model-theoretic one (cf.
McDermott, 1978), and that any system with model-theoretic semantics is a logic.
Under these rather strong assumptions, any representational system can be claimed
to be a logic, so it is hardly surprising that semantic nets are thus classified. A logical
system has a syntax and a semantics, and the mapping between the two is an
essential aspect of its definition. A particular semantic net formalism may mimic the
syntax of some logical system and it may also be defined to have an ‘interpretation’
as in traditional Tarski logic, but unless the correspondence between the two
components (syntax and semantics) is effectively the same as that for some logic, it is
hard to claim that the entire system is ‘equivalent’ to that logic.

Hayes raises many other interesting questions, including the fact that logic does
not include processing rules; inference strategies can be imposed upon a logical
representation, but they are not essential to logic. This gives another reason why
care must be taken in comparing semantic networks and logic (other than Bundy’s
observation that nets by themselves are purely a syntactic form). A particular
semantic net formalism includes not only a syntactic notation, but a set of rules
(operations). Even if these rules are compatible with a logical interpretation (as in
Hendrix, 1979), they can be seen as a superstructure with respect to the definitions
of the representation and its interpretation. Hence, a full semantic network
formalism, including the various operating rules, may not be exactly comparable to
pure first-order predicate logic, since these operations correspond to inference
strategies. It might, of course, be comparable to some predicate logic based
program, such as a theorem-prover.

If the relevant notion of ‘equivalence’ or ‘power’ is based on the range of
‘statements’ that can be expressed in the formalism, predicate logic is probably more
powerful than most semantic net formalisms (although those versions which include
some kind of quantification may equal the expressive power of predicate logic).
However, is this the relevant notion of ‘equivalence’? The argument is analogous to
that concerning the equivalence between various computational mechanisms.
Although there are many devices which have the same computing power as Turing
machines (rewrite grammars, register machines, transformational grammars), they
are not equally suitable for all purposes (consider trying to write a grammar of
English using a Turing machine). For example, if we are trying to devise a repre-
sentational system which contains constructs and operations suitable for describing
the meanings of English sentences (which seems to be the motivation behind most
semantic net work) then it is not necessarily true that first-order predicate logic is the
best system.

Some question-answering programs use a semantic network to represent all the
information which is ‘true’ in their world; any assertion not present in the network is
assumed to be ‘false’, and there is no distinction between ‘unknown’ and ‘false’
statements. We have not regarded a network as having any implicit claims as to truth
or falsity—such aspects of statements can be represented explicitly in the network if
required (cf. Kay, 1973). This does not mean that our definition will not cover those
networks in which this implicit assumption is used; it is perfectly allowable, within
our general theory, for a particular designer to interpret the presence of items in the
network as ‘truth’, and to build operational procedures which are consistent with
this idea. Nevertheless this approach is not an essential part of the notion of a
semantic network.
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3.11 Semantic confusions in networks

Particularly in earlier systems, there is a tendency for semantic networks to be
designed without too much consideration of the exact meaning of the node and arc
configurations. Woods (1975) discusses these deficiencies at some length, and it is
not feasible to recapitulate his arguments in full, but we will outline briefly some of
the issues.

Most of the difficulties spring from disregard for certain distinctions of meaning
—general/specific, intension/extension, assertion/description and attributive/
referential.

General/specific: In a machine representation of knowledge about the world, there
is a need to represent general statements (e.g., ‘all swans are white’) as well as
specific facts about the current state of the world (e.g., ‘a white swan is sitting by the
lake’). (In a conventional database system, the former might well be part of the data
dictionary or data schemata, defining the possible configurations of data, whereas
the latter would be in the actual database of facts.)

Intension/extension: A distinction can be made between the meaning of a descrip-
tive term (e.g., ‘a white dog’) and the objects in thé world of which that description
is true (e.g., the set of white dogs). (Cf. Frege’s sense/reference distinction: Geach
and Black, 1960).

Assertion/description: A predicate (e.g., ‘red’) can be combined with an argument
(e.g., ‘ball’) to make an assertion (that a particular ball is red) or to form a
description (‘the ball which is red’).

Attributive/referential: In certain contexts, descriptive expressions can have two
possible interpretations. For example (5a) can be roughly synonymous with (5b) or
with (5¢) depending on the interpretation of ‘a Norwegian’.

5. (a) Mary wants to marry a Norwegian.
(b) There is a particular person that Mary wants to marry, and who is a
Norwegian.
(c) Mary has decided that whoever she marries must be Norwegian.

Early semantic networks did not take sufficient account of all these distinctions,
with the result that the same node-arc configuration would be used to represent
some or all of the following:

6. (a) One of the defining properties of being a swan is being white.
(b) All swans in the current world happen to be white.
(c) That subset of swans defined by having the property white.
(d) A subset of swans, all of which happen to be white.
(e) The fact that a particular subset of swans are white.

4. AREVIEW OF SEMANTIC NET SYSTEMS

Having outlined the general definition of semantic nets, we will now use that
framework to give descriptions of various semantic network systems which have
been proposed over the past 15 years. Of course, the written descriptions from which
we are working are likely to contain incomplete specifications, or to contain minor
inconsistencies of notation. We will try to remedy such omissions or irregularities
when they occur, in ways which seem to preserve the essential characteristics of the
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systems and which do not decrease their elegance. The formalisms described here
form a fairly representative cross-section of the literature on the topic, and include
the most widely-cited examples as well as some lesser known ones.

On the basis of the systems surveyed below (and a few others which we have
looked at, such as Shapiro, 1979), there seem to be three styles of semantic repre-
sentation system within the broad class of semantic networks—uniform semantic
networks, predicate logic-based systems, and frame systems—so we have organized
the survey under these loose categorizations.

4.1 Uniform semantic networks

Historically, the uniform networks are the earlier examples, and are typified by the
systems of Quillian, Rumelhart and Norman, Rieger, Simmons, Schank. They have
(typically, but not always), the following characteristics:

7. (a) They may contain ‘example’ nodes which are linked to ‘generic’ nodes.
These ‘examples’ are, in general, instances of arbitrary n-ary relations, and
the ‘generic’ node contains any information about that relation.

(b) There is not a great deal of ‘generic’ information about relations (in
comparison with the ‘frame systems’ described below); very often there are
just type-restrictions on the argument-places.

(¢) Sometimes (but not often) the ‘generic’ nodes are arranged into some kind

- of hierarchy, so that each concept can be linked to its generalizations (up
the hierarchy) and its specializations (down the hierarchy).

(d) In the cases where the hierarchy mentioned in (c) is built in, this is used for
checking compatibility of semantic classifications (e.g., whether two sets,
which some element is supposed to belong to, are disjoint, or whether some
predicate can be validly applied to a given node).

(e) The transitivity of classification represented by these hierarchies of generic
concepts ((c) above) are not usually used to allow ‘inheritance’ of arbitrary
properties.

Hence, such systems tend not to have much structure or groupings (as is found in
frame systems), and do not make use of standard logical semantics (e.g., depending
on resolution-based inference procedures).

4.1.1 Semantic memory

Although Quillian (1968) did not use the term ‘semantic net’, his rudimentary
computer model of memory, based on linked nodes, is widely cited as the source of
the idea of semantic networks within artificial intelligence. In fact, his system
differed in many respects from later systems, in that it dealt only with word
definitions (that is, it was an elaborate form of dictionary). There was no representa-
tion for specific uses of words (e.g., in particular sentences or dialogues), except
insofar as they appeared in the definition of other words, and there was no
‘inference’ which made use of the arc labels (since it was not intended as a general
‘knowledge representation’ scheme). Also, his use of the node-and-arc graphical
notation was partly an expository device, in the sense that he did not try to represent
every association between items as a link; there were various labelling conventions to
cover other connections. Here, we will try to tidy up this notation slightly, by
making all such connections uniform and explicit. We shall, for example, have to
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introduce ‘conjunction’ and ‘disjunction’ nodes (Fig. 3), in order to describe
Quillian’s configurations shown in Figure 2.

OR

Argument Arqument Argument

Argument Argument Argument

A 8 c

Fi1G. 3

The structural aspects of Quillian’s system can be summarized in the following
terms.

Types of nodes » »
»Type this (confusingly named) kind of node is the centre of a definition.
Token: marks the presence of one word definition (type node) in another definition

net.
Disjunction: groups two or more nodes which form a dls]unctlve set.
Conjunction: groups two or more nodes which form a conjunction.

Organizational arc labels

Tokén to-type: indicates definition being referred to from within another definition.
Subclass: indicates that the type (initial node) is a subclass of the class indicated by
the fmaT node : o
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Modifies: indicates that the final node modifies the initial node.

Subject: indicates that the final node is the ‘subject’ of the relation labelled on the
initial node.

Object: indicates that the final node is the ‘object’ of the relation labelled on the
initial node.

Argument: indicates that the final node is one of the arguments of the disjunction or
conjunction represented by the initial node.

Substantive labels

The only substantive labels in the system are word-names, labelled on ‘type’ nodes.

Syntactic rules

Substantive node-labels appear only on type nodes; conjunction and disjunction
nodes are unlabelled.

A token-to-type arc must go from a token node to a type node.

A subclass arc must go from a type node to a token node.

An arc labelled modifies, subject or obJect, must go from a token node to a token
node.

An arc labelled argument must go from either a conjunction node or a dlSJ"nCtlon
node, to a token node.

- No arcs except argument arcs may leave a conjunction or disjunction node.

Every conjunction or disjunction node must have two or more -outgoing argument
arcs.

Every token node must have exactly one token-to-type arc leaving it.

Before proceeding to the operations and processes available in Quillian’s system,
it is useful to make a few general observations. Although Quillian (196&: 239)
mentions the notion of ‘inheritance’, there seems to be no implementation of it in his
system. Clearly the ‘token-to-type’ and ‘subclass’ arcs are the forerunners of the
later variants on ‘ISA’ links, but Quillian gives no specific interpretation for them.
All Quillian’s arcs are one-way (p. 239), although he comments that some form of
‘recognition procedure’ working on these memory structures might require back-
pointers (to trace from attributes to definition).

The above description has eliminated some of the information which, in
Quillian’s diagrams, appears as extra labels on the nodes. In particular, the diagram
for each definition is strictly tree-shaped, with no internal pointers from token nodes
to other nodes nearer to the root. However, there are cases where such links are
needed, and Quillian incorporates these by having two special labels ‘=A’ and ‘=B’
which can be used to set up pointers to higher nodes in the current definitional tree.
This appears to be an implementation detail which has crept into the diagrammatic
representation, and can be eliminated by simply allowing the necessary arcs to be
drawn in directly. (Quillian also comments that there is a special ‘indirect
addressing’ technique to allow these extra pointers to connect to nodes outside the
current definition, but gives no details; these could be dealt with similarly by using
direct arcs.) Although the additional markings =A and =B are useful for the
diagrammatic representation, they do not alter the content of the net, and so they
are unnecessary at this abstract level of definition.

Other annotations which appear in Quillian’s diagrams are the labels ‘S’, ‘D’, and
‘M’, which are supposed to indicate the locations in the definition net for the
insertion of items corresponding to the ‘subject’ ‘direct object’ and ‘modifier’ of the
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word being defined. This facility is a rather ad hoc form of ‘case grammar’ markings
(Fillmore, 1968), and is somewhat out of place in a knowledge-representation
network, since it provides the linguistic information about how to map verb
structures (in some canonical sentential form, presumably) into deep meaning
tepresentations. Although these labels are used by Quillian’s program in trying to
map inputs on to memory graphs, it could be argued (and we will assume here) that
these rudimentary ‘case-placement rules’ are not properly part of the semantic net at
all, but are really connections from the memory structures to a different level of
items (linguistic rules of some sort). Coupled to these case-labels (S, D and M) are
certain ‘clue-words’ which the program can use to work out which of the linguistic
constituents in the input are to be allocated to the D and M roles. Few details of
these are given in the article cited here, but the above remarks about the case-labels
seem to apply equally to the clue-words; that is, they are surface syntactic rules
which happen to be linked to the semantic net, but which are not strictly part of it.

Let us now look at the operations which can be carried out on a Quillian net. The
main process in this memory model is ‘spreading activation’. That is, the network
interpreter works outward from some specified type node, ‘tagging’ each node that
it encounters. This gives rise to a (gradually increasing) subgraph of tagged nodes
around the original node (the ‘patriarch’, in Quillian’s terminology). The program
can use this technique to compare or relate two arbitrarily chosen words, by
producing activation subgraphs from the two type nodes corresponding to these
words and finding where they intersect.

The exact nature of this ‘activation’ process is as follows. When a node is tagged,
two pieces of information are marked on it:

8. (a) What ‘patriarch’ is the origin of the spread of activation.
(b) From which node the activation directly came (i.e., the immediate
-neighbour from which the interpreter moved to this node); this allows a
path to be traced from any active node back to its ‘patriarch’.

The set of tagged nodes for a particular patriarch can be regarded as a set of triples,
containing three nodes—the one tagged, its patriarch, and its preceding neighbour in
the activation process. The set of tagged nodes in a network (at any given moment)
will then be a family of tagged-node sets (one for each patriarch activated). Notice
that the semantic network system does not need any new constructs or definitions to
allow description of tagging—it is all describable as the addition of nodes (or tuples
involving nodes) to some set of tagged nodes (or sets of differently tagged nodes, in
the case of Fahlman’s system (see 4.3.1 below)).

4.1.2 Simmons’ semantic networks

The networks outlined by Simmons (1973) are slightly different from those of
Quillian, in several ways:

9. (a) Each network depicts the meaning of a specific sentence, rather than the
relationships between general word meanings.
(b) A node in a diagram is not necessarily a simple atom or pointer, but can be
a list of attributes with values (e.g., attribute-value pairs such as (TENSE:
Past) and (ESSENCE: Indeterminate)).
(c) The idea of ‘token’ is altered subtly. A node can have a TOK link to the
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concept of which it is a token, but whereas Quillian’s ‘token-to-type’ link
was merely a pointer indicating that another concept was involved in the
current definition, Simmons’ TOK link runs from an example of the
concept to the defining node. It is hard to make this intuitive distinction
precise, and this may not be necessary, since all that we are concerned with
here are the formal interpretations imposed by the various network opera-
tions in the two systems.

(d) Simmons does not use semantic networks to encode general knowledge
about concepts, in the way that Quillian does. All generalities are
represented in other ways (paraphrase rules, etc.) which act on networks but
which are not themselves in network form.

() The networks for individual sentences are strict trees, corresponding fairly
closely to the syntactic structure of the original sentence. In fact, Simmons
gives a formal syntax for his networks in a form of context-free grammar,
which emphasizes the tree-structuring (and the linguistic syntactic
influence).

Like Quillian, Simmons uses links which are not strictly binary, to handle
conjunctions, although he does not discuss them at length or offer a graphical
illustration:

Our representation of these important terms in semantic structures is to
form a TOKen structure followed by a list of arguments, as illustrated
below.

C1 TOK (any conjunction), ARGS C2, C3, C4. . . (Simmons, 1973: 75).

This is a similar suggestion to the notational convention used in 4.1.1 above for
Quillian’s conjunction nodes, except that Simmons is allowing an open class of
conjunctions (i.e., they now become substantive labels).

Simmons also uses ‘case-frame’ like labels—MODAL, LOC, THEME—to
connect the argument nodes to a relational node. It is not at once clear how to
classify these kinds of labels, in terms of the dichotomy between ‘organizational’
and ‘substantive’. Notions like ‘THEME’ and ‘LOCUS’ certainly seem to denote
aspects of the knowledge being described, rather than structural relationships
between the meaning structures; thus they seem to be substantive. However, this
may be a misleading impression given by the mnemonic label-names, since what is
really relevant is how the network interpreter treats these arcs. If these links are
merely arbitrarily-labelled arcs to join the argument nodes to the relational node,
and could function just as well if they were labelled ‘ARG1’, ‘ARG2’, etc., then they
are definitely organizational labels. (See Charniak, 1975; Wilks, 1976; Ritchie, 1980,
for related arguments about the use of ‘cases’ in artificial intelligence representa-
tional systems.) The answer to this depends on the content of Simmons’ various
rules. Syntactically, the five ‘case-relations’ appear in the syntactic rules, and are
therefore part of the built-in network system (i.e., they do not vary with subject
matter). The matter is somewhat complicated by Simmons’ inconsistent notation for
these matters—although he has a single case-relation ‘CAUSALACTANT’, he
allows two causal actants in a single ‘proposition’, labelling them CA1l and CA2 to
distinguish them. Similarly, he allows two THEMEs, labelled T1 and T2 as
arguments in the same structure.
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Simmons’ grammar for his net structure is:

S -> Modality + Proposition

Modality -> Tense, Aspect, Form, Mood, Modal, Manner, Time

Proposition -> Vb + (CASEARGUMENT)*

Vb -> run, walk, break, etc.,

CASEARGUMENT -> CASERELATION + [NP | S]

NP -> (prep) +(DET) x(ADJ)* +(N) + N + (S | NP)

CASERELATION -> CAUSALACTANT, THEME, LOCUS, SOURCE, GOAL.

(The (N) in the sixth rule is in a different typeface from the second ‘N’ so:
presumably they are different categories.)

These rules cannot be interpreted too strictly, since Simmons’ examples do not
conform to them exactly. Nevertheless, they are a handy expository device for
conveying the possible combinations of categories. We will now try to convert them
into our standard form of node-types and label-categories.

Types of nodes

Sentential: called ‘S’ by Simmons; corresponds to a tensed sentence.

Propositional: corresponds to a filled case-frame.

Modality: groups various information such as tense, mood, etc.

Verbal: correspondsto a verb (with its own case-frame). ,

Term: corresponds to a simple noun phrase or an embedded sentence. -

Atomic: miscellaneous terminal nodes, given values by their labellings, could be
subclassified further, into determiner, tense, etc., but this seems redundant, since
the labelling of the nodes and their connected arcs will provide this information.
Connective: conjunctions, etc., with several attached arguments.

Organizational arc labels

MODALPART: for linking sentential node to modality node.

PROP: for linking sentential node to proposition node.

TOK: for linking propositions (filled case-frames) to their verbs.

TENSE, ASPECT, FORM, MOOD, MANNER, TIME: all these (which we will
categorize as ‘modal’ labels) link modality node to a value.

CAUSALACTANT, THEME, LOCUS, SOURCE, GOAL, CAUSALACTANT,
THEME', LOCUS’, SOURCE’, GOAL': all these (which we will categorize as ‘case’
labels) link a propositional node to a term node. Including duplicates of each allows
at most two of each case in each case-frame, which should be sufficient.

DET, ADJ, NBR, NOM, PREP, MODIF: all these (which we will categorize as
‘modifier’ labels) link a term node to another node.

ARGiI (i=1, 2, 3, etc.): arguments of relations.

Substantive node label categories

(Some of these may be organizational).
Connectives: OR, SINCE, BUT, etc.
Attributives: MOD, POSSESSIVE, ASSOC, etc.
Set-relations: SUP, SUB, EQ, etc.
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Syntax rules

As observed in Section 3.2, we do not yet have a formal way of stating syntactic
rules. The following informal descriptions serve merely to illustrate the information
that might go into such rules.

A sentential node must have one outgoing MOD arc and one cutgoing PROP arc.

A MOD arc can appear only between a sentential node and a modality node.

A PROP arc can appear only between a sentential node and a propositional node.
The only labels allowed on outgoing arcs from a modality node are labels of
category MODAL. '

Arcs with labels from category MODAL must start at a modality node and finish at
an atomic node.

The only outgoing arcs from a propositional node are those labelled with a case-
label or an arc labelled ‘TOK’.

Each propositional node must have exactly one TOK link; this must run to a node of
type verbal. '
Each connective node must have exactly one TOK link; this must run to a node
labelled with a substantive connective.

4.1.3 The LNR system

Norman and Rumelhart ef al. (1975) describe a semantic network system which is
intended to be used for various purposes, including language understanding and
problem-solving. They use a ‘case-frame’ style of structure, in which each relation
can have several arguments, and they distinguish several relations as being
‘primitive’. Each node representing an instance of a relation (a ‘secondary’ node) is
connected to the relation node (the ‘primary’ node), and each relation node (primary
node) is linked to a structure defining it in terms of primitive relations. Each
primitive primary node has attached to it a procedure which acts as its definition.
Hence non-primitive relations gain their definition by being linked to a secondary
node with a primitive relation linked to it, and primitive relations gain their
definitions, in turn, from their attached procedures. (The written description states
that all relations have procedural definitions, but it seems that the non-primitive
relations have procedural definitions which simply rephrase in terms of the
configuration of primitives (i.e., the patterns attached, in the diagrams, by
ISWHEN links to the non-primitive nodes).) To incorporate all this in a uniform
node-arc notation, we will use ‘procedure’ nodes, attached to the relevant primary
node by a ‘DEFINITION’ link. The links available for connecting a secondary node
to a primary node are referred to as “TYPE’ arcs, but this seems to be a category of
labels (which includes ‘ISA’ and ‘ACT’), rather than a label itself.

Inheritance is not very prominent in this system. ‘Passing of properties’ happens
from a primary to a secondary node (i.e., down an ISA or other TYPE link), in that
information such as selectional restrictions is available to each instance (secondary)
of a relation (primary). Similarly, certain properties may be passed (presumably)
from a defining configuration of primitives along an ISWHEN link.

‘Case’ labels—AGENT, OBJECT, LOC—are used to connect the argument
nodes to a relational node. Similar remarks apply here as in the case of Simmons’
argument-labels—it is not clear to what extent these labels are merely arbitrary
mnemonics. The answer to this depends on the content of the various rules. There is
further confusion about the import of these case-labels, since Norman and
Rumelhart say that the labels refer to selectional restrictions (i.e., constraints on
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what items may be arguments for the relation) as well as naming arguments, and
some of the examples use two case-fillers with the same label (e.g., LOC). For the
moment, we will include these as a special subset of the organizational arc labels.

. Object
Person d (X)

iswhen

Argument | Object

Argument 2 Object

Argument 3 _/-\ Agent
9 Able

Proposition

Agent

Talk

FiG. 4

Types of node

Primary: a relation.

Secondary: a relation-instance.

Atomic: a basic item (e.g., a number or character strmg)

Variable: used to connect argument positions in a defining configuration to
corresponding positions in the relation being defined.

Procedure: carries procedural definition of a primitive relation.

Organizational arc labels

ISA: links a secondary to its primary (a label of category TYPE).

ACT: links a secondary to its primary (a label of category TYPE).

ISWHEN: links a primary to the root node of its defining configuration.
DEFINITION: links a primary to the procedural definition.

ARGUMENT (i=1, 2, 3, etc.): links a relation-instance with several arguments
(e.g., AND) to an argument node.

AGENT, OBJECT, etc.: case-labels (see above).

Substantive label categories

Primitive: a basic relation, marked on primary nodes (e.g., AND).
Non-primitive: a defined relation, marked on primary nodes (e.g., PERSON)
Procedural: a procedure, labelled on nodes of type procedure.
Basic: a data item.

All the arcs are stated to be two- way, although it is not clear what path -tracing
processes use this fact.
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4.1.4 Conceptual dependency

Schank ef al. (1975a, b) have presented a general system of ‘conceptual’ representa-
tion which, despite its different terminology, seems to fall firmly into the catzgory of
being a semantic network. They emphasize that their system uses only a few
‘primitive’ elements for a wide range of meanings, but this covers only his repre-
sentation of actions; for other meanings (e.g., referring to physical objects),
conceptual dependency uses a wide range of substantive labels.

There is a fairly clear statement (Schank ef al., 1975a) of the elements of
conceptual dependency notation, although the syntax rules given in that article
merely describe the composition of the LISP expressions used in a particular
implementation, rather than the abstract syntax of the knowledge representation
scheme.

Types of nodes

PP: corresponds to a (physical) object.

ACT: marked with one of the primitive actions (or states?).

TIME: a time-structure.

CAUSAL: a connection between two related conceptualizations.

STATE: example of a state.

ACTION: example of an act.

STATE-CHANGE: example of a state-change.

BASIC: miscellaneous values (e.g., +2 in a state-change, *A* in a reference
description).

CAUSALs, STATEs, ACTIONs and STATE-CHANGEs can be classed as
‘BONDS’ (to borrow terminology from Rieger—see Section 4.1.5).

Organizational node label categories

Causals: there are several kinds of ‘causation’ relation.
Special tags: miscellaneous markers.

Organizational arc labels

(These are exactly the MAINROLE and MODROLE lists of Schank ef al., 1975a.)
For typographical convenience we have replaced the triple arrows of that description
with single arrows (<->and <-) in both the ‘state’ and ‘causal’ links).

ACTOR: the ACTOR which performed some act.

OBJECT: the object of one of the physical acts.

MOBIJECT: object of mental act.

TO: recipient of act.

FROM: source of movement in act.

<=>:link to the primitive ACT involved.

<->: attribute and value of a state relation.

<->F: the initial state in a state change.

<->T: the terminal state in a state change.

SO: the object of a state or state change, where a PP is involved.

SC: the object of a state or state change, where a conceptualization is involved.
ANT: antecedent of a causal relation.

<-: Causal connection.

<-C: Possible causal connection.
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TIME: links act, state or state change to its time-structure.
VAL: the value part of a state.

- INC: for state changes, the amount of change along some scale

- PART:a body part relation. -
" 'REF: links an item to some information about its reference

 REL: links an item to arelated item.’

There are also three links which could be classed as ‘TIMERELS’—SAME
BEFORE, AFTER. (Schank ‘et al.- do not list these as primitives, mainroles or
modroles, but embed them in the syntax of the implementation; for uniformity and
cleanliness, they should be put in a suitable category.)

Substantive label categories

Act: primitive actions; there are 11 (e.g., PTRANS PROPEL, INGEST etc; see
Schank ef al., 1975a.)

State-names: e.g., JOY.

Things: e.g., John, LTM.

Time-values: e.g., T000034

. Data: €.g., integers.

There may be other categories.

RO*MTRANS*

FI1G. 5
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~ There is, in the implementations of conceptual dependency, other miscellaneous
information, but it is not always clear whether this is properly part of the conceptual
dependency. system, or simply part of the language-processing routines which
operate to analyse or generate sentences (e.g., ‘Thus ATRANS is a primitive ACT
that requires an ACTOR, an OBJECT, and a RECIPIENT made up of a SOURCE
and a GOAL. The SOURCE and GOAL must be animate and the object physical.
This information is contained in the analyser together with a dictionary of what
words combine into what configurations of ATRANS’ (Schank ef al., 1975a: 311).

‘Figure 5§ shows the example from (Schank et al., 1975a) (‘John told Mary that Bill
wanted a book’) in terms of the categories given above. Diamond shapes are ‘bond’
nodes, squares are time-nodes, circles are PP nodes, circles with crosses are act
nodes, and black squares are basic nodes.

4.1.5 Rieger’s version of conceptual dependency

Rieger (1975) describes the inference component of the MARGIE program, which
uses conceptual dependency (CD) as its representational system. However, he does

_not give a clear implementation-independent characterization of the knowledge
representation used for making inferences. The informal description makes it clear
what the implementation structures are (LISP atoms and their property lists), but it
is quite hard to work out what higher-level knowledge structures are supposed to be
represented by these primitive programming constructs. The main problems (in
understanding the system) are that the obvious interconnections (as given by the
property lists) do not correspond directly to those of the usual CD diagrams, that
miscellaneous substantive labels (e.g., WANT, SEX, etc.) appear without
explanation in the examples, apparently with the same status as labels which appear
in ‘primitive’ CD examples, and that there are almost no restrictions on what
operations can be applied to what structures. We will attempt to impose some
organization on this, but much of it will be arbitrary. For example, the program
operates largely with lists of the form (<keyword> <list of arguments>) (e.g.,
(CAUSE C0061 C0054), (POSCHANGE #MARY #JOY), (WANT #BILL
# C0045)) and attempting to subcategorize the various keywords used may be a false
superstructure; perhaps the program makes no systematic distinction between
keywords like WANT, LOC, POSCHANGE, TIME, BEFORE. It is worth
attempting to categorize these labels, if only for comparison with other systems, but
it may be the case that the actual program is a fairly uniform semantic net which
makes no clear distinctions between any of its label types (least of all the CD
primitive ACTs). This would then raise the question of how closely it was actually
related to the CD representations proposed in articles by Schank.

In the Rieger system, certain relationships between items need to carry special
annotations (such as when they were last used in an inference or what other links
gave rise to the relationship). This provides one fairly firm criterion for classing
certain items within the general framework, since Rieger states explicitly that these
markings can occur only on two kinds of item (‘bonds’ and ‘concepts’). This can
lead to surprising results. For example, the relation ‘IDENTIFIES’ between two
items (meaning that they are equivalent) can be annotated (with, for example, its
‘reasons’), and hence must be a bond. On the other hand, the relationship of
‘REASON’ (which links an item to those which gave rise to it) cannot itself be
annotated, and thus is of a different data type. Intuitively, both IDENTIFIES and
REASON seem to be the same kind of ‘meta-information’.

The following description seems to capture most of Rieger’s system.
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Types of node

Concept: These fall into two subtypes—general and token—which correspond to the
‘definition’ and ‘instance’ types. The concept token nodes seem to occur only for
‘natural kinds’—i.e., classes like ‘NOSE’ and ‘HAND’.

Bonds: These are items often drawn as arrow-headed links in CD diagrams—they
are generalized in Rieger’s system to be virtually any predicate or function applied to
a set of arguments.

System values: These do not normally appear in CD diagrams, but are the basic
atomic data items (e.g., system clock values).

Organizational arc labels

These fall into three classes:

(A) Management links—these connect a bond or concept node to information
about it (e.g., its reasons for creation), thus maintaining various annotations for the
inference rules.

RECENCY: connects to a value giving a (real) time (i.e., not a ‘TIME’ in the
semantics of the matter being represented, but a time during the system’s processing
of the memory structures).

TOUCHED: connects to a real-time value.

SEARCH-TAG: another annotation used by the inference system.

(The above three can be marked on concept nodes—of both subtypes; the following
links can be joined only to bond nodes.)

TRUTH: system’s assignment of truth to this relationship.

STRENGTH: the validity (value between 0 and 1) of the relationship.

REASON: the other bond nodes which gave rise to this bond.

OFFSPRING: the other bond nodes to which this one gave rise (by inference).

Also, a general concept node has a link XFORM connecting it to ‘a template
specifying the conceptual dependency structure which will express in CD format any
memory structure which involves’ it.

(B) Slot labels—these do not appear explicitly in Rieger’s description, since he uses
position as a notational convention to link a relation-instance to its arguments. We
have assimilated these into our general definition by the usual technique of labelling
argument places with names.

ACTOR, OBJECT, FROM, TO: These are the argument places for primitive ACTs,
as commonly shown in CD diagrams.

BONDPRED: This links a bond (i.e., an instance of an action, state, or causal) to
the particular predicate involved (in CD, the predicate symbol is normally drawn in
amongst the arguments).

TIME: The status of this link (from a bond to a description of its time of
occurrence) is confused in the CD articles. It seems to fit here.

TS: Similarly, there is often a link to the start-time of an item.

ARGi (i=1, 2, 3, etc.): This is necessitated by our use of explicit labelling of
arguments for arbitrary predicates. Rieger uses positional notation (on property-list
entries) for the arguments of predicates like ‘CANNOT".

(C) Semantic links—These are miscellaneous connectors which seem to carry a wide
variety of imports.

ISA: connects a concept node to another concept node.

NAME: links an item to its name.

BEFORE: links a time-description to another tlme-descrlption.

AFTER: links a time-description to another time-description.
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Substantive node label categories

There are (at least) six classes:

(A) Primitive ACTs—ATRANS, PTRANS, MTRANS, etc.

The above ‘primitives’ can be classed into categories (e.g., MTRANS is an
ACTIONPRED), and this is represented explicitly in the network using ISA links.
Thus we need some substantive node labels for concept nodes.

(B) Conceptual categories—ACTIONPRED, CAUSAL.

(C) Causals—There are several types of causation, including at least these:

CAUSE
CAN-CAUSE
ENABLE-CAUSE
RESULT-CAUSE

These are marked on general concept nodes which define relations.
(D) States—A state is normally described (in conceptual dependency articles) as
being a connection between an item and an attribute-value pair, but Rieger’s
examples do not seem to include clear illustrations of this general structure. There
are various predicates, however, which might plausibly be called ‘states” (e.g.,
physical contact, location, ‘part-of’), and these take arbitrary sets of arguments.
Also, Rieger uses illustrative examples full of labels like ‘COLOUR’,
‘RESIDENCE’, ‘WANT’, but it is far from clear how these fit into his system. He
appears to be using them as general labels for network links without regard for
conceptual dependency. They might fit under the all-purpose heading of ‘state’,
emphasizing that it is a very broad category.
(E) Natural kinds—These are ‘classes’ of real world objects. Clearly the set is
extremely large. The fact that these are used in Rieger’s system is demonstrated by
the presence of items like ‘NECK’ and ‘NOSE’ in his examples. Presumably these
are labelled on general concept nodes, and then concept token nodes are connected
to them by ISA links.
(F) Logical connectives—There are several items in Rieger’s examples of the form
(CANNOT .. .) and Schank’s diagrams sometimes have ‘AND’ symbols. This
seems to require a set of logical predicates.

CANNOT
AND
NOT

Operations on these structures

The main flow of inference is driven by the creation of certain types of data item in
the memory. The nodes classed above as bonds and token concepts are the relevant
ones; when one of these is created, it may set off inference rules. The system works
continually through those inference rules (which are linked to the newly created
items), executing these rules. Each rule, or ‘inference molecule’, is an arbitrary LISP
program which can test any part of the memory structure and can build or delete
arbitrary structure.
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4.2 Predicate logic-based systems

The frameworks of Hendrix ef al., and of McSkimin and Minker, combine the
hierarchical classification found in uniform semantic networks with the formal
operations of the first-order predicate calculus, thereby using the semantic classes as
a way to improve the efficiency of a well-defined, logically complete system

These systems can be seen in two components:

10. (@) A predicate calculus unit. This stores logical statements (either in
conventional form or in clausal form) and operates on them in ways
consistent with their interpretation within traditional logic (e.g.,
resolution).

(b) A semantic network. This is primarily a classificatory mechanism, in which
classes and subclasses are linked hierarchically, and elements are linked to
the classes to which they belong. The operations in the logical unit can use
this information to improve the process of searching through the stored
statements, in various ways. The classification of the domain into different
‘sets’ or ‘types’ of entity is similar to using a sorted logic (Enderton, 1972).

Janas and Schwind also describe a network system which is closely related to the
ideas of conventional logic in its interpretation.

4.2.1 Semantic graphs

McSkimin and Minker (1979) outline a system which is interesting in @ number of
ways. They combine the mathematically precise mechanisms of predicate logic with
a system of semantic classification, in such a way that the latter guides the operation .
of the logic-based clause manipulations. The system as a whole is, they state,

equivalent to the first-order predicate calculus in power. The main data structures -
which their system uses are of two varieties—logic clauses and semantic classifica-

tions, the latter being represented in a ‘semantic graph’. This hierarchical taxonomy

is used for a complex form of ‘type-checking’ by the theorem prover, thus allowing

an (arbitrarily detailed) amount of domain-specific knowledge to be incorporated

into the logical system. The simplicity of structure of the semantic graph, and the

limited use to which it is put, allows a very compact and efficient implementation,

which McSkimin and Minker describe. (Roughly, the graph-theoretic notion of an

incidence matrix is generalized so that entries contain arc-labels rather than merely 0

orl.)

It would be fairly straightforward to represent logical clauses in network notation,
_but this is not of particular interest (except to show the universality of the network
notation—see Section 3.10 above). The ‘semantic graph’, which represents a
hierarchical taxonomy of items into sets, is more obviously within the semantic net
tradition. It can be-described using the following categories.

Types of node

Set: can be connected to any other node by any arc type.
Primitive set: can be connected up to a set node by a subset arc. (The primitive sets
are regarded as the bottom of the hierarchy, and are assumed to be all disjoint.)
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Organizational arc labels

Subset: joins set (or primitive set) to a set node, representing set inclusion.

Equal: joins two set nodes, indicating they are alternative descriptions of the same
set.

Disjoint: joins two set nodes, indicating that they do not overlap.

Substantive node label categories

Set-name: marked on any node.

4.2.2 Predicate logic nets

Schubert et al. (1979) describe a semantic net system which is closely related to
conventional predicate logic (see also Schubert, 1976). Their system has nodes
corresponding to propositions, connectives, variables and functions, allowing any
logical expressions (including quantified ones) to be written in node-and-arc form.

They discuss inheritance, and propose that the usual ISA hierarchy of concepts be
represented by universally quantified statements containing nested sets of
implications. For example, implications about OWLS would be contained within the
scope of the universal statements about BIRDS. Although (1979: 153) they talk of
the need to ‘move up one step in the generalization hierarchy to the elephant node’ .
when answering a question about a particular elephant, they do not describe exactly
how the levels in the hierarchy are connected.

They also provide an indexing mechanism for propositions, in which all
statements are classified into a ‘topic hierarchy’, covering such categories as
‘generalizations’, ‘social’, ‘appearance’, ‘kinship’. Every pair of a proposition and
an argument fits under (at least) one of these headings. This structure is separate
from the main semantic net, although it helps to organize the processing of the main
net.

Types of nodes

Operator: subtypes—relation, function, logical.

Result: for instances of items held on operator nodes.

Constant: fixed items (including Skolem functions) in domain of dlscourse
Variable: universally quantified variables.

Organizational node label categories

Relational names: includes the function names (e.g., ‘C’ the credibility operator)
and logical operators and connectives (e.g., =>, NOT).

Organizational arc labels

A, B, C, etc.: arbitrary argument labels.

PRED: connects a result node to a relation-operator node.

FUNC: connects a result node to a function-operator node.

OP: connects a result node to a logical-operator node.

Scopel: connects a variable node to a Skolem function depending on it.

Scope2: connects a proposition node (i.e., a result node connected by a PRED link
to a relation node) to a quantified variable which lies within its scope.
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Substantive node labelcategories

Constant names: e.g., ‘John’.

Relational names: includes predicate names (‘likes’) and function names (e.g.,
‘age’).

Figure 6 shows one of Schubert’s examples, expanded to show all nodes and arcs,
depicting the meaning of ‘There is always someone there’ (1976: 177). A broken
circle is a universally quantified variable, a solid circle is a constant, ovals represent
result nodes and rectangles are operator nodes.

PRED

Person

Moment

FIG. 6

4.2.3 Partitioned semantic networks

The system described by Fikes and Hendrix (1977) and by Hendrix (1979) is
interesting, since it contains a range of advanced features (see Figure 7). The"
networks are subdivided into ‘spaces’, where a space is an arbitrary network, and
spaces may overlap or be contained within each other. Some of the nodes in the
network are classed as ‘supernodes’, where a supernode stands for an entire space.
Hence an arc can connect an ordinary node to some partition (space), thus
indicating a relation between that node and what is represented by the entire
subgraph. Predicate logic statements are represented in the network by the use of
nodes labelled as ‘implications’, and by various conventions regarding variables.
Partitions (spaces) are used in various ways:

11. (a) The logical operators have spaces as their ‘scope’.

(b) A space can simply represent a substructure to be treated as a chunk (e.g.,
during the gradual building up of a semantic structure in sentence
analysis).

(c) Spaces can represent ‘contexts’; that is, subsets of the net which are
accessible under certain conditions. For this purpose, spaces can be linked
into ‘vistas’, which are ordered lists of spaces which together make up the
context.

(d) A space can group together all the things ‘believed’ or ‘known’ by some

- entity in the world, thus giving a notation for describing belief systems.
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FI1G. 7

The logical aspect of the net is encoded by having set-element nodes which are
‘implications’, ‘disjunctions’, ‘negations’, etc., with links to the supernodes which
they modify. ‘Implications’ are linked (by argument names ‘ante’ and ‘conse’) to
two overlapping spaces; any node in the overlap is the bound variable (universally
quantified). ‘Disjunctions’ are connected (by ‘de’ links—see below) to any number
of spaces, and ‘negations’ are connected (by a single ‘e’ arc) to-a space whose
contents are all to be negated. Conjunctions are not given a special node, since a
space is regarded as conveying thé conjunction of all the propositions represented in
it. Similarly, all nodes are assumed, where relevant, to be existentially quantified, if
they are not bound in an implication. Fikes and Hendrix outline some procedures
which operate on these structures to give the effect of conventional theorem-
proving. ' )

It is important to notice the distinction between ‘spaces’ (subgraphs), ‘vistas’
(ordered lists of subgraphs) and ‘supernodes’ (items in the network representing
spaces). Of the four uses of spaces given in (11) above, only (a) and (d) require
connections inside the network to whole spaces (i.e., only these use ‘supernodes’).
The other two cases are situations where some external mechanism (the linguistic
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rules, or a context handler) needs to refer to some subgraph of the net. This is
emphasized by the fact that in Hendrix’ illustrative diagrams (for context-vistas and
for sentence-analysis) the connections between the partitions are unlabelled. That is,
they are qualitatively different from the semantic network arcs, being part of an
external system which operates on semantic nets.

This suggests that it might be worth investigating the use of ‘spaces’ by the logical
part of the system, in case ‘supernodes’ are unnecessary here also. If that were the
case, the logical aspects of the representation might be separable into another
component which operates on structures within the net of set relationships (cf.
Section 4.2.1). Such an elimination does not appear to be the case, although many of
the simpler illustrative examples (in Hendrix, 1979) encourage the idea. The logical
connective nodes are linked by ‘e’ (‘element of’) nodes, to general nodes for those
connectives, which in turn are linked to broader classes of item (e.g., ‘situations’).
This does not in itself show that the logical structure is inextricable from the
network, since it is not clear that all these links (e.g., the ‘s’ link, for ‘subset of’, to
‘situations’) are actually used in a way compatible with the interpretation of the
links elsewhere. For example, a negated space is linked to the ‘Negations’ node by an
‘e’ link—is the meaning of this arc (‘element-of’) used here, or is it just an arbitrary
way of connecting a space to a negation node? The attachment of set-relationship
arcs to logical nodes may be a (slightly misleading) notational device, which does not
necessarily indicate an entanglement of the two aspects of the net (set hierarchy and
logic). '

The next relevant point (to the separation of the logical information) is that of
nested statements. The ‘antecedent’ of an implication may itself be (or contain) an
implication, a disjunction or a negation, for example. Since the arguments of the
logical operators are spaces, the inner constituents now have network links inside
them pointing to further spaces. Even this does not enmesh the logical operators
with the semantic net as much as it might seem. It would be quite feasible to have
two components, a semantic net (embodying predicate-argument structures and set
relationships) and a logic system. The only pointers across from the latter to the .
former would be where (positive) literals appeared in logical statements. All the
other structures (nesting, application of connectives, etc.) could occur in the logic
system, with no pointers back from the net to the logical operators.

This suggestion relies on the tree-shaped structure of a logical statement—spaces
are necessary only where several nodes have to be indicated rather than the root of a
tree. In partitioned semantic networks, the spaces also serve to indicate the scope of
variables; in particular, any node occurring in both the antecedent and the
consequent is the bound variable of the implication. This information (i.e., the
sharing of a node) is already present without ‘spaces’—the node is present in both
expressions since it can be reached from the root node of each. The implementation
using supernodes (described in Hendrix, 1979) may be an efficient way of handling
this information, but that does not mean that it is an essential part of the formalism.

Types of nodes

Set-element: an element of a set.

Set: a set (either of entities in the subject matter or of nodes within the network).
Basic: terminal nodes.

Supernodes: see discussion above.
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Organizational arc labels

Set-relationships: these provide the usual subset hierarchy, using four labels—‘e’
(linking set-element to set), ‘s’ (linking set to set), ‘de’ (linking a set-element to a set,
where all the ‘de’ arcs coming into a set node come from nodes ‘known to represent
distinct objects’), ‘ds’ (linking set to set, where all the ‘ds’ arcs into a set node come
from sets ‘known to be disjoint’).

Argument-names: there are many argument names, but it seems that they could be
uniformly renamed as ‘ARG1’, ‘ARG?2’, etc., without disrupting the system. They
link set-elements to other nodes.

Delineation: the only example, in the articles cited, of an arc which is neither set-
relational nor an argument-name is the ‘delineation’ link, which links a set-nodzto a
node which describes elements of that set in more detail (cf. Norman and Rumel-
hart’s ‘ISWHEN’ in Section 4.1.3, and Brachman’s ‘structural description’ in
Section 4.3.1).

Substantive node label categories
Set-names: marked on set nodes.

4.2.4 Extensional semantic networks

Janas and Schwind (1979) describe a network system which is unusual in various
ways. It is similar in some ways to Norman and Rumelhart’s semantic nets in that it
represents an instance of a relation by a case-frame configuration containing a node
labelled with a relation (e.g., ‘love’) connected by case-like links (e.g., ‘SUBJ’,
‘OBJ’) to nodes labelled with individual names (e.g., ‘John’). It is reminiscent of
Schubert’s logic network, since it has nodes labelled with quantifiers which are
linked to the nodes which they bind. As in partitioned semantic nets, an arc may
connect to a whole subgraph, in order to express the scope of a quantification. For
such a self-contained subnet, one node within it is designated the ‘entry’ node.

Janas and Schwind provide a careful mathematical definition of a ‘value’
function to allow these ‘supernodes’ to be included, but this function is essentially
the node-labelling function, so it is possible to incorporate this into our general
definition. That is, one of these ‘supernodes’ can be regarded as a node which is
labelled with an entire subgraph. Such nodes will have no outgoing arcs (all Janas
and Schwind’s networks are tree-like, and so have ‘terminal nodes’).

The ‘entry node’ for such a subnet is used to indicate which part of the
substructure is being referred to by any arcs which point to the subnet as a whole.
For example, the sentence ‘The milk the mother is drinking is hot’ has the diagram
in Figure 8, where rectangular boxes indicate nodes and the contents of the boxes
indicate their values; hence a semantic network is a single node, whose value is the
net structure.

| [FOTEER) = subi —DRING- obj >{WIK] » | x < ret —[FOT]

FiG. 8

(We are not concerned here with the linguistic or logical adequacy of the notation.)
The idea of a ‘head’ for a structure may be linguistically useful, but it does not
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seem necessary to introduce the concept of an ‘entry node’ into our general
definition of a semantic net. Instead, we can define a class of ‘entry-marked
semantic nets’, and use this class to define the range of the labelling function for an
ESN (‘extensional semantic network’).

Although the subgraphs labelled on to nodes provide a useful scoping device for
quantifiers (as in ‘partitioned semantic networks’), the use of entry nodes becomes
inconvenient when Janas and Schwind introduce a notation for logical conjuncts
and disjuncts. They therefore amend their definition to allow subgraphs without
entry nodes to be labelled on to nodes. This generalization is useful from the point
of view of our uniform general definition, as it brings ESNs closer to ‘partitioned
semantic networks’, in which entry nodes are not used.

Logical formulae are expressible in ESNs by the use of negation nodes, universal
quantifier nodes and existential quantifier nodes, as well as conjuncts and disjuncts.

The word ‘extensional’ occurs in the title of ESNs because Janas and Schwind
include a definition of how the (intensional) structure in their nets can refer or apply
to sets of items (in a way similar to the Tarski semantics for first-order logic). Thus,
if we assume that truth-conditions in terms of objects and relations constitute an
‘interpretation’ for. a knowledge representation system, then Janas and Schwind
have given a semantic interpretation for ESNs (or at least a partial one—some
aspects are not explained).

Hence we can describe ESNs as ‘multilevel semantic networks’ (see Appendix)
with the categories given below. The distinction between substantive and
organizational links is unclear in their framework, since they comment:

Many linguists have argued . . . that meaning is closely related to subject
areas . .. Consequently, a certain subject area is covered by a set of
concepts and a set of relations defined on these concepts, and these sets
are usually different for different areas. For example, we do not need a
verb-subject relation for covering mathematics (Janas and Schwind, 1979:
270).

Nevertheless, the relations they propose seem to be organizational—SUP (concept
superordinate to another), REF (concept may/does refer to another), SYN
(synonymous), ANT (antonymous), etc. Also, their illustrative examples (which use
these relations) are drawn from various subject areas. This question is further
confused by the fact that many of their relations and concepts seem to be based on
English grammatical inter-constituent relations (e.g., prepositional adjunct, object).
It seems best to interpret the above quotation as meaning that certain applications of
their network theory may not need to use some of the vocabulary of organizational
links, rather than taking it to mean that different subject areas use completely
different link-types. With this assumption, ESNs have no substantive arc labels—all
substantive labels occur on nodes.

Types of nodes

Atomic: three subtypes—terminal (basic atoms), relation (names of verb-like
relations such as ‘drink’, or adjectival relations such as ‘hot’), and logical (bearing
quantifiers, connectives, etc).

Supernodes: labelled with subnets.



G. D. RitcHIEANDF. K. HANNA 219
Organizational node labels

EXIST: quantifier, on a logical node.
FORALL: quantifier, on a logical node.
NOT: negation operator, on a logical node.
AND: conjunction, on a logical node.

OR: disjunction, on a logical node.

Organizational arc labels

Janas and Schwind include some unlabelled arcs in their diagrams, connecting
logical nodes to the items they affect, although neither their definition nor ours
permits unlabelled arcs. We will include extra arc labels to cover these cases. ‘
SUBJ: verb-subject relation.

OBJ: verb-object relation.

PREP: prepositional adjunct.

OWN: general association between concepts.

REF: concept applies to another.

VAR: connects quantifier to its bound node.

ARG: connects negation node to the item it covers.

SUPO: connects concept node to a superordinate one (cf. ISA).

ANT: connects two antonymous concepts.

SYN: connects two synonymous concepts.

Substantive label categories

These node-labels fall into two broad classes:

Atomic: (marked on Atomic nodes), with sub-classes—verbal, adverblal relational,
sentential, adjectival (marked on relation nodes), and nominal (marked on termmal
nodes).

Subnet: (marked on supernodes).

4.3 Frame systems

The systems of Brachman, of Fahlman, and of Roberts and Goldstein exemplify
representational schemes in which information is more clustered than in uniform
semantic networks. The typical characteristics are:

12. (a) As in uniform semantic nets, there is a distinction between ‘generic’

definitions and ‘instances’ of these definitions.

(b) The amount of information associated with the generic items (and
inherited by the instances) is large.

(¢) The simple ‘argument places’ used in uniform semantic nets are replaced
by ‘slots’ which contain large amounts of information about the aspect of
the concept being described. Usually there is a ‘default’ value, a
“‘restriction’ on what may be associated with the slot, and procedures
wh1ch have to be executed under certain conditions.

" These systems can be seen as derived from the ‘frames’ of Minsky (1975).
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4.3.1 NETL

Fahlman (1979) outlines a semantic net scheme which is designed to make use of
parallel hardware. The essential idea is that many of the computationally intensive
parts of net-searching (e.g., finding intersections between sets) can be done very
simply and quickly if an appropriate (special-purpose) machine is used. His network
representation is well within the mainstream of knowledge representation, but has
certain special features to take advantage of the special parallel operations (which
use ‘tagging’ operations as described in Section 4.1.1. above). Many of the details of
his net constructs have not been fully developed, and it is sometimes hard to separate
the abstract definitions from descriptions of implementation techniques.

One of the slightly confusing aspects of Fahlman’s account is his use of the word
‘link’. A ‘link’ in NETL is not a simple ‘arc’ in the sense adopted in this article, but
is a complex structure in its own right, which can have further connections to other
items in the net. It is, in fact, much more like a ‘node’ in our terminology. The word
‘link’ has been used because these items represent relations between other items (i.e.,
they are like Norman and Rumelhart’s ‘secondary nodes’), and this can be seen as a
kind of ‘connection’. The confusion is increased by the fact that Fahlman also has
simple, atomic connections, called ‘wires’, which are much more like the ‘arcs’ of
our definition, and he states that certain semantic connections may sometimes be
represented by a ‘link’ (i.e., a relational node) and sometimes by a ‘wire’.

Each ‘element’ (i.e., ‘node’ or ‘link’) can have ‘modifiers’ which are regarded as
flag-bits giving further details of the type of element. These are what were referred
to as ‘type features’ in Section 3.5 above, since several of them may be present, and
they subcategorize the node for the benefit of the interpreter (i.e., they are
‘organizational’ rather than ‘substantive’ information). It is difficult to establish
exactly what are the constraints between these features, so we have not included a
full specification of these here. Fahlman regards the node types as having certain
basic types (denoted by mnemonics starting with ‘*’), each subcategorized by
modifiers (denoted by mnemonics starting with ‘**’), but the possible combinations
of modifiers within each basic type are not explicitly listed.

In addition to the modifiers, there are ‘markers’ on each element, which the fast
parallel hardware (which is spread throughout the net) can use to propagate
information across the net. Although these would be stored directly on the element
in an implementation, they are (at an implementation-independent level) a form of
‘tagging’ as discussed in Section 4.1.1, and so need not be included in the specifica-
tion of the net structures. In this particular case, such inclusion would be possible,
since the scheme uses a small fixed set of markers (M1, M2, etc.), which could be
regarded as a predefined set of ‘tag-sets’ into which nodes may be inserted or
removed. -

Types of node

*INDYV: Individual entity.

*TYPE: Typical member of set.

*MAP: Copied version of some inherited role.

*TMAP: Copied version of an inherited *TYPE node.

*IST: Instance of relation or predicate.

*OTHER: arbitrarily-chosen individual of a set, different from the *TYPE node for
that set.

*EVERY: Universal statement about a set. (Fahlman describes this as a ‘“*TYPE
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node modified’, so perhaps this is a type-feature (modifier, not a basic type).

*INT: Represents the intersection of two sets (‘Like an *EVERY node ...’
according to Fahlman’s specification).

(The above node-types are what Fahlman calls ‘nodes’; the next eight are those
which he calls ‘links’).

*VC: inheritance link.

*EQ: two nodes connected to this are equivalent.

*CANCEL.: explicit deletion marker from a structure to the ‘deleted’ item.
*CANVC: explicit statement of non-inheritance between two items.

*SPLIT: used to link items known to be distinct to their containing set.

*EXFOR: asserts that for every copy of one item, there must be a version of the
other.

*EXIN: asserts that every copy of the first item intrinsically contains a version of the
other.

*SCOPE: one item is valid within the scope of another.

Sub-types (Modifiers):

**PART: marks part of some structure; on *TYPE or *TMAP nodes.

**EXIN: marks whether an item is an intrinsic (defining) part of its containing
structure, or merely an attached (related) item; on *INDV nodes.

**SPLIT: marks whether item is distinct from others similarly connected to the
*TYPE node; on *INDV nodes.

**SPEC: marks nodes which are in ‘specification’ part of *EVERY structure; on
link-nodes, *IST and *INDYV nodes.

**EXTERN: marks an externally-expressible (printable) item; on *INDV nodes.
**RSPLIT: marks whether this item can fulfil the same role in several items or only
in one; on *INDV, *EXIN, *EXFOR nodes.

**UNK: marks unknown item; on *IST nodes.

**NOT: negation marker; on *IST and *EVERY nodes.

** IKE: marks a connection as not being inheritance, but a form of similarity; on
*VC nodes.

Organizational arc labels

These are what Fahlman calls ‘wires’. Some pieces of information may be
represented by a ‘link-node’ (e.g., *SPLIT) or by one of the ‘wires’ together with a
modifier on one of the nodes thus connected (e.g., ‘existence wire’ and **SPLIT
modifier). Hence the appearance of similar ideas in different sections.

PARENT: connects a node to another node defining what kind of entity the former
represents. :

SCOPE: connects node to description of its area of validity.

SPEC: connects node to the *EVERY node in which it is a specification.

A and B: these connect to any two related items; their meaning depends on the node-
types involved.

4.3.2 Structured inheritance networks

Brachman (1977, 1978, 1979) sets out a very detailed, general and rigorous system of
semantic nets, with the aim of eliminating the confusion caused by the multiplicity
of ill-defined and inconsistent proposals previously made on the topic. To a large
extent, this purpose is achieved. Although Brachman’s ‘structured inheritance
networks’ do not solve every problem of knowledge representation, they serve as an
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extremely useful notation for representing many distinctions which have been
overlooked elsewhere.

The main mechanism is, as in Fahlman’s NETL (see Section 4.3.1), inheritance
from a generic ‘concept’ node of a complex interconnected set of information,
including a set of ‘roles’ which may be filled in that concept. Each concept is
linked to a ‘structural description’ (cf. the ISWHEN of Norman and Rumelhart),
specifying in detail what the meaning of that concept is, in terms of connections
between its roles, etc. Brachman uses a large number of links to express the various
subtleties between different forms of inheritance or ‘instantiation’, and
distinguishes several variations on the notion of an ‘event’, depending on how it is
being described. The various nodes used in these event-descriptions are still part of
the general scheme of ‘concepts’, and are not classed as a new type of item. Logical
connectives (e.g., AND, OR) are also incorporated as concepts (seemingly the only
built-in (organizational) concepts in the system), with the arguments being
represented as role-fillers in a uniform fashion.

Types of node

Concept—has subtyp'es generic, individual, paraindividual, logical. A para-
individual is a version of a generic concept whose roles are linked to those of another
concept (Brachman, 1979: 38-89). o
Role—a cluster of information about a part or attribute of a concept.

Structural description—the root of a subnet describing a concept.

Basic—any atomic symbol (e.g., an integer or character string). Can hold the
modality tag for a role. :

Organizational node labels

Logicals: AND, OR, etc.
Modalities: Optional, etc.

Organizational arc labels

Structure: from concept to structural-description.
RoleD: from concept to role (also known as ‘Dattrs’). .
The next five all link role nodes to details of the role (facets):
Modality: optional, derived, etc.
Value-restriction: constraint on filler.
Val: the value.
Role: name of role, or other role which this represents.
Number: how many in the set of fillers.
Paraindividuates: from paraindividual to the generic concept of which it is an
instance.
Individuates: from individual to generic concept.
Satisfies: from role to the role of which it is an instance.
Corefvalue: from role in structural description to role for which it stands.
SDfacet: from structural description to one of its parts.
Corefsatisfies: from role in structural description to corresponding role in generic
concept being defined.
Dinsts: Individual (or paraindividual) to a role in a generic.
Dsuperc: from sub-concept to super-concept.
Diffs: from sub-concept to roles which differentiate roles in super-concept.
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Dmods: from sub-concept to roles which add specification to roles in super-concept.
Dbrotherc: from sub-concept to ‘similar’ sub-concept.

Dfactive: between event-node and ‘fact-of-happening’ node.

Dresult: from event-node and thing-produced node.

Dactivity-process: from event-node to description as a process.
Dactivity-complaction: from event-node to description as a completed action.

Dgen: special kind of generic event.

Drole: concept derived from a role.

Substantive node label categories
There are only two varieties of item needed:

1. Concept-names.
2. Data (character-strings, integers, etc.).

Figure 9 shows a sample SI-net, using the conventions that quoted items are data (on"
basic nodes), ovals are concept nodes, squares are role nodes, and black squares are
role nodes within an individual concept.

ROLE name — ROLE name
"Destination” . r 1 ‘Object’

DSUPERC

ROLE

individuates

List recent’
messages

Lineprinter

DINSTS i

VAL

Recent
messages,

FiG. 9

4.3.3 FRL

The FRL system (‘Frames Representation Language’) of Roberts and Goldstein
(1977) can be seen as a language which operates on a form of semantic net, although
it is not described in normal network terminology.

The main structure in FRL is a ‘frame’ (cf. Minsky, 1975), which contains certain
‘slots’, each with a number of ‘facets’. Although these structures can be seen as a
form of ‘attribute-value’ lists, as used in LISP programs over recent years (and are
implemented in that way) they can also be seen as configurations of nodes. The
structures in FRL are similar in some ways to the ‘SI-networks’ of Brachman (see
Section 4.3.2).

A ‘frame’ represents either a general concept or a particular instance of a concept.
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Its ‘slots’ contain further information about it (e.g., subparts or attributes), with
each ‘facet’ of a slot containing some specific extra information about the item
filling that slot (e.g., a restriction on what items may fill it, or a default value to be
used if none is explicitly entered). Frames normally have a slot labelled ‘AKO’ (‘A
Kind Of’) which contains a pointer to another (generic) frame, thus incorporating
the traditional ‘ISA-link’. The operations which act on the frames take special
account of this slot, in order to ‘inherit’ information from frames further up the
chain of AKO links. In a way, the AKO slot is not a slot in the same sense that other
slots in the frame are, since it appears on all frames and does not represent a part or
attribute of the particular item described. The fact that a frame is implemented as a
LISP list, and the AKO entry is on this list, blurs the distinction between the special
meaning of the AKO link and the other slots. There is also a special slot
‘INSTANCES’, which is the inverse of AKO.

There is some further structure within the entries on the ‘facets’ of the slots. Each
‘datum’ (i.e., facet entry) can have attached to it a list of ‘comments’, where each
comment consists of some label or keyword followed by a list of ‘messages’ (arbitrary
strings). There are a fixed set of comment-keywords that the FRL system can use,
although presumably the FRL programmer could define further comment-types,
since FRL is embedded in LISP. Similarly, there are six standard facet-names used
by the FRL interpreter, but a LISP programmer using FRL could probably extend
this set. To do so would be to extend FRL, rather than merely to use it, since it
would entail changing the interpreter (which implicitly defines the language).

Values (e.g., integers, atoms) appear in the system solely as node-labels, and
there is no need for a special class of nodes to support them. These primitive data
items can appear, for example, as the labels on ‘datum’ nodes.

It seems necessary to allow substantive categories as labels on arcs, in order to
capture the structure of FRL slots, since the slot-names are used within a frame to
distinguish the different slots, and also have global significance (in that some of the
inheritance procedures search up the inheritance links to find a slot of a given
name). If we wished to eliminate the use of substantive arc labels, we would have to
use a (less obvious) representation in which each slot was linked to a facet holding its
slot-name (cf. Section 4.3.2 above).

FRL allows ‘procedural attachment’, since some of the ‘facets’ (e.g., IFADDED)
are procedures to be executed under particular circumstances. We can incorporate
this by allowing the labels for ‘datum’ nodes to be of type ‘procedure’, but it is not
possible (within the limited framework of this article) to give any more precise
definition.

Types of node

Frame: these can be of two sub-types, generic or individual.

Slot: this indicates a cluster of information attached to a frame.
Facet: one of these is a particular part of the information in a slot.
Datum: an entry in a facet.

Message: part of a ‘comment’, attached to a datum.

Organizational arc labels

Although slot names will in general be substantive, there are two which are built in
to the system:
AKO: joins a frame to a generic frame.
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INSTANCE: joins a frame to its (list of ?) instances.

There are six facet-names. These link a ‘slot’ node to a ‘facet’ node, and the
following are the informal meanings of the items to which they connect:

VALUE: the item in the slot.

DEFAULT: the value to be used if none is actually in the slot.

IFADDED: a procedure to be executed when a value is inserted in the slot (i.e., a
VALUE link is made to some item).

IFREMOVED: a procedure to be executed when the VALUE link is removed.
IFNEEDED: a procedure to be executed in order to compute an item to fill the slot.
REQUIRE: a predicate which delimits the permitted VALUE items.

There are three built-in comment types, which link a ‘datum’ node to a ‘message’
node. They are used by miscellaneous FRL system routines.

IN
FINHERIT
TYPE

Substantive node label categories

Frame-names (marked on frame nodes).
Data (marked on datum nodes).
Procedures (marked on datum nodes).
Strings (marked on message nodes).

Substantive arc categories

Slot-names—connect frame nodes to slot nodes.
Figure 10 shows one of Roberts and Goldstein’s examples drawn as a net; the
original is given in (13).

(13)

(THING
(INSTANCE (IF-ADDED ( (ADD-INSTANCE) ))
(IF-REMOVED ((REMOVE-INSTANCE) )))
(AKO (IF-ADDED ((ADD-AKO))
(IF-REMOVED ((REMOVE-AKO) ))))
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5. FURTHER DEVELOPMENT

Despite the length and breadth of this paper, we have laid the shallowest of
foundations for a precise, rigorous approach to defining semantic networks. The
main areas for elaboration are:

Syntactic rules. As suggested in Section 3.2, there is a need for some way of
specifying the form of semantic networks. Some augmented version of the
grammars discussed by Shaw (1970) might be suitable, for example.

Operations. It is not very useful to list labels, node-types, etc., without any reference
to the operations which are defined on them. We have had to follow this custom,
since the published accounts of semantic nets generally rely heavily on the reader’s
intuitions in this area. For any particular semantic net formalism, the operations
could be stated in any suitably precise way, for example by defining the net as an
‘abstract data type’ (Wegner, 1980).

Procedures. As well as defining the basic network operations, we need (at least for
those systems using procedural attachment) some notion of a ‘procedure’ which is a
data-item, within the network, which can give rise to some sequence of operations
being applied to the net.

Interpretation. 1t is rare for the ‘meaning’ of a semantic net to be given in a written
description (see comments in 3.8, 3.10 above, and in Hayes, 1977, McDermott,
1978). Janas and Schwind (1979) give such an interpretation, and some authors rely
on the similarity of their notation to predicate logic, but most use totally
uninterpreted notations.

One possible obstacle to developing these aspects of semantic nets is the fact that
semantic networks fulfil different purposes for different authors. Quillian originally
proposed a network as a natural data structure for the kind of processing he was
using (spreading activation). Thus his networks were not a formal system of
. representation comparable to, say, predicate logic. The visually appealing graph
structure was then adopted by others (e.g., Schank, Norman and Rumelhart) who
were not using spreading activation models, but who saw the relational structure
expressed in the net itself as a form of knowledge representation. In some later
systems, the network takes on a less central role. For McSkimin and Minker, and for
Hendrix, it describes a hierarchy of sets which can be used to guide logical
deduction. For Brachman, it provides an abstract level for describing how a
knowledge representation language (KL-one) operates. Fahlman, on the other hand,
returns to the original idea of tagging elements in the net, albeit with more complex
structures and operations than those of Quillian (see also Charniak, 1981; Alshawi,
1982).

It follows that to describe a system as ‘using a semantic network’ says very little
about it. Only if details are given of where the network fits into the overall system
(e.g., set hierarchy to guide theorem prover) and what operations can be performed
on the network (e.g., tagging) is any real information conveyed.

It might be claimed that these issues are only of minor, pedantic interest, since the
main aim is to improve the adequacy of representations, rather than worrying about
the underlying formalisms. We believe that if insufficient attention is paid to the
foundations, then much time and effort will be wasted on ill-defined, uncom-
municable notations, and in re-inventing trivial variants of existing techniques.
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APPENDIX—GENERAL DEFINITIONS

Defn. 1. A net is a quadruple (4, N, start, finish), where A and N are sets, and start
and finish are functions from A4 to N. The set Nis called the set of nodes, and A is the
set of arcs. If xisin A, and n,m are in A, with n = start(x) and m = finish(x), then x is
said to be from n to m.

Comment: This allows several arcs between two nodes, and allows arcs to form a loop
from one node to itself. This generality is not included in conventional directed
graphs.

Defn. 2. A pathinanet (A4, N, start, finish) is a sequence of nodes and arcs {n(1), a(1),
n2),a(),...... » a(k), n(k+ 1)} (with n(i) in N, a(i) in A, for each (i), such that,
for each arc a(j), start(a(j)) = n(j) and finish(a(j)) = n(j + 1). The length of such a
_path is defined to be k (i.e., the number of arcs involved in it).

Defn. 3. A directed graph is a net (4, N, start, finish) such that, for each pair of nodes
(n,m) in NX N, there is at most one arc @ in 4 with start(a) = n and finish(a) = m, and
such that there is no x in A with start(x) = finish(x).

Comment: This is equivalent to the standard definition of a directed graph, in which
the arcs are identified with pairs from N x N. It will not be used in describing the graph
structure of semantic nets, but it is introduced here for completeness.

Defn. 4. An acyclic directed graph is a directed graph (A, N, start, finish) in which
there are no paths of length greater than zero {n(1), . . . . , n(k)} with n(1) = n(k).

Defn. 5. A type-system is a pair of sets (P1, P2) such that P1 is a subset of P2 (not
necessarily proper). P1 is known as the set of basic types and (P2 — P1) is known as
the set of subtypes.

Defn. 6. Givenanet X=(A, N, start, finish), a node-typing of Xis a pair (f,(P1, P2))
where (P1, P2)is a type system, and fis a mapping from N to the set of subsets of P2
such that for each n in N, f(n) contains exactly one element of P1.

Defn. 7. Given a net X=(A, N, start, finish), a node-labelling of X is a pair (NL,
nlab), where NL is a set (the node-labels) and n/ab is a function from N to NL.

Defn. 8. Given a net X=(A, N, start, finish), an arc-labelling of X is a pair (AL,
alab) where AL is a set (the arc-labels) and al/ab is a function from A4 to AL.

Defn. 9.

1. A fully-labelled net is a triple (X, NODELAB, ARCLAB), where X is a net,
NODELAB is a node-labelling of X, and ARCLAB is an arc-labelling of X.

2. A fully-labelled typed net is a pair (Y, T) where Y=(X, NODELAB, ARCLAB)
is a fully-labelled net, and 7=(f,(P1, P2)) is a node-typing of X.
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Defn. 10. A labelling system is a pair LS = (S, F) where Fis a family of sets and Sis the
union of all the sets in F.

Comment: This rather trivial concept is introduced simply in order to make later
definitions less verbose. It merely refers to a set of items and a classification imposed
on them.

Defn. 11. An arc-labelling system is a pair of labelling systems P=((S1, F1), (S2,
F2)), where for every pair of sets x,y with x in F1, y in F2, x and y are disjoint.
(Equivalently, S1and S2 are disjoint). S1 is known as the ‘unidirectional labels’ of P,
and S2 is known as the ‘bidirectional labels’ of P.

Comment: The sets are the various categories of labels (which may overlap), and the
stipulation of non-intersection is so that no label can be classed as both one-
directional and two-directional.

Defn. 12. A semantic network formalism is a tuple S=(ONLF, OALF, T, OP, FR,
SPL) where:

ONLF=(ONL, ONLC) is a labelling system, with ONL known as the set of organiza-
tional node labels in S.

OALF=((OAL1, OAC)), (OAL2, OAC2)) is an arc-labelling system; the union of
OAL1 and OAL2 (= OAL) is known as the organizational arc labels in S.

T is a type system.

OP is a set of network operations.

FR is a set of network formation rules.

SPL is a semantic net programming language.

Comment: As discussed in the text (Section 3.8), we will not say anything further
about the last three components. '

Defn. 13. Let X be a semantic net formalism F=(ONLF, OALF, T, OP, FR, SPL), let
SNL be a set, (the ‘substantive node labels’), and let SAL be another set (the set of

‘substantive arc labels’), with SNL and SAL disjoint. Let ONL be the union of all the
sets in ONLF, and let OAL be the union of all the sets in the components of OALF. -
Then:

1. A one-level semantic net Y within X describing SNL U SAL is a fully-labelled
typed net Y=(((N, A, start, finish), (NL, nlab), (AL, alab)), (f, T) ) such that:
Y is well-formed with respect to FR.
ALCSAL UOAL
NLC_SNLUONL

2. An’entry-marked semantic net Y within X describing SNLEUSAL is a paxr
(Y', n') where
Yy’ is either a one-level or multilevel semantic net within X describing SNL U
SAL
n' is a set of at most one node from Y '.

3. A multi-level semantic net Y within X describing SNL\JSAL is a fully-labelled
typed net Y=(((N, A, start, finish), (NL, nlab), (AL, alab)) (f, T)) such that:
Y is well-formed with respect to FR.
AL=SAL\UOAL
NL = SNLIUONLU the set of entry-marked semantic nets w1thm X describing
SNL\USAL).
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Defn. 14. Let Y be a semantic net with nodes N, arcs A, and arc-labelling function
alab. For any x,y in N, an access path from x to y is a sequence of nodes and arcs:

{n(1), a(l), n(2), . .. ... , a(k), n(k+ 1)} (where n(i) in N, a(i) in A) such that
1. n()=x
2. nk+l)=y

3. Foreachi,1<=i<=k,

either a(i) goes from n(i) to n(i +1),
or a(i) goes from n(i + 1) to n(i) and alab(a(i)) is a bidirectional label.

Defn. 15. In a multilevel semantic network, using the notation of the Defn. 13 above,
a node x such that nlab(x) is a semantic net (i.e., nlab(x) is not in SNLUONL) 1s
termed a supernode.

Comment: This is used for ‘partitioned semantic networks’.
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