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ABSTRACT

The finding of the document(s) closest to a query, or the finding of
document(s) closest to a given document, is a central problem in informa-
tion retrieval. It is often practical to presuppose that both the document/
index term file and the inverted term/document file are available. In this
context, a recently proposed algorithm used an upper bound on closeness,
thus obviating the need for an exact calculation of closeness in many
instances. An improved version of this algorithm is presented here. Within
the framework of this approach, we also look at how certain similarity or
dissimilarity coefficients might be preferred to others. Finally, we specify
the condition under which the use of both document/term and term/
document files will lead to more efficient search algorithms.

1. BACKGROUND

The nearest neighbour (NN) problem—the problem of locating the closest point to a
given point, using some definition of ‘closeness’—is a central problem in many
areas. In information retrieval, the particular features of document/index term data
have given rise to a number of suggested approaches, referenced in later sections, for
efficiently calculating NNs of given documents or queries. One recent approach
(Smeaton and van Rijsbergen, 1981) determined a least possible dissimilarity
(greatest possible similarity) using information that was storable in central memory.
If such a lower bound on the dissimilarity (upper bound on the similarity) showed
sufficient promise, the full calculation of the (dis)similarity was proceeded with, and
then tested against the previous best NN. Smeaton and van Rijsbergen went further
and used the bound. to eliminate some of the longer inverted file lists in fofo. The
bounding operation they described can, however, be substantially tightened, and
this general approach to the NN problem can further suggest which (dis)similarity
function should be used for best results.
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2. INTRODUCTION

A document collection consists of n documents, each characterized by one
or more of m index terms. A document may thus be represented by a vertex
of a hypercube in m-dimensional space.” Define such a point by the binary

vector {i(j) : j=1, 2, ..., m}. A term is similarly a vertex of the unit hyper-
cube in n-dimensional space. A term will be denoted by the binary vector
{j@ :i=1,2,...,n}. A queryis mathematically defined in an identical manner to

a document, and we will consider here only the problem of determining the NN of a
document. Other similar problems such as the all-points NN problem or the k-NN
problem are immediate generalizations.

Define the set of possible NNs of document i, POSS(NN(i)), as the set of
documents i’ which share at least one term in common with i:

POSS(NN@)={i": (3 ) EU)=i'"(j)=1)}

Croft: (1977) first proposed that the set POSS could be calculated easily using an
inverted file of terms/documents as well as the initial document/term file (i.e., both
the set of document vectors and the set of term vectors, stored in some efficient
manner). Since his implementation took POSS as a multiset—some documents were
included many times over—Willett (1981) has proposed a modified way of determin-
ing POSS to correct this. Harding and Willett (1980) have also discussed when the
determining of POSS would tend to be disadvantageous, i.e., when the number of
terms associated with documents becomes too great. However, a more easily applied
rule can be formulated: this will be given in Section 5.

The set of feasible NNs of document i, FEAS(NN(/)), is defined as the set of
documents i’ whose positions are, at best, within a certain radius of document i:

FEAS(NN(i)) C POSS(NN())
FEAS(NN@))={i" : LB(d(i, i) <r}

where LB is the lower bound on the dissimilarity between document i and candidate
NN document i; d is a dissimilarity, i.e., a real-valued function with properties:
d(i, i)=d({’, i) and d(i, i) >0 (the more common use of similarities may be easily
catered for by reversing the inequality and replacing LB with UB, an upper bound);
r is a radius, equal to the dissimilarity between document i and the current NN
(initially e ; or 0 in the case of similarities).

A feasible NN of document i is thus a document whose least possible dissimilarity
with i is less than the current NN dissimilarity. Consequently there is a good chance
that d(i, i") is in fact less than the current NN dissimilarity.

The advantage of specifying whether or not a document belongs to the set FEAS
at any stage lies in the fact that some information regarding the documents can be
made easily accessible. If set FEAS is small, then very few full (dis)similarity
calculations will be necessary. If a good current NN is selected at an early stage,
membership in FEAS is made more restrictive, thus enhancing the performance of
the algorithm. ‘

All the (dis)similarity measures discussed in the next section are functions of some
or all of the following:
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CARD(}): the number of terms associated with the given document i.
CARD(i"): the number of terms associated with a candldate NN.
COMMC(, i'): the number of terms common to iand i’.

It is assumed that the CARD values of all n documents can be kept in memory
throughout. The data required to calculate COMM(, ") on the other hand must
normally be held on some direct-access device, due to the size of the document
collection.

The lower bounding of the dissimilarity (upper bounding of the similarity) is
achieved by upper bounding COMM. Let us consider the case where the NN of
document i is sought, and where at some stage in the execution, document i is being
examined. This situation arises via the following steps:

1. Access the terms associated with document i. ‘

2. For each term in turn, consider the set of documents which are indexed by the
term, and which have not been examined before. (The inverted file is used here,
and the set POSS is thereby built up in stages.)

3. Consider the kth such term, and let document i’ be indexed by this term.
Document i’ cannot have been met with before. Therefore at most
CARD(i)—k+1 terms are common to document / and document i’ (i.e., the
most favourable supposition is made that a// remaining terms in document 7 are
common to document ‘). On the other hand, from the point of view of
document i’, CARD(i") is the maximum number of terms which can be common
toiand i’

Consequently we arrive at the lower bound estimate for COMM(i, i’) as
Min (CARD(i"), CARD(i) — k +1). This is used to give an estimated least value of
d(i, i"). If it is less than the current NN dissimilarity, the terms associated with /" are
accessed and an exact calculation of d(i, i) is carried out.

In the experimentation;:it:was found that the bound on COMM(, i) could be
simplified to CARD(i) —k + 1-with very few extra calculations, and in some cases
with small improvements in CPU time.

3. EXPERIMENTAL RESULTS

The well-known National Phys‘i‘cial Laboratory’s (NPL) test collection was used. The
NN of 93 test queries were determined. The relevant statistics of the collection and
of queries are:

Number of documents: 11429

Number of terms: - 7491

Average terms/document: 19.9
Average documents/term: 30.4
Average terms/query: 7.1

Using the notation of the previous section, the (dis)similarity functions used were:

Hamming: CARD(/)+CARD(")-2.COMM(, i").
Simple: COMM(, i). -
Ivie: COMM(, i')/(CARD({).CARD(i ). @
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* Dice: 2.COMM(i, i")/(CARD(i) + CARD(i")).
Cosine:  COMMU, i')**2/(CARD(i).CARD(i")).
Jaccard:  COMMC;, i')/(CARD() + CARD(i') - COMM(, i"}).
Overlap:  COMM(, i')/Min(CARD(i), CARD(")).

where the first function is a distance, and all others are similarities. The Hamming
distance is also known- as the ‘city-block’, least-moves, symmetric difference, or
Minkowski 1-distance. It is also the squared Euclidean or Minkowski 2-distance in
the case of binary data. ’

However unlike the other (similarity) measures above, a minimum Hamming
distance between two documents could have a zero value for COMM, i.e., it is not
always necessary for an index term to be common to both. In other words the NN
document might not be a member of set POSS, and a fortiori of set FEAS. It may be
easily established that the NN, using the Hamming distance, will be either the NN
which shares at least one term, or the document of least CARDinality which has no
term in common (and hence ¢ POSS). This can be checked for, at little extra
computational cost. It might on the other hand be deemed desirable that a NN
document have at least one term in common with a given document or query. This
was done in the programmed version of the algorithm, and by a slight abuse of
terminology we will refer to this as the Hamming distance in what follows..

The results obtained using 93 test queries and the various (dis)similarity functions
defined above are shown in Table 1. The first column gives the results obtained on
the same data by Smeaton and van Rijsbergen (1981), and the second column gives
the results obtained by the algorithm under discussion in this article. Both sets of
results refer to the average numbers of full calculations of (dis)similarities per query.
Column 3 gives the CPU time required, for determining the NNs of all 93 queries,
on a DEC-2060 machine; these are intended as being indicative only.

Table 1. Results obtained

Number of determinations of terms
common to query and documents*

Smeaton and CPU times
van Rijsbergen (1981) Present method (min:s)t
Hamming — 101 4:40
Simple - 307 8:03
Ivie 1755 148 5:32
Dice 1591 307 7:43
Cosine 1876 349 8:51
Jaccard — 307 7:51

Overlap — 312 8:23

* Average per query.
t For all 93 NN searches.

In all cases, an average of 4078 documents would have been obtained by using the
documents indexed by a given query’s terms; of these, 3162 on average were distinct,
i.e., POSS contained an average of 3162 documents. In the case of the Hamming
dlstancq, we find on average that:
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1. POSS reduced the total number of documents to be examined, i.e., 11429, to
3162.
2. FEAS further reduced this to 101.

Overall, then, less than 1 per cent of the documents had to be fully examined when
searching for the NN of the average query.

The NNs of the first 500 documents in the NPL collection were also obtained. The
average number of terms per document was almost three times the average number
of terms per query (cf., statistics at the beginning of this section), and consequently
many more documents had to be examined. POSS in this case contained an average
of 4807 documents, and FEAS further reduced this to 767 documents. Thus the full
Hamming distance had to be calculated on average with less than 7 per cent of the
possible 11429 documents in order to determine a NN.

4. THE SUITABILITY OF DISSIMILARITIES FOR USE IN PROPOSED
ALGORITHM

The results obtained differ for the various (dis)similarity functions used. The
question arises as to whether or not any particular (dis)similarity function can be
recommended when using this bounding strategy. We are therefore led to propose a
suitability axiom for (dis)similarity functions used in the bounding strategy. As will
be seen, this axiom is verified only by the Hamming distance.

With reference to Figure 1, we have a given document / with CARD(/) associated
terms; we have a current NN document ', of CARD(i") terms; and we have, finally,

o/

FiG. 1. Schematic view at any stage of finding of NN. /=Document or query for
which NN is desired; i’ =current NN document; " =candidate NN document;
LBi" = vector such that: d(i, LBi")=LB(d(i, "))

a candidate NN document ", of CARD(/") terms. It is assumed that we have
immediate access-to the value of CARD(i"). In order to decide whether or not to
determine the number of terms common to i and i”, i.e., COMM(, "), we compare
the current NN dissimilarity, d(i, i), with the lower bounded dissimilarity between i
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and i": LB(d(, {")=d(i, LB(")). (What we have done here is to interpret the
bounded distance, LB(d(i, i")), as a distance between i and some other vector, called
LB(i")). We will abbreviate LB(i") to LBi". It may be noted that more than one
vector, LBi”, will ordinarily satisfy

LB(d(i, i"Y)=d(, LBi")

In what follows, where we will be discussing d(i”, LBi"), we will assume that LBi" is
always chosen in such a way that this dissimilarity is minimum (an arbitrary LBi" is
chosen if there is more than one that satisfies this condition).

The axiom of suitability is now defined as:

d@’, LBi")+d(i, LBi"y=d(i, i") (AS)

i.e., if the vector LBi” is close to candidate NN vector ", then the lower bound
estimate of d(i, i") is close to the real value of d(i, i"), and vice versa. In the context
of a metric space, equality (AS) may be interpreted as the fact that vector LBi” lies
on the shortest path connecting vectors i and i”. The axiom of suitability is therefore -
proposed as a basic condition of ‘well-definedness’ when implementing a bounding
strategy. Two lemmas are now proved, from which the advantage of the Hamming
distance immediately follows.

Lemma 1: In the case of the Hamming distance, equality (AS) is satisfied.
Proof: As a preliminary to the proof, we note that vector LBi" has the same
number of ones as does i’, and differs only in that the location of these ones has
~changed.
In the case of the Hamming distance we have:

d(i, LBi")= CARD(J) + CARD(i ) =2.COMM(, LBi")
d(i, i"y=CARD(i) + CARD(i") - 2.COMM(, i ")
d(i", LBi")=CARD(i") + CARD(i") - 2.COMM(", LBi")
We claim that:
' COMM(i ", LBi")=CARD(i") - COMM(j, LBi") + COMM(, i")
If that is true, it follows that
d(i,i"y=d(i, LBi")+d(LBi", i")
The claim that ' |
COMM(i’, LBi") = CARD(i") - COMM(i, LBi") + COMM(, i")
can be proved by distix_lguishing two cases.
CaseI: COMM(i, LBi")=CARD(i")
In this case, a/l the one values of vector LBi " overlap with the one values of vector i.

Only COMM(:, i") ones of vector i” overlap with the ones of vector i (and
COMM(j; i") € COMM(, LEi’ "}; always). Therefore COMMY(i, i") ones have not
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been displaced in the creation of LBi” from i, and so COMM(", LBi")=
COMMC(, i"). _ .

CaseII: COMM(;, LBi") < CARD(i")

In this case, there are CARD(i") - COMM(i, LBi") ones in vector i which do not
overlap with one values in vector i. In other words, these one values have not been
displaced in creating LBi” from i“, and they therefore must contribute to the term
COMM(", LBi"). In addition there are COMM(, i") ones among the
COMM(J, LBi") ones which have also had no need to be relocated.

This completes the proof of the claim, and of Lemma 1.

Lemma 2: In the case of all other (dis)similarity functions listed in Section 2,
equality (AS) is not satisfied.
- Proof: Taking as an example the simple matchlng coefficient, and converting it to
a dissimilarity we get:

d(i, LBi")= M- COMM(, LBi")
d(i,i"y=M-COMM(, i)
d(i",LBi"y=M~ COMM(", LBi")

where M is a sufficiently large constant. Substituting for COMM(i “, LBi") as found
in Lemma 1, we find that the equality

d(,i")=d(@i, LBi")+d(LBi", i")

is false.

Lemma 2 may be proved for other coefficients in a similar manner.

Theorem: Of all (dis)similarities listed in Section 2, the Hamming distance alone
satisfies the axiom of suitability, i.e.,

d(i",LBi")=d(i, ")~ LB(d(, i"))

Proof: Lemma 1 shows that this condition is realized only for the Hammmg
distance, and Lemma 2 shows that it is not valid in any other metric.

5. INDEXING EXHAUSTIVITY AND THE USE OF THE INVERTED FILE

Document/index term data used in information retrieval are characterized by
extreme sparsity, i.e., the number of document/term associations would normally
be no more than a few per cent. Could the algorithm proposed here work for other,
less sparse, binary (zero-one) data?

Croft (1977), who first proposed using the inverted term/document file in order to
take full advantage of the sparsity of the data, did not specify the condition under
which the procedure was viable. Harding and Willett (1980) addressed themselves to
the problem of repeatedly commg across the same document as index terms
assomated with the initially-given document were processed. Their analysis was in
the context of automatic classification, requiring an nxn matrix. The problem
exammed here is the condition under which the set POSS will substantially reduce

the original set of n documents. (In our programmed implementation of the
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bounding algorithm, a Boolean vector indicated when a POSSible NN document
was processed, and thus allowed subsequent checking for re-occurrences of this
document.) In the following simple analysis, we will revert temporarily to taking
POSS as a multiset (cf., Section 2). \

Let the average number of documents associated with an index term be denoted
by nn, and the average number of terms per document by mm. Thus, since there are
n documents and m index terms in the collection, the number of document/term
dependencies is n x mm or m X nn. Consider now the processing of an index term
associated with the initially-given document. We want all documents associated in
turn with this term. On average, mm such sets of documents will need to be
examined, and there will be nn documents in each such set. Consequently, ignoring
the repetition of occurrences of documents, POSS will consist on average of
nn X mm documents. If then

n>nnXxXmm

it follows that searching through nn x mm documents will be more efficient than
searching through n documents. If this relation is satisfied, i.e., if the number of
documents in the collection is greater than the average number of documents per
term, multiplied by the average number of terms per document, then the strategy
which uses the inverted file can definitely be recommended. In fact, some of the
nn X mm documents will not need to be examined as they will have already been met
with. Note, finally, that in the case of searching for the NNs of queries, nn and mm
will be the average number of documents per (query) term and the average number
of terms per query, respectively, and these will generally have different values from
the case in which the NNs of documents are sought.

6. CONCLUSION

We have described in this article a general approach for determining NNs. A
bounding strategy has been used to estimate in advance what more costly calcula-
tions are required. Results obtained are considerably better than anything reported
on, so far, in the information retrieval area. We have also proved that a particular
‘closeness’ measure is most suited to this general strategy. Finally, and very
importantly for practical applications, a specific recommendation was made as to
when the proposed approach would be effective.

In a more general perspective on the NN problem—outside the information
retrieval area—it is unlikely that the bounding strategy described could be used. This
is due to the result obtained in Section 5.

The approach to the NN problem described here is a very efficient O(n) algorithm.
A divide-and-conquer approach would lessen the O(n) dependency of a NN search
(see, for example, Weiss, 1981, who describes initial work in such a framework).
However it is not at all clear that such an approach would prove more practical than
the powerful, easily implementable, exact search algorithm presented.
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