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ABSTRACT

CUPID is an information retrieval system which makes operational a
simple probabilistic IR model, and differs markedly from traditional IR
systems. This paper describes the basic structure of the system, the model
upon which it is based, and the work that needs to be done to set such a
system up. The size of CUPID can be kept very small by using the GOS
program package to build up document collections and generate suitable
index terms from them. An extended example is given of CUPID in use
with a small document collection. CUPID involves many activities which
are easily done in a relational DBMS, and the possibility of implementing
CUPID within a DBMS is discussed.

1. INTRODUCTION

This paper should be of interest to two groups of people, firstly to those familiar
with the GOS program package, who will discover ways in which data handled by
GOS can be connected to an IR (information retrieval) system, and secondly to the
much larger group of workers in IR, especially at the research end, who will discover
how a fairly advanced probabilistic IR system can be made operational with
surprisingly little effort. It is generally supposed that implementing a high quality IR
system is a difficult and expensive operation. I wish to suggest that this is not the
case, and that a practically useful IR system of the kind described here can, given the
appropriate expertise, be set up for use in a few man months on almost any kind of
present day computer. The probabilistic IR model which I have followed is
essentially simple, but at the same time very effective. In fact one could go so far as
to claim that we do not at the moment know of any way in which the performance
level offered by this model can be significantly improved.

It is hoped that the account offered here will encourage other groups to set up
similar systems. Such groups might include University Departments and Colleges,
Research Organizations, and Businesses and Institutes which run their own
information sections. CUPID has been used effectively with a collection of over
10000 documents. We do not at the moment know whether it would be equally
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effective with 100000, but have no reason to suppose that it would not. There is no
provision in CUPID for dynamic updating of the document collection, and it would
need to be considerably extended to provide for this.

The ‘least effort’ way of implementing the model at Cambridge has been to use
GOS as a system for establishing and indexing a document collection, to use a sort-
merge system to set up the files needed by the IR system, and then to have a small set
of programs to operate the IR system. This latter set of programs is called CUPID
(Cambridge University Probabilistic Independence Datamodel). These three stages,
the use of GOS, establishing the files for CUPID, and CUPID itself, are described in
the sequel. GOS itself can be bypassed, when the data is simple, or when some other
system exists which will do the same work for the user, and this was the case in the
first CUPID implementation at Cambridge, and in the implementation currently
running at University College, Dublin, which has been implemented there by Alan
Smeaton. Conceivably the whole of CUPID and the sort-merge activities could be
embedded in a suitable relational database, as will again appear in the sequel.

2. AUTOMATIC INDEXING IN GOS

GOS (Porter, 1980a,b,c) is a general purpose system for constructing and manipu-
lating catalogues by computer. A catalogue may be represented by one or more
files, and each file will be broken up into records, the records themselves consisting
of separate items of data in fields (or elements, as they are more properly called
in GOS). The fields in a record are arranged in some hierarchical structure, the
groupings within which may be used to reflect natural groupings in the data. In
this way GOS may be used to represent bibliographic data along the lines of the
MARC system, although the total range of possible applications for the package are
really very wide. It was in fact originally written with museum data processing in
mind.

In the sequel we will follow IR practice and use document to mean an item that we
wish to establish for retrieval in an IR system, and ferm to mean an item of data that
will be used to index one or more of the documents. It must not be supposed
however that we are using these words in a narrow bibliographic sense. By a
document we mean any record (and in this context a GOS record) which may be
bibliographic but may equally contain information about a print or drawing, a
social history object, a historical event, or an archaeological or geological find. By a
term we mean a string of text characters which may be used to index a document.
Thus a term could be a complete word of English, or a fragment of a word, or a
group of words separated by spaces.

The process of taking a document and establishing a list of terms which will be
used to index it is the processing of indexing, and it is assumed that indexing is done
automatically by the computer, using the data in the GOS record which describes the
document. Quite possibly the record will contain index terms supplied manually by
the author of the document, or by someone who has indexed the collection. In this
case this list of terms may, or may not, be made available to the automatic indexing
process, which may, or may not, generate indexing terms the same as this supplied
list of terms. In the example below the manually supplied term lists are used, but
give rise to rather different terms in the automatic indexing.

We now give an example of the use of GOS in automatic indexing. Suppose that
the documents (bibliographic this time) contain a field, denoted by <t>, which
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<t> fleld by the following operations:

1.

Divide the <t> fields into ‘words’, each word being text characters delimited by

spaces.

Then for each word do the following:

2.
3.
4

5.
6.
7.
8

Steps (1) to (8) are characteristic operations in automatic indexing. For example, if

Discard accents on letters and indications of italicization.

Discard all characters other than letters and digits.

Ignore the word if it now contains a single character, otherwise do operations

(5) onwards.

Force all the letters to be lower case.
Ignore the word if it occurs in some appropriate list of stopwords, otherwise do

operations (7) and (8).

Strip off the suffix of the word using some appropriate stemming algorithm.

Output the result as a term indexing this document.

the words of the title are:

G. E. Moore’s philosophy before 1903: the genesis of the Principia Ethica.

Then after operation (2) the list of words is as follows:

G.

E.
Moore’s
philosophy
before
1903

After operation (3) this becomes

G
E

-Moores
philosophy
before
1903

After operation (4)

Moores
philosophy
before
1903

the

the
genesis

- of

the
Principia
Ethica

the
genesis
of

the
Principia
Ethica

genesis
of

the
Principia
Ethica
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After operation (5)
moores genesis
, philosophy of
before the
1903 principia
the ethica
After operation (6)
moores genesis
philosophy principia
1903 ethica
And after operation (7)
moor . genesi
philosophi principia
1903 ethica

One can of course argue over details here. For example, it is not clear whether
digit strings such as ‘1903’ should be included as index terms, or should be simply
discarded. In practice these operations might be tuned slightly depending on the
subject area of the documents. The important point is the ease with which these
operations, or variants of them, can be performed with the powerful editing
capabilities supplied in GOS. An important facility in GOS is the so-called anel
system, in which operations can be performed on text strings. It will be assumed that
the text string contains a word. Then in the anel system the operations (2) to (8) can
be performed as follows:

2. re(re(neq ‘= \’)dd)

As in SNOBOL, a string is analysed using a cursor, which at any given time points to
a particular character in the string. neq ‘< \’ tests for the character at the cursor not
being either ‘< or ‘\’. The command re causes repetition, and re(neq ‘< \’)
causes the cursor to be moved right while the character at the cursor is not ‘<’ or
“\’. The cursor will therefore stop at the first ‘<=’ or ‘\’ character, and the
command d then deletes this character, while the second d deletes the following
character. The re command surrounding the whole construction causes this total
operation to be repeated all the way down the string, and the net effect is therefore
to delete from the string all substrings of the form ‘<$’ and ‘\ $’, where $ is any
character. Since accents are represented as ‘<a’ for acute, ‘<g’ for grave etc., and
indications of shifts to italic and roman (or underlining and normal) by ‘\ U’ and
‘\'N’, this gives the desired effect.

3. Dbecls(‘ctO’ re(re(cl ‘LID’) d))
Command b takes the cursor back to the beginning of the string. The rest of this

command causes characters other than those of class ‘L’, ‘I’ or ‘D’ (i.e., upper case
letter, lower case letter or digit) to be deleted from the string. Characters can be put
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into any user defined classes in a so-called class table, and here the class table ct0 is
being used, in which upper case letters are in class ‘L’ and so on.

4. btab2

b takes the cursor back to the beginning of the string, and then tab 2 moves it right
two places. If the string has length less than two characters, this operation will fail,
and this failure effect can be used to cause the abandonment of operations (5) to (8).

5. bre(s)

Command s causes the character at the cursor to be forced from upper to lower case,
and re(s) causes the whole string to go into lower case. Characters other than upper
case letters are not affected.

6. not(+among ‘a’ ‘about’ ‘above’
‘yours’ ‘yourself’ ‘yourselves’)

We assume that we have a complete stopword list here. This command only succeeds
if the word is not among the given list; in other words it fails if the word is in the
given list, and then operations (7) and (8) are not performed. The list that we have
used in practice is the one given on pp. 18-19 of van Rijsbergen (1980), but of course
any list is possible. (The list is looked up by a binary chop technique in GOS, so that
with the 250 of the actual list, only about eight comparisons are ever made in each
call of this command.)

7. +stem()

Here there is a switch out of the anel into a system called STEM. This is a specially
written GOS module which applies the stemming algorithm fully described in Porter
(1980d). The particular merits of the algorithm in the present context are that it is
small enough to fit simply and naturally into GOS, and fast enough for its applica-
tion to every document term (rather than a derived vocabulary list of such terms) to
be practicable. Furthermore, the result of the stemming for a particular term is a
function of that term alone, and not of the total vocabulary (as is the case with some
stemming algorithms). This greatly simplifies its use. It is probably worth noting
that despite its simplicity, the algorithm leads to retrieval performance as good as
that achieved with more ¢laborate stemming systems (Lennon ef al., 1981). Of
course use of the stemming algorithm will only be appropriate for titles in English.

8. +ffterm()

Here a specially written GOS system, FFTERM, is called which outputs the text of
the term in a fixed field format. This is for the benefit of the IBM sort-merge system.

A formal account of the semantics of expressions like the ones given above can be
found in the GOS documentation, and here we have only given a rough sketch of
how they work. The point to which we wish to draw attention, however, is their
remarkable brevity. Operations such as (1) to (8) are an important part of practical
IR work, and often cause programmers a lot of difficulty, particularly programmers
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who are not too experienced in non-numerical computing applications. But to a user
versed in GOS they become quite simple.

Operations (2) to (8) form the inner part of a loop which also has the job of
performing operation (1), to strip out successive words from the title field. The
entire process may be defined in GOS as a construction called getterms0 as follows:

def(‘gettermsQ’ +a

re
re(eq‘’) 1
nre(neq ‘’)r
to(1)
try
-v(1 re(re(neq ‘< \’)d d)
b cls(‘ct0’ re(re(cl ‘LID’) d)) 2.1)
btab2
b re(s)
not(+among ‘a’ ¢

about’ ‘above’

‘yours’ ‘yourself” ‘yourselves’)
+ stem()
- + ffterm()

)
and getterms0 can be applied to each <t> field in a record by using the construction:
+ e(re(nc(<t>) do ‘getterms0’))

(Normally of course one would not expect more than one <t> field per record, but
repetitions are possible, if for example the record describes one document which is
held within another document.)

Variations immediately suggest themselves. For example the document records
may contain lists of <k> fields, where each <k> field contains a keyword explicitly
supplied for indexing purposes. The <k> fields will be used for index extraction in
precisely the same way if we use the construction

+ e(re(nc(<t>) do ‘getterms0’)
re(nc(<k>) do ‘getterms0’))

On the other hand, we may prefer to use the construction

+e(re(nc(<t>) do ‘getterms0’)
re(nc(<k>) do ‘gettermsl ’))

where gettermsl is a construction whose definition differs in certain significant
respects from getterms0. For example, gettermsl might contain no stopword list, so
that if ‘and’ was supplied as a keyword it would be indexed. One might wish to index
under ‘and’ if for example a document was a paper in linguistics which dealt with the
use of the connective ‘and’ in English.

More generally one could have an entire library of constructlons along the lines of
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getterms0 and gettermsl1, which in GOS is held in a so-called GOS element library,
and members of this library could be called up on the various fields in a document
record, to give a very wide range of possible indexing effects. In this way great
versatility can be achieved. These ideas will all be very familiar to users of GOS.

3. SETTING UP THE FILES FOR CUPID

The indexing process described above produces a file consisting of a simple list of
document numbers and terms:

1 moor

1 philosophi
11903

1 genesi

In the language of relational databases (Date, 1981, supplies a standard text), the
result of the indexing can be thought of as a two-column relation called 7 which has
the form [D,¢]. Column D contains the number of the document, and column ¢
contains the text form of a term which indexes the corresponding document in the D
column. It will be useful to introduce some relational database nomenclature at this
point for two reasons: because it gives an easy way of describing the operations
which have to be done to set a document collection up for retrieval by CUPID, and
because the whole of CUPID might very well be implemented within a relational
database, in which case it may be possible to perform these operations very much as
they stand.

In the discussion of relations which follows I have been influenced by the
relational database management system CODD (King, 1979), and its algebraic query
language CHIPS, designed by Tim King and Charles Jardine in the Computer
Laboratory, Cambridge. To fix the ideas here, we say that a relational database
operates on relations, and a relation may be thought of as a matrix with a small
number of named columns and a large number of rows. Each row contains a fuple,
and if there are n columns in the relation the rows may be called n-tuples. It is
assumed that the tuples are all different and ordered. That is, if two adjacent tuples
are

(a1, a, . . ;a,,)
(b1, ba, .. . br)
it will be the case that
ai = b; for(= 1,2,...j—1
and

a; < bj

for some j in the range 1 < j < n. Each column may contain strings or numbers, but
may not mix both. The definition of ordering between strings is left open. In
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practice an ordering is chosen which can be tested rapidly, but one can keep in mind
alphabetical ordering in the discussion that follows.

Of the typical operations performed on relations, select, project, join, union,
intersection and difference, a project is liable to interchange columns and therefore
liable to cause a sort of the tuples. We can expect these sorts to be slow compared
with other operations, and so in the sequel, projects which give rise to sorts will be
scrutinized rather carefully. (We will employ only a simple version of join that does
not involve any sorting.)

The relation 7 is unsorted. More exactly, it is sorted on the D-column, but not on
the #-column (assuming that the indexing process numbers the documents 1, 2,3 . . .
in a natural way). Furthermore the relation could contain duplicates, since the same
index term can be picked up out of one document from a number of different places.
It is assumed here that in the relations subsequently formed from this one, a precise
ordering is achieved and duplicates are removed.

The first operation is a projection:

J[t,D]:=I[D,t] - 2,1 | 3.1

This means that relation J is derived from I by reordering columns 1 and 2 as 2,1
(i.e., swapping them round), and then resorting. J has the form [¢,D], and the
presence of the expressions [D,¢] and [¢,D] in (3.1) purely acts as a program
comment. The forward arrow symbol ‘—’, used to denote projection, corresponds
to the CHIPS symbol ‘%’.

The next operation is a projection, which gives a simple list of terms:

K[t]:=J[t,D]—>1

In other words K is derived from J by retaining only column 1 of J. Duplicates in J
are removed. :

We assume the existence of a function NUM (R), where R is a relation. The value
of this function is a new relation with an extra column at the end consisting of the
numbers 1, 2, 3. . . in turn. NUM (R) therefore numbers the rows in relation R. A
- unique integer is therefore given to each term of K in the relation L, formed by:

L[t,T]:= NUM K [t])
We can suppose that L is formed at once from J by the command
L[t,T]:= NUM{J[¢,D] = 1) (3.2
The relation 7D is formed from J by replacing each ¢ in J by the corresponding
number 7T supplied in the L relation. This can be done by joining L with J over one

column (the first), and it is assumed that the diadic operator *(1) will do this, and
then projecting the result: :

M, T,D]:= L[t,T) *(1) J [t,D]
TD[T,D]:= M [t,T,D] = 2,3
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or as a single command:
TD[T,D]:= (L [t, T} *(1)J{t,D]) = 2,3 _ (3.3)
The relation DT is now formed by a simple inversion of TD,
DT D, T):= TD|T,D] - 2,1 3.4)
We next assume the existence of a function HASH (R), the value of which is
relation R with each string in the last column of R replaced by an integer in the range
1 to h derived from a hash function applied to the string. Then L is inverted to make
arelation TY,
Tt(T,t]:= L[t,T]— 2,1 (3.5)

and a relation HT is formed as follows:

TH[T,H]:
HT[H,T]:

HASH (Tt [T,t]) (3.6a)
TH[T,H]1— 2,1 (3.6b)

[l

As well as producing the original relation I, GOS can be used to produce a print of
each document in a form suitable for viewing during retrieval. This can be thought
of as a one-column relation d, where the nth row consists of the text form of the nth
document. This is numbered to form a relation Dd

-Dd[D,d):= NUM(d|[d)]) — 2,1 3.7
CUPID uses five of these generated relations, namely:

TD the term-document index

Tt theterm list

DT the document-term list

Dd the document list

HT the term list by hashed term value

On the IBM 370/165 at Cambridge, steps (3.1) to (3.7) to set up these five
relations can be done quite easily by the IBM sort-merge and a specially written
program of about 70 lines. Step (3.1) is a single operation by the sort-merge system.
Steps (3.2), (3.3), (3.5) and (3.6a) involve no sorting, and derive the relations 7D, Tt
and TH from J. This can be done in a single pass over the file representing J by the
specially written program. Steps (3.4) and (3.6b) to derive DT from TD and HT
from TH can be done by the sort-merge package. It is also possible at Cambridge to -
do these operations in CODD, which is very suitable for handling large volumes of
relatively static data, or within GOS, although the sorting operations would then be
very much slower. '

The purpose of using term numbers rather than the text of the terms in the
relations TD and DT (more especially in DT) is to save space in the direct access files
which CUPID sets up and uses. To find the text ¢ of term number T is just a matter
of looking T up in the direct access file corresponding to the relation 7%. To find the
number T of the term with text # is a little more tricky: first ¢ is hashed to give a



140 Probabilistic IR system

number H, H is looked up in HT, and the term numbers there found are looked up
in Tt to give a list of textual terms which may be compared with ¢. So long as ¢ is in
Tt a match will be found. This is admittedly a far from optimal approach as far as
access to secondary storage is concerned, but compared with the total access to
secondary storage which will take place in a retrieval run, the inefficiency here is not
too great. As it stands, it has the advantage that all direct access files required by
CUPID can be indexed simply by the integers 1, 2, 3 . . . which helps keep its design
simple. :

Of the five relations given above, the relation Dd is usually the largest, and will
frequently be many times larger than the other four put together. If disk space is
tight, an economic way of running CUPID would be to have the text versions of the
documents (i.e., a suitable print of the relation Dd) to hand on line-printer paper or
computer generated microfiche, and to dispense with the relation Dd as a direct
. access file. CUPID only uses this file for printing documents out for the user, and
could just -as easily direct him to a hard-copy file containing the documents. One
would of course expect this approach to be much more laborious for the poor

human, but it is worthwhile remembering that an effective IR system for a large
* document collection can be established without there needing to be provision for all
the documents residing in text form on disk.

The form of the five relations 7D, Tt, etc. is machine dependent and will be a
function of whatever system has been chosen to generate them out of the relation /7
derived from the GOS file of the documents. Consequently the part of CUPID
which sets the relations up as a direct access file will be machine dependent, at least
on the input side. Without fear of ambiguity, the direct access files set up by CUPID
from the relations can be given the same names as the relations, namely 7D, Tt, etc.
These direct access files have one of two forms, either they consist of vectors of
numbers indexed by the integers 1, 2, 3. . . (in the case of 7D, DT and HT) or of
strings of text indexed by the integers 1, 2, 3. . . (as in the case of Tt and Dd). Thus
in the case of TD, we have that a particular integer 7' indexes a vector

D(T) = (Dr1, D2, - . - Dr(ny)

in other words term number T indexes documents Dri, ... Dy where k is a
function of T. It is assumed that D73 < Dy <. .. Similarly in the case of DT, we
have that a particular document D indexes a vector

T (D) = (Tpy, Tpa, . - . Toupy)

in other words document number D is indexed by the terms Tpy, . . . 7o where /isa
function of D. It is assumed that Tp) < Tp2 <. .. In the case of Tt, a particular
integer T indexes a piece of text which is the textual representation of term 7.

4. THE RETRIEVAL MODEL USED BY CUPID

CUPID implements a simple probabilistic model for document retrieval. The
theoretic development is given in Robertson and Sparck Jones (1976), and is further
developed in Chapter 6 of van Rijsbergen (1980). Here we merely summarize the
results. In CUPID a query is represented by a vector of terms:

O=(T,T...Tkoy 4.1)
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This is of course a very simple representation of a query compared with a Boolean
expression of terms, which is the traditional way of representing queries in practical
IR systems. In the course of a retrieval run with the query Q, CUPID builds up two
sets: a set S, which contains the numbers of those documents which have been seen
by the user, and a set R, which contains the numbers of those documents which the
user has judged to be relevant to his request. R is a subset of S. As the retrieval run
continues, the terms in Q may change.
With T; we associate the following values:

n;is the number of documents indexed by T;, that is
n; = k(T3)
k (T7) being the length of the vector D(T;).

riis the number of relevant documents indexed by Tj, and is the size of the
intersection of R with the elements of D (T3).

N will indicate the total number of documents in the collection, and the
number of items in R will again be denoted by R.

If p; is the probability that a relevant document is indexed by T;, then it is possible
to estimate p; by ri/R. If q;is the probability that a non-relevant document is indexed
by T, then a possible estimate for g; is (n; — ri)/(N - R), although it is conceded that
there may be relevant documents outside the set R. In the probabilistic model
followed by CUPID the correct term weight for 7;is given by

p:(l—Q:) (4'2)

log
qi(1—pi)

which may be estimated by

ri(N—ni—R+r)

ST Sy p—

4.3)
In fact for small samples this is not a particularly realistic estimate, and we prefer to

use

(ri+ 2A) (N—ni—R+ri+ %)
R—ri+Y2)(ni—ri+ %)

w; = log 4.4)
Using (4.4), we can therefore estimate
k(Q)
pil—gqi)
x;log 290
Z o8 4 (1—py)
i=1
as
k(Q)
fD) = Z Xi Wi 4.5)

i=1
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where x;=1 or 0 according as 7; does or does not index D, i.e., according as T; does
or does not occur in T (D), and according to the model of Robertson and Sparck
Jones, f (D) can be used as a measure of how far document D is likely to be relevant
to query Q. f (D) itself is not a probability, but f (D1) > f (D) means that the
probability of relevance of D; exceeds the probability of relevance of D,. In the
model the range of terms included in the summation of (4.5) is left open, but here we
suppose that it is given simply by the terms of the query.

If therefore the documents in the collection are ordered by decreasing f-value, and
presented to the user in that order, the user should observe a high proportion of
relevant documents at the beginning of the list with a general tailing off of relevance
thereafter.

Another aspect of query modification (besides computing new weights) consists of
adding new terms into Q. Such terms can be presented to the user as likely
. candidates for inclusion in an expanded version of Q. The approach adopted here,
which has been found to be quite effective experimentally, is to take the terms which
index the various documents in R, and rank them by decreasing order of association
with R. It is not at all clear what constitutes a suitable measure of association, but it
was found empirically while developing CUPID that the following measure is
attractive:

r n

g(T)=E—ﬁ (4.6)

where r is the number of documents in R indexed by T, and » is the number of
documents indexed by T in the whole collection. g avoids giving a high association
measure to low frequency terms which happen to occur in R with high concentra-
tion. Thus if R =10 and N= 1000, then r=1, n=1 will produce a lower g value than
r=3, n=50. Very low frequency terms are not normally useful in retrieval, and the
user will not want to see them heading a list of additional useful terms. Equally g
avoids giving a high association measure to terms which attain a high r value because
they are common. So g (T)=0if r=1, R=10and n= 100, N=1000.

Spotting the usefulness of formula (4.6) is a good example of the way in which a
system like CUPID can be used to complement IR research. Formula (4.6) can be
expressed as

g(T) = P(T|rel) — P(T)

i.e., the probability that T indexes a document given that the document is relevant,
minus the probability that T indexes a document. In other words it is the extent to
which the probability of T indexing a relevant document exceeds the probability of
T indexing any document, and expressed in this way it becomes a very plausible
measure of the usefulness of 7 in indexing relevant documents. It was however first
found to be useful while experimenting in CUPID with different association
measures.

5.SETTING UP THE QUERY

‘We have seen that the query, Q, is represented by a vector of terms. It is not of
course expected that the user should explicitly present this vector to the system, but
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rather that it should be formed from some other data which he presents to the
system. An approach which has a long pedigree in IR research is to have the user
input a piece of text which represents his query, for example:

Guides to zoological and biological nomenclature S.1)

And then establishing a query vector from such a piece of text is exactly analogous
to the process of indexing a document, the only difference being that instead of
having a collection of separate fields from which the index terms may be extracted, .
we have effectively a single field. A query such as (5.1) is very similar in form to a
document title. This suggests that the indexing process appropriate to a query could
be like the one adopted for a <t> field in the example indexing process in section 2
above. This further suggests that GOS can be used to set up the vector Q from the
user’s query, and this has been the approach adopted in practice. There are actually
two possibilities. Either the user supplies a simple piece of text to represent his -
query, as in the case of (5.1), or he supplies a complete GOS record, which can then
be subjected to index term extraction exactly as was done with the original set of
GOS records used to represent the document collection. In the examples given later
we have used the former approach. The latter approach is more elaborate but has
the advantage that the index terms may be extracted from different parts of the
record in different ways, and it may be possible for the user to take advantage of
this. So to continue the earlier example he might force ‘and’ to be an index term by
including it in a field where it is not treated as a stopword.

6. THE PRACTICAL REALIZATION OF THE MODEL

In the implementation of CUPID on the IBM 370/165 at Cambridge, the commands
issued by the user are in fact phoenix commands, phoenix being the multi-access
system plus command language for this machine. Each phoenix command then calls
up CUPID with a suitable set of CUPID commands. This approach is clumsy, but
gets over the problems of complete interactive working not being available to users
of the 370 computer. (The pool, mentioned in section 8, is written out to disk
between commands, thereby preserving CUPID’s internal memory.) Nevertheless it
is instructive to note that CUPID can be run non-interactively, even if one is relying
on some level of pseudo-interaction here. In fact the system could be run with no
interaction at all. We now describe some of these commands.

QUERY FROM f
This takes a user query (such as (5.1)) from the file f, and establishes from it a
query vector of terms, Q. As we have seen, this command will make use of GOS.

DQn

where 7 is some integer. This forms a set called M from the first n documents in
the ordering of documents not in S, the set of documents which have been seen by
the user, by decreasing f-value, f being given by (4.5). The summation extends
over the terms of Q. Using (4.1) as the representation of Q, this involves doing a
merge on -k (Q) document lists D (71) . . . D (Tk(g)). The algorithm is given in
section 8 below.

If n is omitted some suitable default will be used, e.g., n=60. It is not supposed
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that having formed set M, the user will necessarily mspect all its members.
(DQ stands for Documents from Query.)

PDOCS n :
where 7 is an integer. This prints out the first » documents in the list of set M
which are not in S, adding them into S. So if S is null to begin with, PDOCS 2
prints out the first two documents from M, and PDOCS 3 then prints out the next
three, leaving the first five documents of M in S. If nis omitted n =1 is assumed.

TORELS list
This adds the given list of documents to R, the set of relevant documents.

TR n
This finds and prints out the n terms with highest g-value from the set which index
the various documents in R but which are not in Q. The terms are printed out by
decreasing g-value. Again if z is omitted some default is used, e.g., n=10.

TOQUERY list
This adds the given list of terms to the query.

These commands can be used to establish a simple relevance feedback cycle as
follows:

(@ QUERY FROM f
(b)) —— DQ

© PDOCS '
— " - | ©.1)

(d) TORELS list

(e) TR n

63) TOQUERY list
L

This represents a flow diagram for a sequence of actions by the user. Initially sets R
and S are both empty. )

Step (a) establishes the query, and step (b) finds, for the query, the set M of best
matching relevant documents. Step (c) repeats, and causes the documents to be
inspected one at a time until the tail off in precision causes the user to stop and
move on to step (d). Here he indicates which of the documents he has inspected are
relevant (they are added to set R) and then in step (e) looks at closely associated
terms. In step (f) he can add into the query terms which he believes will be useful in
finding more relevant documents. (Steps (e¢) and (f) may be omitted.) The process
may now continue from (b). A further DQ will establish a new M which will not
include the documents he has already inspected (the ones in set S), and which should
be improved by the extra query terms, if any, and the use of the set R in calculating
the new w;, and hence the new f-values. Some further commands are:

RELS list -
This establishes a new environment in which R and S contain the documents in the
given list.
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DR n
This extracts from the terms which index the documents in R the n with the
highest g-value, and sets Q, the query, equal to this set of terms. The command
DQ m is then performed, to put in M the top ranking m documents for the query.
m will be some suitably chosen constant, e.g., m=15.

With these commands searching can be done without the user needing to specify a
query. For example:

@) RELS /ist
() —— DR

© L—_a—P_l_)JOCS 6.2)

(d “——— TORELS list

Step (a) makes the given list of documents relevant. The user, we may suppose, is
interested in other documents which deal with similar subjects. Step (b) sets up M,
and step (c) prints out successive documents from M for as long as it is repeated. In
step (d) the user declares which of these documents is relevant, and then the process
repeats from (b) with an improved Q and w; values.

Finally there are the commands:

T™n
This is the same as TR n, but the top m documents of set M are used instead of the
set R. This is handy when no, or very few, relevant documents have been found.
Again m will be some suitably chosen number.

TQn S :
This finds the n terms most closely associated with the terms in Q. It effectively
works by performing the DQ command and then the TM command, and is
useful as a first stage if the user feels some dissatisfaction with his initial query
formulation. '

7. EXAMPLES OF THE USE OF CUPID

These various procedures will now be illustrated by a couple of examples using a
document collection which describes part of the library of the Museum Documenta-
tion Association. Essentially the library is concerned with all aspects of museum
documentation, and especially documentation techniques which involve the use of
computers. The collection was originally put into machine readable form for
processing by GOS, and keywords were incorporated for the generation of keyword
indexes for manual use. It must be emphasized that it was not originally supposed
that the data would be accessed through any interactive IR system, although in fact
it was only half a day’s work to set it up for use by CUPID.
The basic statistics of this collection are:
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number of documents 1758
number of terms 3122
average indexing 8 terms per document

This is of course rather a small sample, but adequate for purposes of illustration.
The terms were derived from title and keyword lists. When the data were set up -for
use by CUPID they were not fully edited or complete, which explains the occasional
spelling slips and absence of keyword lists in some of the example records below.

The first example illustrates the use of strategy (5.1). The user is interested in
finding guides to the use of zoological and botanical nomenclature in identifying
and naming biological specimens. He therefore inputs the query

Guides to zoological and botanical nomenclature

The command QUERY sets up a query, Q, with four stemmed terms as follows:

333: botan
1161: guid
1861: nomenclatur
2906: zoolog

Command DQ is now applied, and then PDOCS 2, which retrieves as the two top
.ranking documents:

761 Doc MDA 510.
Hancock, E. G. and Morgan, P. J. (eds.). 1980. A survay of zoolog:cal
and botanical material in museums and other institutions in Great
Britain. Biology Curators Group Report No. 1.: Biology Curators
Group.

876 Doc MDA 2311.
International Commission on Zoological Nomenclature. 1964.
International Code of Zoological Nomenclature adopted by the XV
International Congress of Zoology. London: International Trust for
Zoological Nomenclature.

keywords: ICZN, nomenclature, taxonomy, zoology, classified
identification.

Of these, document 876 is judged relevant, and 761 non-relevant. PDOCS 2 again
gives the next two documents:

804 Doc MDA 2298.
Heywood, V. H. (ed.). 1968. Modern method in plant taxonomy.
Botanical Society of the British Isles. Conference Report No. 10.
London: Academic Press. (see Brennan, McNeill and Stearn).

keywords: biology, taxonomy, nomenclature.

667 Doc MDA 2269.
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Gotch, A. F. 1979. Mammals — their Latin names explained. A guide
to animal classification.: Blandford Press. ISBN 0-7137-0939-1.

price £5.95.
keywords: nomenclature, taxonomy, zoology, classified identification.
Both these documents are judged to be relevant. A further PDOCS 2 gives

1793 Doc MDA 1296.
_ Williams, D. B. 1975. The use of E.D.P. in zoological collections.

in Brennan, Ross and Williams. 177.

keywords: zoology, computing system.

1091 Doc MDA 772.
Mello, J. F. The use of the SELGEM system in support of systematics.

in Brennan, J. P. M., Ross, R. and Williams, J. T. (eds.). 1975.
Computers in botanical collections. London: Plenum Press. 125-138.

This time both documents are judged to be non-relevant. Further use of PDOCS is
now suspended, and the three relevant documents are marked as relevant by the
command

TORELS 876 804 667

and the command TR is now applied to get hold of terms which relate closely to the
query terms. TR gives

2637: taxonomi

2907: zoologi
476: classifi

1261: identif

2884: =xv

961: explain
1503; latin
1257: iczn

These terms are supposedly in decreasing order of closeness of association with the
terms of the query. Term 2907, ‘zoologi’, turns up here because of a weakness in the
stemming algorithm, which stems ‘zoology’ and ‘zoological’ to ‘zoologi’ and
‘zoolog’ respectively. It might be thought that there is a good case here for adjusting
the stemming algorithm, but it will always be the case that the stemming can never
be perfect, and so query expansion can be used as means of putting into the query
certain variant forms of a word. The user decides to add the first three terms from
this list into the query, which he does by the command

TOQUERY 2637 2907 476
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and then he repeats DQ. PDOCS 2 then gives

918 Doc MDA 2339.
Jeffrey, C. 1977. Biological nomenclature. 2nd edition. London:
Edward Arnold.

keywords: botany, zoology, systematics, nomenclature, taxonomy,
biology, terminology control, classification system, classification,

natural science, glossary, bibliography, classified identification, ICZN,
ICBN, ICNB, IAPT, type, data categories, conventions, classified
identification authority, Systematics Association.

1025 Doc MDA 2350.
Lincoln, R. G. and Sheals, J. G. 1979. Invertebrate animals. Collection

and preservation. London: British Museum Natural History.
ISBN 0-521-29677-3 (paper).

price £3.50 (paper).

keywords: zoology, invertebrate, collection method, preservation
method, classified identification, labelling, nomenclature, BMNH.

The first document, 918, is at once judged to be relevant. It will be seen that this
document is indexed by all three of the terms added into the query in the previous
stage. Obviously the relevance feedback cycle with possible query expansion could
be repeated a second time, but our suspicion is that for a document collection as
small as this it is probably not useful. As it is, the further command PDOCS 10
produces a list of ten related, but not especially relevant, further documents.

The weights, w;, attached to the terms of the query frequently change as the query
is reused in a manner which reflects one’s intuitive feeling about their relative
importance. Thus the weights for the two applications of DQ are as follows:

botan 5.1 4.7
guid 3.7 3.2
nomenclatur 4.9 7.1
zoolog 6.2 6.0
classifi — 5.0
taxonomi — 6.4
zoologi — 5.1

Thus ‘nomenclatur’ increases from 4.9 to 7.1, becoming the highest weighted term,
while ‘guid’ decreases from 3.7 to 3.2, and is the lowest weighted term.

The second example illustrates strategy (5.2). The user is interested in finding
documents about the use of computers, especially micros and minis, in handling
archaeological data. His starting point is document 675, which is:

675 Doc MDA 2273.
Graham, 1. 1981. Microcomputers for archaeological excavation
recording. Intelligent computer terminals for archaeological site
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recording. Report to the British Library . . . on project number
SI/G/216. Final report . . . BLRDR 5600. London: Institute of

- Archaeology.

keywords: archaeology, stratigraphy, archaeological, BL,
microcomputer, archaeological archive, data storage, excavation report,
31te material, recording medium.

RELS 675 adds this document to the set R of relevant documents. DR followed by
PDOCS 2 retrieves as the two top ranking documents the following:

674

1169

Doc MDA 456.
Graham, I. 1976. Intelligent terminals for excavation recording.
Computer Applications in Archaeology 48-52.

Doc MDA 2357.
Museum of London. Department of Urban Archaeology. 1980.
Site manual. Part I: the written record. London: Museum of London.

keywords: archaeology, LDMoL. DUA, archaeological archive,
excavation, stratigraphy, archaeological, documentation system.

The user judges 674 only to be relevant. PDOCS 2 then gives:

1243

1399

Doc MDA 2361.
Nyukska, J. P. 1980. Biodeterioration and biostability of library
materials. Restaurator 4 (1) 71-77. Aslib Inf. 1754/81.

keywords: conservation, books, libraries, museums, recording medium,
storage, conservation, biodeterioration.

Doc MDA 1023.

Roper, M. 1978. PROSPEC-SA: Pilot project. The development of
PROSPEC for wider use in providing guides to record offices.

Final Report, covering the period March 1977 to September 1978, to the
British Library Research and Development on Project Number
S1/G/217.: (D).

which are clearly off the track. TORELS 674 now makes 674 a relevant document,
and DR is repeated, followed by PDOCS 7. The following documents are now
retrieved:

426

Doc MDA 2213. :

Council for British Archaeology. 1978. Computer retrieval of
archaeological information. CBA Day School — 28th September 1978.:
unpublished typescript.

keywords: CBA, MDA, archaeology, computing system, information
retrieval, SMR, excavation recording, microcomputer, bibliographic
system, catalogue, architecture, building.
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215 Doc MDA 133.
Boddington, A. 1978. The excavation record: Part 1. Stratification
Northamptonshire County Council. Archaeological Occasional Paper
~ No. 1. Northampton: Northamptonshire County Council.

keywords: archaeology, excavation, Northamptonshire, stratigraphy,
archaeological, documentation system.

924 Doc MDA 637.
Johnson, I. 1980. Computer recording of excavation data from Hunter-
gatherer sites. Computer applications in archaeology 8-16.

742 Doc MDA 2292.
Hackmann, W. D. 1973. The evaluation of a museum communication
format. Part I. Collection of input data. Final report for the period
1970-September 1972 and extension November 1972-December 1972.
Report to OSTI on Project S1/56/07. OSTI Report No. 5154. Oxford:
University of Oxford (for the Museum of the History of Science).

keywords: OSTI, OXFHS, IRGMA, science museum, technology
museum, scientific instrument card, recording medium, documentation
system, CGDS, MCF, MDS, scientific instrument.

782 Doc MDA 526. '
Hector, E. J. 1977. An examination of cataloguing and indexing
procedures in a number of fine art collections in British museums, and
an evaluation of the usefulness of the AS IRGMA fine art card.
[MA in Librarianship thesis]. Sheffield: Sheffield University.

keywords: fine art, catalogue, documentation system, IRGMA, fine art
card, progress, art gallery, pictorial representation, visual arts, prints,
drawings, museums, information retrieval, enquiries, staff, museum
documentation, recording medium, indexing system, GLAHM, ScM,
BLKMG, BOLMG, KIRMG, KIMMG.

296 DocMDA 184.
Buckland, P. and Wilcock, J. D. 1973. Remote terminals for on-site
recording. Computer Applications in Archaeology 1973.

252 Doc MDA 161.
British Columbia. Provincial Museum and Heritage Conservation
Branch. n.d. Guide to the B.C. Archaeological Site Inventory Form.
British Columbia: Provincial Museum.

keywords: archaeology, Canada, British Columbia, archaeological
archive, archaeology record centre, recording medium.

426, 924 and 296 are judged relevant, and are added to the relevance set using
TORELS. DR is applied for the third time, and PDOCS 10 gives a list of ten further
documents, out of which three are most probably relevant.
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It is very instructive to look at the improvement in the query during this retrieval
run. The query, Q, is constructed from terms which index documents in R each time
DR is applied. Since there were three applications, there were three successive
versions of Q, as follows:

Ist 2nd 3rd

5600 termin record
sig216 intellig excav

blrdr excav termin
termin record comput
intellig 5600 intellig
microcomput sig216 microcomput
stratigraphi blrdr site

final microcomput archaeolog
number stratigraphi archaeologi
medium final : data

materi number smr

excav medium sig216

bl materi remot -

site bl onsit

storag site huntergather

The terms are arranged in this list in ‘best’ to ‘worst’ order. In the third version of
the query, the last five terms, namely ‘smr’, ‘sig216’, ‘remot’, ‘onsit’ and ‘hunter-
gather’, are all single occurrence terms and index documents already in R. This
means that they have no effect whatever on the retrieval process, so that the list of
terms in the last column effectively stops at ‘data’.

8. STRUCTURE OF CUPID

CUPID contains a resident library of utilities: a freespace management system, a
primitive command language decoder, a number of miscellaneous procedures for
constructing and manipulating in-core data structures (basically structures
consisting of sets of short vectors or tuples), and various straightforward procedures
for reading the direct access files. It also contains a collection of modules which are
loaded and run in turn as a sequence of CUPID commands gets obeyed. The total
amount of code involved is so small however (just over 2000 lines of source code at
present) that it should be possible to have the entire system core resident, even on a
64K byte micro.

As CUPID performs its task of finding relevant documents, it will require
information in the direct access files. Thus to print documents it will require strings
of text from Dd; to compute the 7;, and hence the w;, in (4.4) it will require the
vectors from DT corresponding to the documents in set R; to print out the text of a
term given its term number it will require a text string from 7%, and so on. Since
CUPID is essentially iterative, repeating its basic cycle with improved w; and query
terms, it seems very likely that it will require the same entries from the direct access
files more than once in the course of a run. For this reason many of these entries,
once they have been read, are held in-core in a so-called pool. Prior to reading an
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entry from secondary storage, the system first checks to see whether it is in the pool,
in which case the access to secondary storage is unnecessary. The pool also contains
the sets R, S and M of relevant, seen and best matching documents. As the retrieval
-run continues the pool grows in size, and may need to be cut down if it overfills the
primary store. (In practice this has never happened, and the code to deal with this
case remains to be written!)

Given this basic structure, the various CUPID operations become quite simple.
We will consider only the operation DQ. If the query is

O=(MN,T,...Tr
the various D (T;), which can be represented as

D(Ty) = (D, D2, . . 2)
D(T?) = (Da, D2, . . .)

D(T) = (Dx1, D2y - . )

are opened as k streams for reading. A set Z is formed consisting of & 2-tuples. Each
2-tuple has the form (Dj,i), i.e., it consists of a document number Dj; and the
number / of the stream from which it was read, and gives the last document to have
been read from the ith stream. With the usual notion of tuple ordering, we can talk
of the smallest 2-tuple of set Z. ,

To find the value f(Dj;) for each distinct D;; we do the following:

(a) Remove (Dj,7), the smallest member of Z, from Z.

(b) Add (Dj+1,i) to Zif stream i is not exhausted.

(¢) Set wequal to w;.

(d) Remove (Di,k), the smallest member of Z, from Z.

(e) If Djj= Dy set wto w+ wr and go back to (d), otherwise:

(f) wisnow f(Djy) and (D, k) will act as the next (Dy;,i) for step (a).

This process gives rise to another series of 2-tuples of the form (f (D;;), D;;), or more
simply (f(D), D), and from them the set M may be constructed. M is initially empty,
and has a maximum size, given by #n. The procedure is as follows:

(a) If Disin set S discard it, otherwise:

(b) If the size of M s less than n, add (f(D), D) to M, otherwise:

(c) (Size of M equals n.) If (f(D), D) is greater than the smallest tuple in M,
let it replace that tuple, otherwise discard D.

This must be repeated for each tuple (f (D), D).

In the computation of the w;, n;, the length of the vector D (T77), is kept in the
index file 7D; N, the size of the document collection, is kept at the base of the index
of file DT; r;, the number of documents in R indexed by T;, is found by reading
T (D;) into primary storage for each D; in R and simply counting along these term
vectors; R, the size of set R, is simply kept as a statistic with the set. Note that it is
assumed that the vectors 7"(D;) are sufficiently small to fit into primary storage. No
such assumption may be made about the vectors D (7).

This is a simple method for forming set M, and it is not always optimal. Suppose
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for example that Qis
Q=(T,T)

where 77 is a common term with n; =10000 and 7> is a rare term with nz=10.
Suppose also that w, > wi. A cheaper way of constructing M both in terms of cpu
time and the number of accesses to secondary storage might be to read in the vector

D(Ty) = (D1, Dy, .. .Dyw)

and from this read in the term vectors T (D), T (D2), . . . T (D1o), and find which of
Dy, . . . Dy are indexed by Ti. M consists of those documents of D (72) indexed by
Ti, followed by those documents of D (72) not indexed by Ti, and then followed by
any other documents indexed by 77 only.

Nevertheless it seems wise to stick to the simple strategy in constructing M, or
something similar. To find an optimal strategy which handles the general case would
seem to be difficult, and it is not clear that in practice the savings would ever be very
great.

The choice of data structure to represent the various sets will depend on how they
are being used. So for example while M is being constructed the most efficient
representation is a heap, and once it has been constructed a linear vector is more
convenient. But these sets never become very large, and it is probably a mistake to
worry too much about efficiency here. A linear vector for all of these structures is

‘probably adequate, although in practice we have used tree structures and linear
vectors.

9. EMBEDDING CUPID IN A RELATIONAL DATABASE

Many aspects of CUPID have not been properly developed as it stands at the
moment. The data is essentially static, so that if new documents are added to the
collection, the process of setting up the direct access files must be repeated almost
from scratch. The storage management is fairly primitive. So for example in
evaluating DQ, the merge of the & streams of the D (7;) requires space for k blocks
of the file DT in core, and there is no provision for the case when £ is so large that
the blocks cannot be accommodated. Again no attempt is made to keep a pool of
recently or frequently used blocks in core. The CUPID command language is
primitive and none too user friendly, although the Dublin implementation improves
on the Cambridge one here. '

An attractive way of solving all these problems is to try and implement CUPID in
a DBMS. The DBMS, if suitably .powerful, could at once provide a suitdble filing
mechanism for the data with provision for dynamic updating, could provide good
store management and, conceivably, a friendly user interface. It could also give the
user access to the usual ‘fact retrieval’ facilities of a DBMS, which could be a useful
complement to the IR methods offered by CUPID. Among DBMSs the relational
approach would seem to be the most appropriate. The ease with which so many of
the operations surrounding CUPID can be expressed in relational terms will by now
have become apparent, and in fact almost all the operations performed by CUPID
can be expressed in a relational algebra with a few natural extensions.

We will give an example of this, again with the DQ command which constructs the
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set M from the query. Using the notation developed in section 2, suppose relation V
has the form [T,w] and consists of the list of query terms 7; with their associated
weights w;. Wis formed by joining V with TD,

WI[T,w,D]:= V[T,w]*(1) TD[T,D] ©.1)

Xis a simple projection of W,
X [D,w,T]:= W[T,w,D] > 3,2,1 9.2)

TOT (R,n) is a special function which totals the numbers in the nth column of
relation R over constant values in columns 1 to n— 1, while columns # + 1 upwards
are discarded. Then

Y[D,w]:= TOT (X [D,w,T], 2) (9.3)

creates as Y a set of documents with their associated f-values in column 2. These can
be ranked, going from lowest to highest f-value, by the projection

Z[w,D]:= Y[D,w] —2,1 9.4

and then if M has maximum 'size n, the last z tuples of Z give the set M. It may be
supposed that the last n tuples can be extracted from a relation by a special function
LAST, '

Mw,D]:= LAST (n, Z [w,D]) (9.5)

This may be a very reasonable approach, but there could be problems of efficiency
here. If the document collection is very large and some of the query terms are very
common, relation W will be large. The sort,of W in (9.2) could then be expensive.
Relation Y should be much smaller than relation W, but again the sort in (9.4) could
be expensive. If we think of the DBMS generating M directly from V, then it may
find short cuts which make it unnecessary to generate all the relations Wto Z. None-
theless, it is not easy to imagine that it could from an expression of the form

M := LAST (n, TOT (((V*(1) TD) - 3,2,1), 2) > 2,1)

which combines (9.1) to (9.5), produce, as a means of evaluating M, a process
equivalent to the one given in section 8.

But other approaches may be open to us. Suppose we begin with a series of
relations V1, V2. .. Vk, where each Vi has the form [T,w] and contains the single
2-tuple [T;,w;]. If Wiis defined by -

Wi[T,w,D]:= Vi[T,w]*(1) TD{T,D]" (9.6)

then Wi consists of the elements of the vector D (T;) each prefixed by the fixed pair
(T;,w;), in other words:

(T;, wi, Da)
(T:, wi, Dp)
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If for each i, Xiis formed by the projection 1

Xi[D,w,T}:= Wi[T,w,D] —>3,2,1 9.7
ahd then X is formed from the Xi by a union of the Xi,
X[Dw,T):= X1[D,w,T] + ...+ Xk[D,wT] (9.8)

(‘ +° indicating set union) then the X of (9.8) is the same as the X of (9.2). But
operations (9.6) to (9.8) may be much faster than (9.1) and (9.2), since the projection
in (9.7) does not involve any sorting of the tuples in Wi. The database might be able
to detect that no sorting needs to be done, since it is possible to deduce that columns
1 and 2 of Wi must be constant from the fact that Vi has a cardinality of one, or if it
does invoke a sort, this may run very fast since it effectively has no work to do.
Alternatively it may be possible in the relational algebra to tell the system in the"
expression (9.7) that no sorting is required.

Finally it may be possible to construct M directly from X by a rather spemahzed
function which works like the algorithm given in section 8:

M|[w,D]:= BEST (n, X [D,w,T))

The discussion has centered here around the formation of the set M since this is in
fact the trickiest operation to deal with. The other operations, such as evaluating the
parameters r; from the set R, or ranking the terms which index the documents in R
by decreasing g-value, turn out to be much more straightforward. I believe that we
can conclude that a system like CUPID could be implemented in a suitably powerful
relational DBMS with a relational algebra query language which can be extended by
providing such special functions as TOT (. . .), LAST(. . .), BEST(. . .) and so on.
This is an interesting result since possible tie-ups between IR work and the more
recent developments in the DBMS area are too often dismissed on the grounds that
DBMSs are concerned with fact retrieval only.

10. CONCLUSIONS

In a conventional IR system, queries are expressed in terms of Boolean logic (which
the user is required to learn), and employs query terms which need to be chosen very
carefully, often out of predefined lists and sometimes from a manually constructed
thesaurus. The user will, in the latter case, need to know how to find his way around
the thesaurus in order to examine and extract terms. The retrieved documents will
usually be presented to the user as an unranked set, and some. skill needs to be
exercised to retrieve sets of a manageable size. In a system like CUPID, queries can
be formulated in natural language, and the whole apparatus of Boolean logic and
predefined lists of query terms is bypassed. This makes CUPID quite easy to use. It
is not very difficult to implement, and could be useful as a practical IR system, as a
teaching aid in the IR field, and as a vehicle for testing out IR ideas in the prob-
abilistic model, particularly those involving user interaction. As a practical
realization of a theoretical IR model, it will I hope help narrow the gap between IR
~ theory and practice which currently exists.
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