Information Technology: Research and Development 1982), 1 (55-72)
© 1982 Butterworths ' ‘

THE FACT DATABASE: A SYSTEM USING
GENERIC ASSOCIATIVE NETWORKS

D. R. McGREGOR anp J. R. MALONE

Department of Computer Science, University of Strathclyde, Glasgow, UK
(Received 6 February 1981, revised 17 August 1981)

ABSTRACT

A novel type of associative network, directly implementable as an
electronic circuit, can provide flexible access to a database held as a
semantic network. The circuit is used to expand the range of terms accessed
by a query, and to access information by deduction by using set member-
ship linkages which can be represented within it. The paper describes the
main characteristics of the database, its data structure, and its most
important operations. Software simulations of the system have been
implemented. Initial performance results are reported.

1. INTRODUCTION

Information systems have two major problem areas. The first and perhaps more
fundamental concerns the symbolic representation of information in such a way that
it can be checked, inserted, updated, retrieved and acted upon whenever required.
For example, few present-day systems can handle conditional or qualified informa-
tion adequately. The second is that many collections of information of interest as
databases are very large. Even though we may in principle have a method of doing
the processing required it may nonetheless be impractical on computers with today’s
architecture. These limits are placed mainly by the relative inaccessibility of
information stored on direct-access magnetic discs, and the serial nature of
processors of the general Von Neumann type. This paper is a description of our
efforts in these two areas.

The impetus for our new approach came from our earlier work on special-purpose
processors and backing-stores. In this we developed and tested a fast microcoded
vector processor suitable for handling highly repetitive database manipulations —
sorting, merging, joining, as well as multi-term selection of data and functions for
finding max, min count, etc. — provided data were resident in a RAM store
accessible to the processor (McGregor et al., 1976). We also investigated the
performance of a disc controller with its own integral cache to contain recently-
accessed data (Bagshaw and McGregor, 1980). Despite quite impressive gains in

56 The fact database

performance in linear operations such as searching, we found — as have others (Lea
and Schuegraf, 1980) — that purely serial operations are still much too slow to be
used exclusively. The options available are either to abandon secondary storage of a
passive type or attempt to build a data structure to locate the required data. For
machines of a quasi-conventional architecture, therefore, what is required is a
compact, indexable concentration of data, so that for any particular operation we
can avoid dealing with the major portion of the database, and thus minimise the
bottleneck of backingstore accesses.

Why should we strive towards a better representational model than those
commonly adopted in database systems? First, we know from other fields of human
endeavour that a more elegant model may greatly improve our understanding of a
system. Arabic numerals, the Copernican model of the solar system and the
structural formulae of organic chemistry are examples of such elegant representa-
tions. The last is particularly apt. Each structural formula represents a vast
accumulation of experimental evidence in a form which can be used in planning and
prediction in a way which would be quite impossible from a crude tabulation of the
original data. Thus a more elegant representation can improve our ability to exploit
a system.

In databases an inadequate data model means that we have to rely on human
intuition and adaptability in querying the database. Some operations are valid
whereas others — apparently similar as far as the data model is concerned — are
invalid (or at best have a totally different meaning). An example may be taken from
the n-ary relational model which permits the user to imagine a larger number of
semantically meaningful relationships than actually exist in the system being
represented. Consider the simple relation:

Person Project Sex
Smith, J building male
Jones, J accounts female

Projecting the domains on person/sex returns a relation which gives the sex of each
person. The similar operation of projecting on project/sex certainly does not give
the sex of each project! This is the well known ‘connection trap’ (Codd, 1970).

Where information must be supplied by ad hoc means — by the casual end user or
built into specific applications programs — we are dealing with an inadequate data-
model.

As we move on to database systems which interact with other computer systems
without any human intervention, and databases which carry out inference auto-
matically, the data model’s correctness becomes paramount. Clearly more detail is
required in the data model than is supplied by the simple n-ary relational model in
the example above. -

The work described here is a link between two fields of endeavour. Precise
semantic networks have been used for some time by workers in artificial intelligence,
but so far this approach has been largely ignored by workers in the database field.
We believe that this is because up till now the general semantic net approach has
seemed prohibitively expensive in storage and computational requirements for all
but small database systems. A semantic net structure, making use of sets and generic
information, is capable of supporting a more flexible and more powerfully
descriptive database system than present relational and network models, and it is
our purpose here to show that such an information structure can be implemented

D. R. McGrecor anp J. R. MALONE 57

with reasonable efficiency (even for large volumes of information) provided appro-
priate hardware or data structures are adopted. The work described here is part of
an investigation into a novel database architecture. The new architecture (which is
derived by extending the Binary Relational model) can be described in terms of its
main data structure (built from units of information called ‘Facts’), and a
conceptual machine which can manipulate the structure (the Fact machine). The
system is based on networks of generic information. In this paper we describe:

1. How information concerning sets and set memberships plays a key role in
ensuring the system presents a flexible, ‘friendly’ — but precise — interface to
the user.

2. Given the retrieval mechanism, how the ‘secret’ internal data structure can be

* reorganised to give a more compact and higher level representation for the data-
base information, without the changes becoming apparent to the users of the
system. :

3. How the required generic associative network can be implemented.

Other aspects of the Fact system have been described elsewhere (McGregor and
Malone, 1980).

2. THE DATA STRUCTURE

The data structure is constructed from Entities and Facts.

2.1 Entities

Following Senko (1975) we define an entity to be any distinct ‘thing’ or concept.
This can be concrete or abstract, specific or general. When we wish to represent an
entity from the world which we are modelling, we use a uniquely distinctive entity
symbol within the database, which is always in one-to-one relationship with the real-
world entity. For brevity, in the following discussion we shall frequently refer to
entity symbols simply as ‘entities’.

2.2 Facts

A ‘Fact’ is 2 named directed association between two entities. It is a ‘molecule’ of
knowledge (and information) and is the smallest unit of structured knowledge which
can have an independent existence, and has the quadruple structure with the fields
named as shown below:.

Fact - Subject Relation Object
Number

It is, more properly, an assertion, in that it is possible to store untrue, doubtful or
gualified information in this form. However for historical reasons and brevity, we
find it easier to use the term Fact in a restricted sense to mean an assertion

58 The fact database

represented by the method used here. Each Fact has a unique identity represented by
its Fact Number, which also belongs to the set of entities. We refer to the two
associated entities as the Subject and Object. The name of the association is called
the Relation. The whole Fact is itself an entity, and when information about the Fact
has to be represented in the database, this is done by using its unique Fact Number.
Each Fact is unique, two Facts can have identical entities in the Subject, Relation
and Object fields and still represent different information as the Fact numbers are
distinct. Using the Fact Number to represent a Fact (in the Subject, Object or
Relation fields of another Fact) it is possible to represent knowledge molecules of
arbitrary complexity.

3. THE RETRIEVAL PROBLEM

Consider a database storing information about, say, employees. The typical
database responds when queries are expressed in the general term ‘employee’, which
corresponds to a domain name in its schema, e.g.,

For empldyee list manager.
or in terms of the specific entity:
For employee = ‘John R. Smith’ list manager.

However, the typical database will fail to return data at all to what to the outsider
are equally specific or even more specific terms, e.g.,

For plumber list manager.
or

For salesman = ‘smith’ list manager.

This occurs because the intermediate level set names (plumber and salesman) are
not treated as part of the more general super-sets (employee or person). This
problem is common to almost all contemporary database systems.

One attempt to bypass the problem is to throw the burden of adaptation entirely
on to the user. He or she must use the limited terms defined by the standard schema
— in document retrieval by the standard indexing scheme or thesaurus. This works
where the users are relatively expert and the schema is simple and stable. It is not
suitable for casual users or where the schema is large, complex or subject to frequent
change. Even more important, it is not going to work where the user is another
machine, lacking the human adaptability on which this approach relies. In the future
environment of decentralised systems and long-range communication systems some
of the tasks of adapting to the terms used in requests for data must be undertaken by
the database system itself.

The problem is not much alleviated by the common strategem of allowing less
precise character matching based on ‘variable length don’t care’ symbols. The
obvious method of explicitly storing a multiplicity of denotations for individual
entities and explicit additional set linkages soon becomes prohibitively expensive in
storage space.

D. R. McGrecor anp J. R. MaLONE 59

If, however, the system can handle ‘recursive sets’ or ‘semi-explicit sets’
(Fahlman, 1979) we can achieve flexibility with economy of storage for the cost of
some additional processing. The concept is simple. Each entity can be a mémber of
any number of sets, and sets can be members of other sets. When a set has members
which are also sets, members of these too are taken to be members of the original
set. Hence our use of the term ‘recursive set’. Normally in mathematics a set is
represented either explicitly, by enumeration, or implicitly — by the set of values
which can be returned by a function. Recursive sets are used by our database system
is represented in an intermediate way, the first level of membership of a set is
enumerated explicitly in storage, but subsequent levels are obtained by manipulation
of this stored information. Hence Fahlman’s use of the term ‘semi-explicit set’.

3.1 Use of generic information in retrieval: The Broom Concept

Information about set membership of entities is represented within a Fact database
— and is acted on directly by the database system in a number of ways:

1. A query may use a denotation corresponding to a set of entities, e.g.,
‘schoolteacher’, ‘employee’, ‘person’, “lecturer’

but the desired information in the database may be stored at a different level.
For instance it may be stored at the level of the individual set members. We
therefore need to ‘broaden’ the terms used in the enquiry to ensure that all
relevant information in the database is accessed irrespective of the level of
generalisation at which it is stored. A query about ‘person’ should be concerned
with any subsets of person such as ‘employee’, and their subsets (‘lecturers’),
etc. To satisfy this requirement, the ‘broadening’ which we apply to the denota-
tion used in the query is to attempt to retrieve any member of the powerset of
the term supplied (Fig. 1). '

2. There is also the possibility that information is stored ‘higher up’ the generic
hierarchy than the term used in the query. For example, if all people are mortal,

_ it would be entirely reasonable for the database to store this information with
the entity representing the set of all people. On retrieval, we require that queries
requesting information about subsets (lecturers, schoolteachers, chemistry
lecturer, etc.) or particular members of those subsets — ‘Fred Jones is mortal?’
— should elicit the stored information. This requires simple deduction. In order
to do this, the query terms must therefore be ‘broadened’ upwards so that the
stored information is accessed, at whichever higher set it happens to be stored.
We call this the ‘upward closure’ of the search term. Starting from the search
term (which we refer to as the Principal Node) it includes all sets of which the
Principal Node is a member, all sets containing any of those sets as a member

. . and so on until no additional sets can be accessed (Fig. 1).

The entire ‘broadened’ collection of search terms can be visualised as a ‘Broom’,
consisting of the Principal Node, its Downward Closure — the ‘Brush’, and its
Upward Closure — the ‘Handle’.

To ensure that all relevant information is accessed the Fact System thus broadens

60 The fact database

1 s Object . ,
Handle or

‘Upwards Closure’

2 % Animate Object

Principal
ncipa » 3 % Person

= \

5 % Employee 4 % Schoolboy '‘Brush’or

'‘Downwards Closure’
(Powerset
6 » John R. Smith

10 »* Salesman 8 » Schoolteacher 7 x Lecturer

L4

12 » Andersen 11 % David Green 9 »* Chemistry lecturer

~—

13 % Fred Jones

Fic. 1. ‘Broom’ of ‘person’

each search term to the corresponding Broom, but selects information only if it lies

on the intersections of all required Brooms.
The importance of this procedure is that:

1. It provides a precise but flexible interface with the outside world. The matching
procedure seems to closely mirror the corresponding human process, but is

convenient for both computer systems and human users.

2. It provides the system with the capability of restructuring its data, factoring
common items and storing them higher up the generic structures, yet allowing
users to access that information in a completely unchanged manner. We believe

that this procedure is fundamental to any advanced database system.

4. AUTONOMOUS ACTIVITIES

Given the above retrieval mechanism, the flexibility of the data representation can
be exploited by a set of background, or ‘autonomous activities’ concerned with

organising the secret internal data structure. They include:

D. R. McGrecor anp J. R. MALONE 61

—

Clustering the data into additional high-level sets [‘Logical Clustering’].

2. Simplification of the database, when two different entity symbols are found to
be representing the same real-world entity.

3. Formation of simple hypotheses.

All three areas have given encouraging results in our investigations so far.

4.1 Creating additional generalised entities

It is possible to save a substantial fraction of the space occupied by an unfactored
database, by collecting the entities into sets, then storing the common Facts at the set
level. The properties of individual set members can be reconstructed when needed by
the process of simple deduction. This is carried out automatically as part of the
‘inferential fetch’ mechanism.

The problem is to cluster the Facts in such a way that we obtain a useful
generalised description of the low-level data model. This aim is compatible with a
sub-goal — the saving of storage space. Whatever we do must always result in a
system which can still reconstitute the original data, when required. The general
clustering operation is illustrated in Figure 2.

Xi—Ri— Y, Xi— Ry —Y2

Xo—Ri—Y; " X3—Ra—Y2

X3'—R1'— Y1 X4—‘— RQ—YQ
Si—R1—Y; S;—R2—Y2

Fic. 2. Sequences in a clustering operation

62 The fact database

New entities S;, Sp, S5 are created to represent the largest sets with the
largest number of attributes. In order to achieve a significant saving of space a
minimum threshold must be applied, so that a new set entity is not created unless it
has a significant number of members all of which share a number of attributes in
common.

4.2 Description of the clustering method

All the Facts are sorted into an arbitrary order by the values of the Entity numbers in
each of the Fact fields. We ourselves use a precedence for the three fields:
Relation > Object > Subject. A :

The objective of the sorting operation is to locate similar Facts together, so that a
simple scan can separate sets having Object and Relation fields in common. Where
more than the minimum number of Facts are in a set, a new entity symbol is created
to represent the set. New Facts are constructed to enable the set entity to represent
the common attributes of the set, and to link the various members to the new set-
entity. Finally the original Facts, now no longer required, are removed. The second
stage of the clustering process is to compare all sets with each other, two at a time. If
the intersection of two sets is greater than some minimum threshold new entities
representing the intersection sets are generated, and the data structure is adjusted as
before. Our present programs apply this method iteratively until no further cluster-
ing takes place.

The clustering process thus causes the formation of additional new high level sets.
These are shown to the user who (if he wishes) can give them a name (external
representation) which will be used in future, thus raising the level of the man-
machine dialogue. These also save space by permitting factoring of the data as in the
following example. The logical clustering is performed by collecting the entities into
sets, then storing common Facts at the set level (Fig. 3).

Person

Fred=- has--2legs Peter-- has--2legs David-- hqs——2‘legs
-- has--2arms -~has—--2arms —--has--2 arms

Explicit facts 6; member of set linkages 3
Person -~ has --2 legs
--has--2 arms

" Fred Peter David

Explicit facts 2; member of set linkages 3

Fic. 3. Space saving by clustering

In general, given m entities each of which take part in » common Facts (i.e., which
all have the same Relation and Object fields), this clustering process replaces the
~nXx m explicit Facts by n Facts stored at the set level. The information thus stored is

D. R. McGrecor anp J. R. MaLONE 63

implicitly available with all the m original individual set members by simple
deduction (carried out automatically by the Inferential Fetch Operation) and the
number of explicitly stored Facts is reduced by n X m-n.

Clustering is also the basis of a simple method of Hypothesis formation. On
finding a pair of entities which have a significant number of common properties and
insignificant number of different properties the system will hypothesise that the
entities are identical. The system converses with the user to determine if the
hypothesis is correct. This has already been implemented. The system can be
prevented from reconsidering rejected hypotheses by adding explicit ‘denial of
equivalence’ Facts to the database. The ‘significant’ and ‘insignificant’ levels are
adjustable parameters of the program.

5. GENERIC ASSOCIATIVE MEMORY

The Generic Associative Memory is a concept which developed during this project.
Early versions of the Fact Machine had an abstract machine with a simple
associative mechanism operating on a Fact store with a quadruple structure. In such
a machine a ‘Simple Fetch’ would select all the Facts from the Fact store matching
the entity or ‘don’t care’ symbols placed in the Associative Memory Access Register.
Such an abstract machine can be programmed to effect the generic retrieval (as
described in Section 3) but requires as many associative cycles as there are nodes in
the ‘broom’. A Generic Associative Memory is one which requires only two cycles to
form a complete ‘broom’ — one for the ‘downwards’, the other for the ‘upwards’
closure for any principal node in a single operation.

This high-level operation has been implemented directly in the most recent
versions of our system. The reasons for first, defining this as an operation, and
second, for implementing it by special mechanisms, are:

1. The operation is exceedingly useful in providing user-friendly retrieval. It is
virtually essential if users are not to be disrupted by dynamic restructuring of
the internal data model {(e.g., after clustering).

2. By implementing it specially we can provide the hardware/software required for
performance.

It was observed during the experimental work that the generic ‘broom’ network
could be implemented on a hard-wired network (Fig. 4).

Applying a positive voltage to a particular node activates all the others in the
powerset, while a negative voltage could similarly indicate the corresponding
‘upwards closure’. This is an exceedingly rapid operation, depending only on the
speed of propagation of the wired circuit but the mechanism seemed difficult to
produce except as a permanently-wired network (unless perhaps by an automatic
backplane-wiring machine!). We realised however that the network was analogous
to a telephone system and thus we replaced the permanently-wired network by an
equivalent one constructed as a crossbar exchange. Now the setting of the paths
occurs by setting of various switches in the exchange (Fig. 5).

As in a telephone exchange however the number of switches in a crossbar scheme
increases as N2 where N is the number of external terminals (which now represent
the nodes off the network), yet the actual number of switches ever ‘closed’ in an
actual database is much less than N?. We have overcome this by

64 ' The fact database

inputs : . KEY:
“Live',
————— Dead
—t¢— Diode
° Inactive
@ Active

Fic. 4. ‘Downward’ closure of ‘person’.” A ‘Wired’ network

1. Replacing the large crossbar by a number of small crossbar memories acting as
though they were portions of the larger matrix.

2. Providing a mechanism to deal with the inevitable overflow of the smaller sub-
networks by allowing the overflow from one sub-network to connect to another,
and allocating these as necessary as the database grows.

3. ‘Physical clustering’ of the allocation of entities to network terminals so as to
minimise the number of inter-block connections. It should be noted that this
‘physical clustering’ is distinct from the ‘logical clustering’ of entities into sets
described in Section 4.

D. R. McGrecorAND J. R. MALONE . . 65

1 2 3 4 5 6 7 8 9 10 11 12 13 Outputs
1 [
2 .
3 —
4 Vv
[
5 V.
Tt
6 v '
' ®
7 \Y
|)
8 \Y
[
9 Vv
-1
10 \
I
11 \%
. | °
12 \Y
b
13 \Y

Inputs

Fic. 5. Crossbar representation of network. V (diode) = switched connection;
@ (wired) = permanent connection

We have now produced an outline design for an electronic memory capable of being
implemented on an LSI chip capable of being ‘set’ like an ordinary RAM, but which
exhibits the Generic Associative behaviour (Fig. 6).

- We have also been investigating the performance of systems incorporating the
new element by software simulation. To our surprise this has yielded by far the
fastest systems we have implemented to date, partly because this is an extremely
compact representation, partly because the allocation of entities to ‘blocks’ of the
network results in a highly desirable ‘clustering’ of entities which are closely
associated.

‘6. ADATA STRUCTURE FOR IMPLEMENTATION BY SOFTWARE

We shall now describe the data structuré used by our software implementation. As is
usual with database systems, data is presented to the system — and is returned from
the system — in the form of variable-length character strings. These are converted
by a scanner mechanism which uses a large backing-store file as a hash-table, and
which returns a fixed-length identifier. In the case of a character string already
present in the system, the identifier is of the form <net> <line>. <net> is a datablock
representing the hardware net switch matrix; <line> is the row of the matrix
allocated to this symbol. The required initial datablock can thus be accessed dlrectly
and fetched into mainstore.

66 The fact database

Outputs———@M8M8 ™ ——— - - - = —>»

A

(I
(]
|
=

Inputs

B

“chkwar‘g' and
Forward’ daisy chains
N

Fic. 6. Electronic memory exhibiting Generic Associative behaviour.
Note: Only a single set of (bi-directional) links is actually required (B) to achieve
the effect as at (A), i.e., all links are bi-directional

The structure of this datablock is given in Figure 7. It consists of an n*n square bit
matrix, associated pointers, and ‘buckets’ containing data elements which can be
chained to others making a cellular list. The bit matrix has one row for each entity
which has been assigned to the net; the pointers refer to a descriptor of the
additional information about the entity. Each descriptor contains:

nc’ Number of continuations (other nets) for this entity.

ns Number of Facts in which this entity is in the Subject position.
nr Number of Facts in which it is in the Relation position.

no Number of Facts in which it is in the Object position.

D. R. McGrecor anp J. R. MaLoNE 67

tncfnsinrfnofz

£ 1T T T T T T T T T T T T 1T 17711
<«—nNC -+ NS ———— >« < no >
(Other nets) .

Fic. 7. Structure of datablock

These are then followed by contiguous groups of data elements representing Fact
Numbers or entities.

The structure is designed to store each piece of information as closely as possible
to the other information with which it is associated. When a new entity comes into
the system, an identifier is allocated to it (which is also of the form <net> <line>)
and the <net> is chosen to be one which:

1. has sufficient space;
2. contains associated data.

If no associated data are already present the new entity is allocated to a new or
relatively empty block. When a new entity is associated with other information, but
lack of space prevents it being allocated to the existing net, a connection or link must
be made (using the pointers) from the existing net to a new net. A net is thus used as
a small contiguous bucket to which entities can be assigned irrespective of their type.
Although it may at first sight seem an untidy structure, it does in fact provide a good
model for the clusters of associated items of information met in actual usage. It is
particularly useful where we have to map the resultant data structure onto a backing
store device.

7. PERFORMANCE: SCALING RULES FOR A ‘NET’-BASED SYSTEM

Perhaps the major question about the semantic net approach is whether imple-
mentation techniques will permit scaling-up the systems to deal with databases of
practical size. We shall now derive a simple scaling-rule for our system, and in a later
section we shall compare its predictions with experimental measurements.

Assuming square nets of order n, what are the costs of accessing a set of size S?

68 The fact database

As indicated above, initial conversion from character string to <net><line>
identifier is carried out by a symbol-table mechanism which uses a hash-look-up.
This requires approximately one access to the backing-store.

Accessing a large set — or recursive set — will require approximately S/(n—1)
backing-store accesses. (We shall consider the effect of a large-page virtual storage
system later.)

With a suitable hash-function and a sufficient size of hash-table, the number of
accesses to the backing store can be made independent of the overall size of the
database. As the nets accessed in the retrieval are predominantly those which
contain set members, and these have a high concentration of set members to a first-
approximation retrieval time is:

1. Proportional to set cardinality.
2. Independent of the overall size of the database (i.e., retrieval costs are not
affected by the presence of data disjoint to the present operation).

In a practical system the costs may be further reduced by the use of techniques
which further cluster the relevant information. .

In‘our PDP11 system we adopted a mainstore ‘cache’ to hold the most frequently
accessed nets (‘second chance’ replacement). This has proved highly beneficial when
a series of operations is carried out on approximately the same data, and the
working set of nets actually accessed is smaller than the mainstore cache.

For our larger ICL2980-based implementation we have used a placement strategy
so that a series of nets containing information about the same large set are allocated
contiguous physical storage within the same pagebuffer in virtual store. This
reduces fragmentation and hence reduces the backing-store accesses required.

Given a pagesize p bytes, and a netsize of nv bytes, we have:

No. of accesses = [[§/(n—1) 1/(p/nv) |

With some typical values (n =32, p=4096, nv=2048) this formula indicates that
approximately 100 backingstore accesses are required for a set with some 6400
members. '

Experimental results are summarised in Tables 1 and 3 (PDP11), 2 and 4 (2900-
EMAS). They show that the scaling rule given is applicable, at least for these imple-
mentations. (Unfortunately in the EMAS/2980 experiments backing-store accesses
must be indirectly inferred from system supplied information, and results are
dependent on the general load on the system.) '

Table 1. System 11/34 UNIX. Retrieval of 32 records from a disjoint database

Actual
Database size response Predicted Actual
(no. of records) time (s) disk accesses disk accesses
32 2.1 33 33
82 2.0 33 33
132 . 2.1 33 33
1032 2.1 33 33
1532 2.2 33 33

D. R. McGrecor anD J. R. MALONE 69
Table 2. System 2980 EMAS. Retrieval of 32 records from a disjoint database

Actual
Database size response Predicted Actual
(no. of records) time (s) disk accesses disk accesses
32 1.2 33 11
42 1.2 33 11
132 1.2 33 11
532 1.2 33 11
1032 1.2 33 11
3032 1.2 33 11

Table 3. System 11/34 UNIX. Performing a closure of increasing cardinality

Retrieval size Elapsed
(no. of members) time (s) '
10 1.1
100 8.0
1000 . 24.2

Table 4. System 2980 EMAS. Performing a closure of increasing cardinality

Retrieval size Elapsed
(no. of members) time (s)
10 0.5
100 1.0
500 2.2)
1000 5.5
3000 15.4

8. IMPLEMENTATION HISTORY

Implementation of the system has proceeded through several stages. The initial
versions used a simple simulation of a content addressable Fact store — each access
required a complete search of the store and all data were kept as an array in
mainstore. We soon progressed to version 2 — which gave moderate performance
on a larger volume of data located on the backing store on a conventional computer.
Reasonably rapid access to the data was achieved by normal data processing tech-
niques — we kept both direct and inverted files. Look-up used ‘hashing’ to achieve
rapid access to the backing store, and an instore cache system was used for the most
frequently used data. However, for the reasons already indicated generic retrieval
always required multiple accesses to the backing store. Our third version of the
system is actually a modified simulation of the network. As the hard-wired network
would have much greater performance than is required (at present) for typical
applications the simulation may well prove adequate. This version has cut the time
required for one of our ‘benchmarks’ (compiling a small database) from 7 min to
only 12 s (on a PDP11/34). We envisage a scaled-up version as shown in Figure 8.

T 70 The fact database

Associati
Module Module Modutle Module | g4t S?;r\ée
one two three n Modules
Control
) / ~ |Interface
High- speed
communication
ring

<«—— Archive database
(maintained by 'Write through’)

Fic. 8. Large system outline

9. COMPARISON WITH OTHER SYSTEMS

Early systems based on entities were reviewed by Winograd (1972). We saw the
model as a development of Senko’s DIAMII (1975), and an extension of our own
work on special-purpose hardware for database systems (McGregor ef al., 1976).
Chen (1976), Smith and Smith (1977) have worked on Entity sets, and generic
information. The work of Lea (1975) on associative hardware was also influential.
After our initial developments we discovered the work by Sharman and Winter-
bottom (1979), and were interested by the comparison between our basic associative
Fact store and the programming language LEAP (Feldman and Rovner, 1969).
Recent work by Deliyani and Kowalski (1979) on logic and semantic networks is
somewhat similar to our own in its use of deduction but without the more general
abilities of the Fact machine. '

Semantic nets are a recognised method of representing knowledge in computer
systems though they have only recently been applied to database systems
‘(Rousopolous and Mylopolous, 1975; Sharman and Winterbottom, 1979). They
have been found especially useful in the field of artificial intelligence where there is a
wealth of literature describing various forms which they can take. A number of
related systems have been developed by various workers — ‘networks’ (Woods,
1975), ‘frames’ (Minsky, 1975), ‘generalisation hierarchies’ Winograd (1975). There
seems little doubt that nets are a powerful technique for the representation of
information, though there is much debate on which representation is ‘best’ for a
particular application.

D. R. McGrecor anp J. R. MaLONE 71

In general, earlier implementations of semantic nets were unsuitable for use in
large scale databases. Usually the data were held in mainstore, and explicit pointers
were used to indicate links between nodes on the net. Later systems, in particular the
implementation of Sharman and Winterbottom, placed semantic nets on the backing
store. Here however, the links between nodes were still explicit (address) pointers.

Size comparisons with more conventional database systems are complicated
because we are not comparing like with like. We suggest that there are three
recognisably different measures:

1. Actual storage size — the actual stored volume.

2. Storage-equivalent size — the volumes of systems fed the same set of input data.

3. Query-equivalent size — the volumes of systems capable of responding correctly
to the same set of queries.

We normally experiment with databases of about 20000 Facts, and the system
handles these volumes easily, giving acceptable response times. The system is loaded
from some 2000 150-byte records. This volume of information is storage-equivalent
to a conventional file of records of about 0.3 megabyte. However this size is in no
sense an upper limit, present work is aimed at producing a demonstration system
with an order of magnitude increase in size. The actual stored size is approximately
0.3 megabyte, while the query-equivalent size must correspond to a conventional
database of some tens of megabytes, as each term is multiply-indexed.

10. CONCLUSION

We believe that the use of generic information to provide a self-adaptive user
interface, through which users and other computer systems can immediately (and
without prior rigid standardisation on a specific thesaurus of agreed terms) achieve
effective communication, is a significant and highly-valuable ability. This will be
particularly useful in the context of distributed database systems. The ability of the
system to utilise entity external character string denotations in a variety of human
natural languages is a useful side-effect.

The system treats information in an orthogonal manner. There is no difference in
storage, or access method between schema and data, nor is there a separation of
catalogue and data dictionary from data files as there is in most other database
systems. Even operational information and ‘programs’ which form part of the
system are held in the same standard way as all other information. The data model is
capable of representing knowledge to any desired level of detail, in a form
independent of the character strings or other denotations originally employed to
insert it into the system. Further, the ‘secret’ nature of the internal knowledge
structure, combined with the automatic intervention of broadening, deduction,
transitive and reflexive relations and special purpose procedures (Computed Facts
and Computed Relations), gives the system a unique degree of data independence.
The internal data structure can be completely re-organized without any external user
or application being in any way affected by the change.

We have shown that the generic network can be represented by a hard-wired
network, but more significantly, that this in turn can be implemented by means of a
sparse matrix of storage elements made up from regular sub-matrices of moderate

72 The fact database

size. In this way we believe a compact high-speed associative system can be
constructed using L.SI components.

ACKNOWLEDGEMENTS

We should like to thank our colleagues in the Department of Computer Science for
their advice and helpful discussions. The work is supported in part by S.R.C. Grant
GR/A/3682.7.

REFERENCES

Bagshaw, S. and McGregor, D. R. (1980) Disc cache for minicomputer systems. Systems
International 2, 41-43.

Chen, P. P. S. (1976) The entity-relationship model. ACM Transactions on Database Systems
1,9-36.

Codd, E. F. (1970) A relational model of data for large shared data banks. Communications
of the ACM 13,377-387.

Deliyani, A. and Kowalski, R. A. (1979) Logic and semantic networks. Communications of
the ACM 22, 184-193.

Fahlman, S. E. (1979) NETL: A system for representing and using real-world knowledge.
Boston: M.L.T.

Feldman, J. A. and Rovner, P. D. (1969) An Algol based associative language. Communica-
tions of the ACM 12, 439-449.

Lea, R. M. (1980) Associative processing of non-numerical information. Proc. Summer
Institute NATO ASI series c-32 171-215.

Lea, R. M. and Schuegraf, E. J. (1980) An associative file store using fragments for run-time
indexing and compression. Information Retrieval Research (R. N. Oddy, S. E. Robert-
son, C. J. van Rijsbergen, P. W. Williams, eds.) pp. 280-295. London: Butterworths.

McGregor, D. R. and Malone, J. R. (1980). The fact database: a system based on inferential
methods. Information Retrieval Research (R. N. Oddy, S. E. Robertson, C. J. van
Rijsbergen, P. W. Williams, eds.) pp. 203-217. London: Butterworths.

McGregor, D. R., Thomson, G. T. and Dawson, W. D. (1976) High performance hardware
for database systems. Proceedings of the Second Conference on Very Large Databases
(G. M. Nijssen, ed.) Preprints 103-116. Amsterdam: North Holland. .

Minsky, M. (1975) A framework for representing knowledge. The Psychology of Computer
Vision (P. H. Winston, ed.) McGraw-Hill.

Rousopolous, N. and Mylopolous, J. (1975) Using semantic networks for database manage-
ment. Proceedings of the First Conference on Very Large Databases (D. Kerr, ed.)
pp. 144-172. Amsterdam: North Holland.

Senko, M. E. (1975) Specification of stored data structures and de51red results in DIAM 11
with FORAL. Proceedings of the First Conference on Very Large Databases (1) (D. Kerr,
ed.) pp. 557-571. Amsterdam: North Holland.

Sharman, G. O. H. and Winterbottom, N. (1979) NDB: Non-programmer database facility.
Hursley (IBM Technical Report TR 12.179).

Smith, J. M. and Smith, D. C. P. (1977) Database abstraction: aggregation and generalisa-

" tion. ACM Transactions on Database Systems 2, 105-133.

Winograd, T. (1972) Understanding Natural Language. Edinburgh University Press.

Winograd, T. (1975) Frame representation and the declarative/procedural controversy.
Representation and Understanding. (D. G. Bobrow and A: Collins, eds.) New York:
Academic Press.

Woods, W. (1975) Foundations for semantic networks. Representation and Understanding.
(D. G. Bobrow and A. Collins, eds.) New York: Academic Press.

