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Introduction

Much effort and research has gone into solving the problem of 
evaluation of information retrieval systems. However, it is probably fair 
to say that most people active in the field of information storage and 
retrieval still feel that the problem is far from solved. One may get an 
idea of the extent of the effort by looking at the numerous survey 
articles that have been published on the topic (see the regular chapter in 
the Annual Review on evaluation). Nevertheless, new approaches to 
evaluation are constantly being published (e.g. Cooper1; Jardine and 
Van Rijsbergen2; Heine3).

In a book of this nature it will be impossible to cover all work to 
date about evaluation. Instead I shall attempt to explicate the 
conventional, most commonly used method of evaluation, followed by 
a survey of the more promising attempts to improve on the older 
methods of evaluation.

To put the problem of evaluation in perspective let me pose three 
questions: (l)W hy evaluate? (2) What to evaluate? (3) How to 
evaluate? The answers to these questions pretty well cover the whole 
field of evaluation. There is much controversy about each and although 
I do not wish to add to the controversy I shall attempt an answer to 
each one in turn.

The answer to the first question is mainly a social and economic one. 
The social part is fairly intangible, but mainly relates to the desire to 
put a measure on the benefits (or disadvantages) to be got from 
information retrieval systems. I use ‘benefit’ here in a much wider sense 
than just the benefit accruing due to acquisition of relevant documents. 
For example, what benefit will users obtain (or what harm will be 
done) by replacing the traditional sources of information by a fully
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automatic and interactive retrieval system? Studies to gauge this are 
going on but results are hard to interpret. For some kinds of retrieval 
systems the benefit may be more easily measured than for others 
(compare statute or case law retrieval with document retrieval). The 
economic answer amounts to a statement of how much it is going to 
cost you to use one of these systems, and coupled with this is the 
question ‘is it worth it?’. Even a simple statement of cost is difficult to 
make. The computer costs may be easy to estimate, but the costs in 
terms of personal effort are much harder to ascertain. Then, whether it 
is worth it or not depends on the individual user.

It should be apparent now that in evaluating an information retrieval 
system we are mainly concerned with providing data so that users can 
make a decision as to (1) whether they want such a system (social 
question) and (2) whether it will be worth it. Furthermore, these 
methods of evaluation are used in a comparative way to measure 
whether certain changes will lead to an improvement in performance. In 
other words, when a claim is made for say a particular search strategy, 
the yardstick of evaluation can be applied to determine whether the 
claim is a valid one.

The second question (what to evaluate?) boils down to what can we 
measure that will reflect the ability of the system to satisfy the user. 
Since this book is mainly concerned with automatic document retrieval 
systems I shall answer it in this context. In fact, as.early as 1966, 
Cleverdon gave an answer to this. He listed six main measurable 
quantities:

(1) the coverage of the collection, that is, the extent to which the 
system includes relevant matter;

(2) the time lag, that is, the average interval between the time the 
search request is made and the time an answer is given;

(3) the form of presentation of the output;
(4) the effort involved on the part of the user in obtaining answers 

to his search requests;
(5) the recall of the system, that is, the proportion of relevant 

material actually retrieved in answer to a search request;
(6) the precision of the system, that is, the proportion of retrieved 

material that is actually relevant.

It is claimed that (l)-(4 ) are readily assessed. It is recall and precision 
which attempt to measure what is now known as the effectiveness of 
the retrieval system. In other words it is a measure of the ability of the 
system to retrieve relevant documents while at the same time holding 
back non-relevant ones. It is assumed that the more effective the system 
the more it will satisfy the user. It is also assumed that precision and 
recall are sufficient for the measurement of effectiveness.
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There has been much debate in the past as to whether precision and 
recall are in fact the appropriate quantities to use as measures of 
effectiveness. A popular alternative has been recall and fall-out (the 
proportion of non-relevant documents retrieved). However, all the 
alternatives still require the determination of relevance in some way. 
The relationship between the various measures and their dependence on 
relevance will be made more explicit later. Later in the chapter a theory 
of evaluation is presented based on precision and recall. The advantages 
of basing it on precision and recall are that they are:

(1) the most commonly used pair;
(2) fairly well understood quantities.
The final question (How to evaluate?) has a largely technical answer. 

In fact, most of the remainder of this chapter may be said to be 
concerned with this. It is interesting to note that the technique of 
measuring retrieval effectiveness has been largely influenced by the 
particular retrieval strategy adopted and the form of its output. For 
example, when the output is a ranking of documents an obvious 
parameter such as rank position is immediately available for control. 
Using the rank position as cut-off, a series of precision recall values 
could then be calculated, one pair for each cut-off value. The results 
could then be summarised in the form of a set of points joined by a 
smooth curve. The path along the curve would then have the immediate 
interpretation of varying effectiveness with the cut-off value. 
Unfortunately the kind of question this form of evaluation does not 
answer is, for example, how many queries did better than average and 
how many did worse? Nevertheless, we shall need to spend more time 
explaining this approach to the measurement of effectiveness since it is 
the most common approach and needs to be understood.

Before proceeding to the technical details relating to the 
measurement of effectiveness it is as well to examine more closely the 
concept of relevance which underlies it.

Relevance

Relevance is a subjective notion. Different users may differ about the 
relevance or non-relevance of particular documents to given questions. 
However, the difference is not large enough to invalidate experiments 
which have been made with document collections for which test 
questions with corresponding relevance assessments are available. These 
questions are usually elicited from bona fide users, that is, users in a 
particular discipline who have an information need. The relevance 
assessments are made by a panel of experts in that discipline. So we
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now have the situation where a number of questions exist for which the 
‘correct’ responses are known. It is a general assumption in the field of 
IR that should a retrieval strategy fare well under a large number of 
experimental conditions then it is likely to perform well in an 
operational situation where relevance is not known in advance.

There is a concept of relevance which can be said to be objective and 
which deserves mention as an interesting source of speculation. This 
notion of relevance has been explicated by Cooper4 . It is properly 
termed ‘logical relevance’. Its usefulness in present day retrieval systems 
is limited. However, it can be shown to be of some importance when it 
is related to the development of question-answering systems, such as 
the one recently designed by T. Winograd at Massachusetts Institute of 
Technology.

Logical relevance is most easily explicated if the questions are 
restricted to the yes-no type. This restriction may be lifted — for 
details see Cooper’s original paper. Relevance is defined in terms of 
logical consequence. To make this possible a question is represented by 
a set of sentences. In the case of a yes-no question it is represented by 
two formal statements of the form ‘p ’ and ‘not-p’. For example, if the 
query were ‘Is hydrogen a halogen element?’, the pair of statements 
would be the formal language equivalent of ‘Hydrogen is a halogen 
element’ and ‘Hydrogen is not a halogen element’. More complicated 
questions of the ‘which’ and ‘whether’ type can be transformed in this 
manner, for details the reader is referred to Belnap5. If the two 
statements representing the question are termed component statements 
then the subset of the set of stored sentences is a premiss set for a 
component statement if and only if the component statement is a 
logical consequence of that subset. (Note we are now temporarily 
talking about stored sentences rather than stored documents.) A 
minimal premiss set for a component statement is one that is as small as 
possible in the sense that if any of its members were deleted, the 
component statement would no longer be a logical consequence of the 
resulting set. Logical relevance is now defined as a two-place relation 
between stored sentences and information need representations (that is, 
the question represented as component statements). The final 
definition is as follows:

A stored sentence is logically relevant to (a representation 
of) an information need if and only if it is a member of 
some minimal premiss set of stored sentences for some 
component statement of that need.

Although logical relevance is initially only defined between sentences it 
can easily be extended to apply to stored documents. A document is
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relevant to an information need if and only if it contains at least one 
sentence which is relevant to that need.

Earlier on I stated that this notion of relevance was only of limited 
use at the moment. The main reason for this is that the kind of system 
which would be required to implement a retrieval strategy which would 
retrieve only the logically relevant documents has not been built yet. 
However, the components of such a system do exist to a certain extent. 
Firstly, theorem provers, which can prove theorems within formal 
languages such as the first-order predicate calculus, have reached quite a 
level of sophistication now (see, for example, Chang and Lee6). 
Secondly, Winograd’s system is capable of answering questions about its 
simple universe of blocks in natural language. In principle this system 
could be extended to construct a universe of documents, that is, the 
content of a document is analysed and incorporated into the universe 
of currently ‘understood’ documents. It may be that the scale of a 
system of this kind will be too large for present day computers; only 
the future will tell.

Precision and recall, and others

We now leave the speculations about relevance and return to the 
promised detailed discussion of the measurement of effectiveness. 
Relevance will once again be assumed to have its broader meaning of 
‘aboutness’ and ‘appropriateness’, that is, a document is ultimately 
determined to be relevant or not by the user. Effectiveness is purely a 
measure of the ability of the system to satisfy the user in terms of the 
relevance of documents retrieved. Initially, I shall concentrate on 
measuring effectiveness by precision and recall; a similar analysis could 
be given for any pair of equivalent measures.

It is helpful at this point to introduce the famous ‘contingency’ table 
which is not really a contingency table at all.

RETRIEVED  

NOT RETRIEVED

RELEVANT NON-RELEVANT

B 

B

N

A Ci B A CiB

a  n s A n s

A A

(N = number of documents in the system)
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A large number of measures of effectiveness can be derived from this 
table. To list but a few:

PRECISION =
\a  n  b \

151

RECALL
\A OB|

HI

FALLOUT
IA n s |

HI
(| . | is the counting measure)

There is a functional relationship between all three involving a 
parameter called generality (G) which is a measure of the density of 
relevant documents in the collection. The relationship is:

R x G
(R x G ) + F ( l- G ) where G = HI

N

For each request submitted to a retrieval system one of these tables 
can be constructed. Based on each one of these tables a precision-recall

Figure 6.1. The precision-recall curves for two queries. The ordinals indicate the 
values o f  the control parameter A.
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value can be calculated. If the output of the retrieval strategy depends 
on a parameter, such as rank position or co-ordination level (the , 
number of terms a query has in common with a document), it can be 
varied to give a different table for each value of the parameter and 
hence a different precision-recall value. If X is the parameter, then P \ 
denotes precision, R \  recall, and a precision-recall value will be 
denoted by the ordered pair (Rx, P\)- The set of ordered pairs makes 
up the precision-recall graph. Geometrically when the points have been 
joined up in some way they make up the precision-recall curve. The 
performance of each request is usually given by a precision-recall curve 
(see Figure 6.1). To measure the overall performance of a system, the 
set of curves, one for each request, is combined in some way to produce 
an average curve.

Averaging techniques

The method of pooling or averaging of the individual P-R  curves seems 
to have depended largely on the retrieval strategy employed. When 
retrieval is done by co-ordination level, micro-evaluation is adopted. If 
S  is the set of requests then:

tfl = £  \AS|
s e S

where A s is the set of documents relevant to request s. If X is the 
co-ordination level then:

m  = I  l b j
se S

where is the set of documents retrieved at or above the
co-ordination level X. The points (R \, Px) are now calculated as 
follows:

R x=  I
s e S

\As nBxs\
\ A \

p _ y  \AS FBxs\
X s e S  LB AI

Figure 6.2 shows graphically what happens when two individual P-R  
curves are combined in this way. The raw data are given in Table 6.1.

An alternative approach to averaging is macro-evaluation which can 
be independent of any parameter such as co-ordination level. The 
average curve is obtained by specifying a ietofstandard recall values
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recal I
Figure 6.2. An example o f  ‘averaging’ in micro-evaluation

TABLE 6.1. THE RAW DATA FOR THE MICRO-EVALUATION IN FIGURE 6.2

QUERY 1 : R 0.1 0.2 0.4 0.6 0.8 A , = 100

P 1.0 0.8 0.6 0.4 0.3

QUERY 2 : R 0.1 0.3 0.5 0.7 0.9 II 00 o

P 0.8 0.6 0.5 0.4 0.4

X 15m  1 W infix il lfiX2l W2n 5 X2l P \

1 10 10 10 8 0.1 0.9
2 25 20 40 24 0.24 0.68
3 66 40 80 40 0.44 0.55
4 150 60 140 56 0.64 0.40
5 266 80 180 72 0.84 0.34
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for which average precision values are calculated by averaging over all 
queries the individual precision values corresponding to the standard 
recall values. Often no unique precision value corresponds exactly so it 
becomes necessary to interpolate.

Interpolation

Many interpolation techniques have been suggested in the literature. 
See, for example, Keen7.

>4

C

T 0

R 2 R3 Ri
Figure 6.3. The right hand figure is the result o f  interpolating between the points 
A, B, C, D in the left hand figure

Figure 6.3 shows a typical P-R  graph for a single query. The points^, 
B, C and D, I shall call the observed points, since these are the only 
points observed directly during an experiment the others may be 
inferred from these. Thus given that A = (R 1, P l ) has been observed, 
then the next point B is the one corresponding to an increase in recall, 
which follows from a unit increase in the number of relevant 
documents retrieved. Between any two observed points the recall 
remains constant, since no more relevant documents are retrieved.

It is an experimental fact that average precision-recall graphs are 
monotonically decreasing. Consistent with this, a linear interpolation 
estimates the best possible performance between any two adjacent 
observed points. To avoid inflating the experimental results it is 
probably better to perform a more conservative interpolation as 
follows.

Let (Rx, P\ )  be the set of precision-recall values obtained by 
varying some parameter X. To obtain the set of observed points we 
specify a subset of the parameters X. Thus (Re, Pe) is an observed point
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if 6 corresponds to a value of X at which an increase in recall is 
produced. We now have:

Gs = {{Res, Pes)}

the set of observed points for requests. To interpolate between any two 
points we define:

PS(R) = {sup P : R ' > R  s.t. (R \ P) e Gs}

where R  is a standard recall value. From this we obtain the average 
precision value at the standard recall value R by:

P(R) = V Ps(R)
Jrs ISI

The set of observed points is such that the interpolated function is 
monotonically decreasing. Figure 6.3 shows the effect of the 
interpolation procedure, essentially it turns the P-R  curve into a 
step-function with the jumps at the observed points. A necessary 
consequence of its monotonicity is that the average P-R  curve will also 
be monotonically decreasing. It is possible to define the set of observed 
points in such a way that the interpolated function is not 
monotonically decreasing. In practice, even for this case, we have that 
the average precision-recall curve is monotonically decreasing.

In Figure 6.4 we illustrate the interpolation and averaging process.

P

-o
Co
'ino0>
riZ

x

X

-----o
X

X

—o

/?, /?2 /?3 /?5 R
Recall

Figure 6.4. An example o f  macro-evaluation. The points indicated by crosses lie 
midway between the two enclosing horizontal bars and their abscissae are given by 
the standard recall values Rj
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Composite measures

Dissatisfaction in the past with methods of measuring effectiveness by a 
pair of numbers (e.g. precision and recall) which may co-vary in a 
loosely specified way has led to attempts to invent composite measures. 
These are still based on the ‘contingency’ table but combine parts of it 
into a single number measure. Unfortunately many of these measures 
are rather ad hoc and cannot be justified in any rational way. The 
simplest example of this kind of measure is the sum of precision and 
recall.

S = P + R

This is simply related to a measure suggested by Borko.

B K = P  + R -  1
More complicated ones are

^  = R + F - 2 R F  F̂  = Fallout)

V= 1 -
1

- 3

Vickery’s measure V can be shown to be a special case of a general 
measure which will be derived below.

Some single-number measures have derivations which can be justified 
in a rational manner. Some of them will be given individual attention 
later on. Suffice it here to point out that it is the model underlying the 
derivation of these measures that is important.

The Swets model

As early as 1963 Swets8 expressed dissatisfaction with existing methods 
of measuring retrieval effectiveness. His background in signal detection 
led him to formulate an evaluation model based on statistical decision 
theory. In 1967 he evaluated some fifty different retrieval methods 
from the point of view of his model9. The results of his evaluation were 
encouraging but not conclusive. Subsequently, Brookes10 suggested 
some reasonable modifications to Swets’ measure of effectiveness, and 
Robertson11 showed that the suggested modifications were in fact 
simply related to an alternative measure already suggested by Swets. It 
is interesting that although the Swets model is theoretically attractive
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and links IR measurements to a ready made and well-developed 
statistical theory, it has not found general acceptance amongst workers 
in the field.

Before proceeding to an explanation of the Swets model, it is as well 
to quote in full the conditions that the desired measure of effectiveness 
is designed to meet. At the beginning of his 1967 report Swets states:

‘A desirable measure of retrieval performance would have the 
following properties. First, it would express solely the ability of a 
retrieval system to distinguish between wanted and unwanted items — 
that is, it would be a measure of “effectiveness” only, leaving for 
separate consideration factors related to cost or “efficiency” . Second, 
the desired measure would not be confounded by the relative 
willingness of the system to emit items — it would express 
discrimination power independent of any “acceptance criterion” 
employed, whether the criterion is characteristic of the system or 
adjusted by the user. Third, the measure would be a single number — in 
preference, for example, to a pair of numbers which may co-vary in a 
loosely specified way, or a curve representing a table of several pairs of 
numbers — so that it could be transmitted simply and immediately 
apprehended. Fourth, and finally, the measure would allow complete 
ordering of different performances, indicate the amount of difference 
separating any two performances, and assess the performance of any 
one system in absolute terms — that is, the metric would be a scale with 
a unit, a true zero, and a maximum value. Given a measure with these 
properties, we could be confident of having a pure and valid index of 
how well a retrieval system (or method) were performing the function 
it was primarily designed to accomplish, and we could reasonably ask 
questions of the form “Shall we pay X dollars for Y units of 
effectiveness” . ’

He then goes on to claim that ‘The measure I proposed [in 1963], 
one drawn from statistical decision theory, has the potential [my 
italics] to satisfy all four desiderata’. So, what is this measure?

To arrive at the measure, we must first discuss the underlying model. 
Swets defines the basic variables Precision, Recall, and Fallout in 
probabilistic terms.

Recall = an estimate of the conditional probability that an item 
will be retrieved given that it is relevant [we denote this 
P(B/A) ] .

Precision = an estimate of the conditional probability that an item 
will be relevant given that it is retrieved [i.e. P(A/B)\.

Fallout = an estimate of the conditional probability that an item 
will be retrieved given that it is non-relevant 
[i *.P(B/A)\ .
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He accepts the validity of measuring the effectiveness of retrieval by a 
curve either precision-recall or recall-fallout generated by the variation 
of some control variable X (e.g. co-ordination level). He seeks to 
characterise each curve by a single number. He rejects precision-recall 
in favour of recall-fallout since he is unable to do it for the former but 
achieves limited success with the latter.

In the simplest case we assume that the variable A is distributed 
normally on the set of relevant and non-relevant documents. The two 
distributions are given respectively by 7V(jui, a L) and N(ji2 , o2). The 
density functions are given by /) (Af4) and / 2(A(4). We may picture the 
distribution as shown in Figure 6.5.

Figure 6.5. Two normal distributions for X, one, N (p l , o j ,  on the set o f  relevant 
documents A with density o f  The other, N(ut , o j ,  on the set o f  non-
relevant documents A with density f 2(X\A). The size o f  the areas shaded in a N-W  
and N—E direction represents recall and fallout respectively.

The usual set-up in IR is now to define a decision rule in terms of A, 
to determine which documents are retrieved (the acceptance criterion). 
In other words we specify Ac such that a document for which the 
associated A exceeds Ac is retrieved. We now measure the effectiveness 
of a retrieval strategy by measuring some appropriate variables (such as 
R  and P, or R  and F) at various values of Ac . It turns out that the 
differently shaded areas under the curves in Figure 6.5 correspond to 
recall and fallout. Moreover, we find the operating characteristic (OC) 
traced out by the point (Fx, R \ )  due to variation in Ac is a smooth 
curve fully determined by two points, in the general case of unequal 
variance, and by one point in the special case of equal variance. To see 
this one only needs to plot the (Fx, R x) points on double probability 
paper (scaled linearly for the normal deviate) to find that the points lie 
on a straight line. A slope of 45° corresponds to equal variance, and
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Figure 6.6. The two OC’s are ST and UV. Swets recommends using the distances 
y/20I and sJlOI' to compare their effectiveness. Brookes suggests using the 
normal distances 01 and ON instead. (Adapted from Brookes'°, page 51 j

otherwise the slope is given by the ratio of and a2 ■ Figure 6.6 shows 
the two cases. Swets now suggests, regardless of slope, that the distance 
01 (actually \/20I) be used as a measure of effectiveness. This amounts 
to using:

51 M2 ~ Mi
h{oi + a 2)

which is simply the difference between the means of the distribution 
normalised by the average standard deviation. Unfortunately this 
measure does rather hide the fact that a high 51 value may be due to a 
steep slope. The slope, and 51, would have to be given which fails to 
meet Swets’ second condition. We, also, still have the problem of 
deciding between two strategies whose OC’s intersect and hence have 
different 51 values and slopes.

Brookes10 in an attempt to correct for the 51 bias towards systems 
with slopes much greater than unity suggested a modification to 51. 
Mathematically Brookes’s measure is:

52 = M2 +JUi
( o \ + o l f
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Brookes also gives statistical reasons for preferring 52 to 51 which need 
not concern us here. Geometrically 52 is the perpendicular distance 
from 0 to OC (see Figure 6.6).

Interestingly enough Robertson11 showed that 52 is simply related 
to the area under the Recall-Fallout curve. In fact the area is a strictly 
increasing function of 52. It also has the appealing interpretation that it 
is equal to the percentage of correct choices a strategy will make when 
attempting to select from a pair of items, one drawn at random from 
the non-relevant set and one drawn from the relevant set. It does seem 
therefore that 52 goes a long way to meeting the requirements laid 
down by Swets. However, the appropriateness of the model is 
questionable on a number of grounds. Firstly, the linearity of the OC 
curve does not necessarily imply that X is normally distributed in both 
populations, although they will be ‘similarly’ distributed. Secondly, X is 
assumed to be continuous which certainly is not the case for the data 
checked out both by Swets and Brookes, in which the co-ordination 
level used assumed only integer values. Thirdly, there is no evidence to 
suggest that in the case of more sophisticated matching functions, as 
used by the SMART system, that the distributions will be similarly 
distributed let alone normally. Finally the choice of fallout rather than 
precision as second variable is hard to justify. The reason is that the 
proportion of non-relevant retrieved for large systems is going to behave 
much like the ratio of ‘non-relevant’ retrieved to ‘total documents in 
system’. For comparative purposes ‘total document, may be ignored 
leaving us with ‘non-relevant retrieved’ which is complementary to 
‘relevant retrieved’. But now we may as well use precision instead of 
fallout.

The Cooper model — expected search length

In 1968, Cooper12 stated: ‘The primary function of a retrieval system is 
conceived to be that of saving its users to as great an extent as is 
possible, the labour of perusing and discarding irrelevant documents, in 
their search for relevant ones’. It is this ‘saving’ which is measured and 
is claimed to be the single index of merit for retrieval systems. In 
general the index is applicable to retrieval systems with ordered (or 
ranked) output. It roughly measures the wanted search effort which 
one would expect to save by using the retrieval system as opposed to 
searching the collection at random. An attempt is made to take into 
account the varying difficulty of finding relevant documents for 
different queries. The index is calculated for a query of a precisely
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specified type. It is assumed that users are able to quantify their 
information need according to one of the following types:

(1) only one relevant document is wanted;
(2) some arbitrary number n is wanted;
(3) all relevant documents are wanted;
(4) a given proportion of the relevant documents is wanted, etc.

Thus, the index is a measure of performance for a query of given type. 
Here we shall restrict ourselves to Type 2 queries. For further details 
the reader is referred to Cooper12.

The output of a search strategy is assumed to be a weak ordering of 
documents. I have defined this concept on page 118 in a 
different context. We start by first considering a special case, namely a 
simple ordering, which is a weak ordering such that for any two distinct 
elements ei and e2 it is never the case that e{ R e2 and e2 R et 
(where R  is the order relation). This simply means that all the 
documents in the output are ordered linearly with no two or more 
documents at the same level of the ordering. The search length is now 
defined as the number of non-relevant documents a user must scan 
before his information need (in terms of the type quantification above) 
is satisfied. For example, consider a ranking of 20 documents in which 
the relevant ones are distributed as in Figure 6 .7. A Type 2 query with 
n = 2 would have search length 2, with n = 6 it would have search 
length 3.

R a n k 1 2 3 U 5 6 7 8 9 10 11 12 13 U 15 16 17 18 19 20

R e le va n ce N Y N Y Y Y Y N Y N N N Y N Y N N N N N

Figure 6.7. An example o f  a simple ordering, that is, the ranks are unique, for 20 
retrieval documents. Y indicates relevant and N indicates not relevant

Unfortunately the ranking generated by a matching function is 
rarely a simple ordering, but more commonly a weak ordering. This 
means that at any given level in the ranking, there is at least one 
document (probably more) which makes the search length 
inappropriate since the order of documents within a level is random. If 
the information need is met at a certain level in the ordering then 
depending on the arrangement of the relevant documents within that 
level we shall get different search lengths. Nevertheless we can use an 
analogous quantity which is the expected search length. For this we 
need to calculate the probability of each possible search length by 
juggling (mentally) the relevant and non-relevant documents in the level 
at which the user need is met. For example, consider the weak ordering 
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R a n k 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4

R e le va n ce N N Y Y N Y Y Y N Y Y N N N N N N N Y N

Figure 6.8. An example o f  a weak ordering, that is, with ties in the ranks, for 20 
retrieval documents

in Figure 6.8. If the query is of Type 2 with n = 6 then the need is met 
at level 3. The possible search lengths are 3 ,4 , 5 or 6 depending on how 
many non-relevant documents precede the sixth relevant document. We 
can ignore the possible arrangements within levels 1 and 2; their 
contributions are always the same. To compute the expected search 
length we need the probability of each possible search length. We get at 
this by considering first the number of different ways in which two 
relevant documents could be distributed among five, it is ( |)  = 10. Of 
these 4 would result in a search length of 3, 3 in a search length of 4, 2 
in a search length of 5 and 1 in a search length of 6. Their 
corresponding probabilities are therefore, 4/10, 3/10, 2/10 and 1/10. 
The expected search length is now:

(4/10). 3 + (3/10). 4 + (2/10) . 5 + (1/10). 6 = 4

The above procedure leads immediately to a convenient ‘intuitive’ 
derivation of a formula for the expected search length. It seems 
plausible that the average results of many random searches through the 
final level (level at which need is met) will be the same as for a single 
search with the relevant documents spaced ‘evenly’ throughout that 
level. First we enumerate the variables:

(a) q is the query of given type;
(b) /  is the total number of documents non-relevant to q in all levels 

preceding the final;
(c) r is the number of relevant documents in the final level;
(d) i is the number of non-relevant documents in the final level;
(e) s is the number of relevant documents required from the final 

level to satisfy the need according its type.

Now, to distribute the r relevant documents evenly among the 
non-relevant documents, we partition the non-relevant documents into 
r + 1 subsets each containing i/(r + 1) documents. The expected search 
length is now:

E S L f a ) = 7 + ^

111



EVALUATION

As a measure of effectiveness ESL is sufficient if the document 
collection and test queries are fixed. In that case the overall measure is 
the mean expected search length

ESL = I  ESLfa)
ly l qeQ

where Q is the set of queries. This statistic is chosen in preference to 
any other for the property that it is minimised when the total expected 
search length

£  ESL fa) is minimised.
qeQ

To extend the applicability of the measure to deal with varying test 
queries and document collections, we need to normalise the ESL in 
some way to counter the bias introduced because:

(1) queries are satisfied by different numbers of documents 
according to the type of the query and therefore can be 
expected to have widely differing search lengths;

(2) the density of relevant documents for a query in one document 
collection may be significantly different from the density in 
another.

The first item suggests that the ESL per desired relevant document is 
really what is wanted as an index of merit. The second suggests 
normalising the ESL by a factor proportional to the expected number 
of non-relevant documents collected for each relevant one. Luckily it 
turns out that the correction for variation in test queries and for 
variation in document collection can be made by comparing the ESL 
with the expected random search length (ERSL). This latter quantity 
can be arrived at by calculating the expected search length when the 
entire document collection is retrieved at one level. The final measure is 
therefore:

ERSLfa) -  ESLfa)
ERSLfa)

which has been called the expected search length reduction factor by 
Cooper. Roughly it measures improvement over random retrieval. The 
explicit form for ERSL is given by:

, N S . I
ERSLfa)
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where

(1) R  is the total number of documents in the collection relevant to 
<7;

(2) I  is the total number of documents in .the collection 
non-relevant to q;

(3) S is the total desired number of documents relevant to q.

The explicit form for ESL was given before. Finally, the overall 
measure for a set of queries Q is defined, consistent with the mean ESL, 
to be:

ERSL-ESL
ERSL

which is known as the mean expected search length reduction factor.
Within the framework as stated at the head of this section this final 

measure meets the bill admirably. However, its acceptability as a 
measure of effectiveness is still debatable (see, for example, Senko13). It 
totally ignores the recall aspect of retrieval, unless queries are evaluated 
which express the need for a certain proportion of the relevant 
documents in the system. It therefore seems to be a good substitute for 
precision, one which takes into account order of retrieval and user need.

For a further defence of its subjective nature see Cooper1.

Hie SMART measures

In 1966, Rocchio gave a derivation of two overall indices of merit based 
on recall and precision. They were proposed for the evaluation of 
retrieval systems which ranked documents, and were designed to be 
independent of cut-off.

The first of these indices is normalised recall. It roughly measures 
the effectiveness of the ranking in relation to the best possible and 
worst possible ranking. The situation is illustrated in Figure 6.9 for 25 
documents where we plot recall on the y-axis and the ranks on the 
x-axis. Normalised recall (Rn0rm ) is the area between the actual case 
and the worst as a proportion of the area between the best and the 
worst. If n is the number of relevant documents, and rt the rank at 
which the ith document is retrieved, then the area between the best and 
actual case can be shown to be (after a bit of algebra):

n n
I r , - ! /

A b —A a = — —  ' 1 (see Salton14, page 285)
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Figure 6.9. An illustration o f  how the normalised recall curve is bounded by the 
best and worst cases. (Adapted from Robertson'5, page 99)

A convenient explicit form of normalised recall is:

R norm
-  2; 

n(N— n)

where TV is the number of documents in the system and TV -  n the area 
between the best and the worst case (to see this substitute r,- = TV -  i + 1 
in the formula for A b -  A a). The form ensures that R norm lies between 
0 (for the worst case) and 1 (for the best case).

In an analogous manner normalised precision is worked out. In 
Figure 6.10 we once more have three curves showing (1) the best case,
(2) the actual case, and (3) the worst case in terms of the precision 
values at different rank positions.

Figure 6.10. An illustration o f  how the normalised precision curve is bounded by 
the best and worst cases. (Adapted from Robertson'5, page 100)
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The calculation of the areas is a bit more messy but simple to do (see 
Salton14, page 298). The area between the actual and best case is now 
given by:

n  n

A h ~ A a = £  logrt -  £  log i 
1=1 r=i

The log function appears as a result of approximating S I /r by its 
continuous analogue / I  jrdr, which is iogr + constant.

The area between the worst and best case is obtained in the same 
way as before using the same substitution, and is:

i N l
l0g(N~n)l  nl

The explicit form, with appropriate normalisation, for normalised 
precision is therefore:

S log rt — S log i 

i^(N-n)l n l)
Once again it varies between 0 (worst) and 1 (best).

A few comments about these measures are now in order. Firstly 
their behaviour is consistent in the sense that if one of them is 0 (or 1) 
then the other is 0 (or 1). In other words they both agree on the best 
and worst performance. Secondly, they differ in the weights assigned to 
arbitrary positions of the precision-recall curve, and these weights may 
differ considerably from those which the user feels are pertinent 
(Senko13). Or, as Salton14 (page 289) puts it: ‘the normalised precision 
measure assigns a much larger weight to the initial (low) document 
ranks than to the later ones, whereas the normalised recall measure 
assigns a uniform weight to all relevant documents’. Unfortunately the 
weighting is arbitrary and given. Thirdly, it can be shown that 
normalised recall and precision have interpretations as approximations 
to the average recall and precision values for all possible cut-off levels. 
That is, if R(i) is the recall at rank position i, and P(i) the corresponding 
precision value, then:

R n o r m
2
N

N

£  RQ)

2
N

N

I  mi=i
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Fourthly, whereas Cooper has gone to some trouble to take account of 
the random element introduced by ties in the matching function, it is 
largely ignored in the derivation of Pnonn and R norm.

One further comment of interest is that Robertson11 has shown that 
normalised recall has an interpretation as the area under the 
Recall-Fallout curve used by Swets.

Finally mention should be made of two similar but simpler measures 
used by the SMART system. They are:

I 1
Rank Recall = ------n 

i= 1

n
Z  ln i

Log Precision = ----------
n
Z  In rt
i = i

and do not take into account the collection size N, n is here the number 
of relevant documents for the particular test query.

A normalised symmetric difference

Let us now return to basics and consider how it is that users could 
simply measure retrieval effectiveness. We are considering the common 
situation where a set of documents is retrieved in response to a query, 
the possible ordering of this set is ignored. Ideally the set should consist 
only of documents relevant to the request, that is giving 100 per cent 
precision and 100 per cent recall (and by implication 0 per cent 
fallout). In practice, however, this is rarely the case, and the retrieved 
set consists of both relevant and non-relevant documents. The situation 
may therefore be pictured as shown in Figure 6.11, where A is the set 
of relevant documents, B  the set of retrieved documents, and A n  B  the 
set of retrieved documents which are relevant.

Figure 6.11. An illustration o f  the symmetric difference between two sets A and B. 
A A Bis the shaded area
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Now, an intuitive way of measuring the adequacy of the retrieved set 
is to measure the size of the shaded area. Or to put it differently, to 
measure tcTwhat extent the two sets do not match. The area is in fact 
the symmetric difference: A A B (or A V B — A C\ B). Since we are 
more interested in the proportion (rather than absolute number) of 
relevant and non-relevant documents retrieved we need to normalise 
this measure. A simple normalisation gives:

\AAB\
\A\ + \B\

In terms of P and R we have:

which is a simple composite measure.
The preceding argument in itself is not sufficient to justify the use of 

this particular composite measure. However, I shall now introduce a 
framework within which a general measure may be derived which 
among others has E  as one of its special cases.

Foundation*

Problems of measurement have arisen in physics, psychology, and more 
recently, the social sciences. Clarification of these problems has been 
sought with the help of the theory o f  measurement. I shall attempt to 
do the same for information retrieval. My purpose is to constmct a 
framework, based on the mathematical theory of measurement within 
which measures of effectiveness for retrieval systems can be derived. 
The basic mathematical notions underlying the measurement ideas will 
be introduced, but for their deeper understanding the reader is referred 
to the excellent book by Krantz et al. 15 It would be fair to say that the 
theory developed there is applied here. Also of interest are the books 
by Ellis16 and Lieberman17.

The problems of measurement in information retrieval differ from 
those encountered in the physical sciences in one important aspect. In 
the physical sciences there is usually an empirical ordering of the 
quantities we wish to measure. For example, we can establish 
empirically by means of a scale which masses are equal, and which are
* The next three sections are substantially the same as those appearing in my 
paper: ‘Foundations of evaluation’, Journal o f  Documentation, 30, 365-373 
11974). They have been included with the kind permission bf'tKe~Mahaging Editor' 
of Aslib.
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greater or less than others. Such a situation does not hold in 
information retrieval. In the case of the measurement of effectiveness 
by precision and recall, there is no absolute sense in which one can say 
that one particular pair of precision-recall values is better or worse than 
some other pair, or, for that matter, that they are comparable at all. 
However, to leave it at that is to admit defeat. There is no reason why 
we cannot postulate a particular ordering, or, to put it more mildly, 
why we cannot show that a certain model for the measurement of 
effectiveness has acceptable properties. The immediate consequence of 
proceeding in this fashion is that each property ascribed to the model 
may be challenged. The only defence one has against this is that:

(1) all properties ascribed are consistent;
(2) they bring out into the open all the assumptions made in 

measuring effectiveness;
(3) each property has an acceptable interpretation;
(4) the model leads to a plausible measure of effectiveness.

It is as well to point out here that it does not lead to a unique measure, 
but it does show that certain classes of measures can be regarded as 
being equivalent.

The model

We start be examining the structure which it is reasonable to assume for 
the measurement of effectiveness. Put in other words, we examine the 
conditions that the factors determining effectiveness can be expected to 
satisfy. We limit the discussion here to two factors, namely precision 
and recall, although this is no restriction, different factors could be 
analysed, and, as will be indicated later, more than two factors can 
simplify the analysis.

If (R is the set of possible recall values and (P is the set of possible 
precision values then we are interested in the set <R x <P with a relation 
on it. We shall refer to this as a relational structure and denote it 
<(R x <P, >  >  where >  is the binary relation on <R x (P. (We shall use 
the same symbol for less than or equal to, the context will make clear 
what the domain is.) All we are saying here is that for any given point 
(R, P) we wish to be able to say whether it indicates more, less or equal 
effectiveness than that indicated by some other point. The kind of 
order relation is a weak order. To be more precise:
Definition 1. The relational structure <  (R x ( P , >  >  is a weak order if 
and only if for e , , e2, e3 e (R x <P the following axioms are satisfied.

(1) Connectedness: either > e2 or e2 >  ex
(2) Transitivity: if ex >  e2 and e2 >  e3 then e t >  e3 
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We insist that if two pairs can be ordered both ways then 
' (R i , P i ) ~  (R2, Pi ), i.e. equivalent not necessarily equal. The 
transitivity condition is obviously desirable.

We now turn to a second condition which is commonly called 
independence. This notion captures the idea that the two components 
contribute their effects independently to the effectiveness.
Definition 2. A relation >  on (R x (P is independent if and only if, 
for R i , R 2 e<R, (Ri, P) > (R2, P) for some P e P implies 
(R\, P ' )> (R2, P )  for every P' e and for P i ,P 2 e P ,  
(R, P i ) >  (R, P2) for some R e <R implies (R P i ) >  (R', P2) for every 
R ’ e a .
' All we are saying here is, given that at a constant recall (precision) 
we find a difference in effectiveness for two values of precision (recall) 
then this difference cannot be removed or reversed by changing the 
constant value.

We now come to a condition which is not quite as obvious as the 
preceding ones. To make it more meaningful I shall need to use a 
diagram, Figure 6.12, which represents the ordering we have got so far 
with definitions 1 and 2. The lines and l2 are lines of equal 
effectiveness, that is any two points (R ,P ), (R' ,P' )el j  are such that 
(R, P) ~  (R', P') (where ~  indicates equal effectiveness). Now let us 
assume that we have the points on f  and l2 but wish to deduce the

Figure 6.12. A diagram illustrating the Thomsen condition
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relative ordering in between these two lines. One may think of this as 
an interpolation procedure.
Definition 3 (Thomsen condition). For every R lt R 2, R 3 e <R and Pt , 
P2, P 3  e <f\ (R u  P i)  ~  (R 3 , ^ 2) and (R3, P t ) ~  (R2, P3) imply that 
( R u P ^ - i R ^ P ^ .

Intuitively this can be reasoned as follows. The intervals R ] R 3 and 
P2 P 3 are equivalent since an increase in the R-factor by R i R 3 and an 
increase in the R-factor by P2 P 3  starting from ( R i , P2) lead to the same 
effectiveness (points on l2). It therefore follows that a decrease in each 
factor starting from equal effectiveness, in this case the two points 
(R3, P i ) and (R 2 , P 3) on f  , should lead to equal effectiveness.

The fourth condition is one concerned with the continuity of each 
component. It makes precise what intuitively we would expect when 
considering the existence of intermediate values.
Definition 4 (Restricted Solvability). A relation >  on fi x (P satisfies 
restricted solvability provided that:

(1) whenever R, R, R e (R and P, P' e (P for which
(R , P>) >  (R , P) >  (R, P') then there exists R ' e (R s.t.
(R ' ,P ' ) ~ (R ,P f ,

(2) a similar condition holds on the second component.
In other words we are ensuring that the equation (R1, P1)  ~  (R, P) is 
soluble for R' provided that there exist R, R  such that 
(R, P ) >  (R, P') > (R , P ). An assumption of continuity of the 
precision and recall factors would ensure this.

The fifth condition is not limiting in any way but needs to be stated. 
It requires, in a precise way, that each component is essential.
Definition 5. Component (R is essential if and only if there exist R t , 
R 2  e <R and P{ e (P such that it is not the case that
(R 1 , P i) ~  (R 2 ,P x ). A similar definition holds for <P.

Thus we require that variation in one while leaving the other 
constant gives a variation in effectiveness.

Finally we need a technical condition which will not be explained 
here, that is the Archimedean property for each component. It merely 
ensures that the intervals on a component are comparable. For details 
the reader is referred to Krantz et al.ls

We now have six conditions on the relational structure 
<  <R x (P, >  >  which in the theory of measurement are necessary and 
sufficient conditions* for it to be an additive conjoint structure. This is 
enough for us to state the main representation theorem. It is a theorem
* It can be shown that (starting at the other end) given an additively independent 
representation the properties defined in 1 and 3, and the Archimedean property 
are necessary. The structural conditions 4 and 5 are sufficient.
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asserting that if a given relational structure satisfies certain conditions 
(axioms), then a homomorphism into a numerical relational structure 
can be constructed. A homomorphism into the real numbers is often 
referred to as a scale. Measurement may therefore be regarded as the 
construction of homomorphisms from empirical relational structures of 
interest into numerical relational structures that are useful.

In our case we can therefore expect to find real-valued functions 
on <R and d>2 on <P and a function F  from Re  x Re into Re, 1:1 in each 
variable, such that, for all R, R ' e (R and P;P' e <P we have:

{R, P )> {R ', P’) o  F & ^ R ) ,  d>2(i>)] >  *■[*,(*'), d>2(P')]

(Note that although the same symbol >  is used, the first is a binary 
relation on (R x (P, the second is the usual one on Re, the set of reals.)

In other words there are numerical scales <!>,■ on the two components 
and a rule F  for combining them such that-the resultant measure 
preserves the qualitative ordering of effectiveness. When such a 
representation exists we say that the structure is decomposable. In this 
representation the components (<R and (P) contribute to the 
effectiveness measure independently. It is not true that all relational 
structures are decomposable. What is true, however, is that 
non-decomposable structures are extremely difficult to analyse.

A further simplification of the measurement function may be 
achieved by requiring a special kind of non-interaction of the 
components which has become known as additive independence. This 
requires that the equation for decomposable structures is reduced to:

(R, P) > (R', P') «■$!(/?) + <h2(P) >  $ ,(R ') + <t>2(P')

where F  is simply the addition function. An example of a 
non-decomposable structure is given by:

{R, P) > (R’, P') o  $ ,(R ) + <f>2(P) +$!(P)<I)2(P) >  $ ,(/? ') +

+ d>2(P')+d>,(P')d>2(P').

Here the term dq d>2 is referred to as the interaction term, its absence 
accounts for the non-interaction in the previous condition.

We are now in a position to state the main representation theorem.

Theorem

Suppose <  <R x(P, > >  is an additive conjoint structure, then there 
exist functions, d>! from (R, and d>2 from (P into the real numbers such 
that, for all R, R ' e <R and P, Pf e <P:

(R, P) > (R', P ') «• d>i(P)+d>2(P) >  + $ 2(P')
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If 4>/ are two other functions with the same property, then there exist 
constants 0  >  0, 7 !, and y 2  such that

4>i' = ©<!>! + 7 i  $ 2' = 0<f>2 + 72

The proof of this theorem may be found in Krantz et al. 15

Let us stop and take stock of the situation. So far we have discussed 
the properties of an additive conjoint structure and justified its use for 
the measurement of effectiveness based on precision and recall. We have 
also shown that an additively independent representation (unique up to 
a linear transformation) exists for this kind of relational structure. The 
explicit form of tb,- has been left unspecified. To determine the form of 
4>,- we need to introduce some extrinsic considerations. Although the 
representation theorem shows the existence of a numerical 
representation F  = <!>!+ <b2 , this is not the most convenient form for 
expressing the further conditions we require of F, nor for its 
interpretation. So, in spite of the fact that we are seeking an additively 
independent representation we consider conditions on a general F. It 
will turn out that the F  which is appropriate can be simply transformed 
into an additive representation. The transformation is 
f(F) = — (F — l ) '1 which is strictly monotonically increasing in the 
range 0 < F <  1, which is the range of interest. In any case when 
measuring retrieval effectiveness any strictly monotone transformation 
of the measure will do just as well.

Explicit measures o f effectiveness

I shall now argue for a specific form of <b, and F, based on a model for 
the user. In other words, the form <!>, and F  are partly determined by 
the user. We start by showing how the ordering on (R x (P in fact 
induces an ordering of intervals on each factor. From Figure 6.13 we 
have that (R 3,P 1)>  (R l t P2), (R3, P2)>  (R u  P i)  and (R l t P2) 
> (R i, P i). Therefore the increment (interval)P, P 3 is preferred to the 
increment P\P2. But (R2, P2) > (P4, P i) , which gives P1P2 is 
preferred to R 2 R 4. Hence R 1 R 3  > i R 2 R^ where >1 is the induced 
order relation on (R. We now have a method of comparing each interval 
on (R with a fixed interval on <P.

Since we have assumed that effectiveness is determined by precision 
and recall we have committed ourselves to the importance of 
proportions of documents rather than absolute numbers. Consistent 
with this is the assumption of decreasing marginal effectiveness. Let me 
illustrate this with an example. Suppose the user is willing to sacrifice 
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Figure 6.13. The diagram shows the relative positions o f  points with respect to 
two contours

one unit of precision for an increase of one unit of recall, but will not 
sacrifice another unit of precision for a further unit increase in recall, 
i.e.

(R + 1 , P -  1 )> (R ,P )  
but

(R + l ,P ) > (R + 2 ,P ~  1)
We conclude that the interval between R  + 1 and R exceeds the interval 
between P and P — 1 whereas the interval between R + 1 and R + 2 is 
smaller. Hence the marginal effectiveness of recall is decreasing. (A 
similar argument can be given for precision.) The implication of this for 
the shape of the curves of equal effectiveness is that they are convex 
towards the origin.

Finally, we incorporate into our measurement procedure the fact 
that users may attach different relative importance to precision and 
recall. What we want is therefore a parameter (|3) to characterise the 
measurement function in such a way that we can say: it measures the 
effectiveness of retrieval with respect to a user who attaches 0 times as 
much importance to recall as precision. The simplest way I know of 
quantifying this is to specify the P/R ratio at which the user is willing 
to trade an increment in precision for an equal loss in recall.
Definition 6 . The relative importance a user attaches to precision and 
recall is the P/R ratio at which 'dE/'dR = dE/dP, where E = E(P, R) is the 
measure of effectiveness based on precision and recall.
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Can we find a function satisfying all these conditions? If so, can we 
also interpret it in an intuitively simple way? The answer to both these 
questions is yes. It involves:

« ( y + ( 1 - a ) ^  0 < a < l

The scale functions are therefore, Tq (P) = a(l /P), and <h2 (R ) = (1 — a) 
(1 /R). The ‘combination’ function F  is now chosen to satisfy 
definition 6 without violating the additive independence. We get:

F($,,T.2) = 1 - 1
$ 1 +$2

We now have the effectiveness measure. In terms ofjPandi? it will be:

E 1 / 1\  1
« { p )  +  0 - < * ) r

To facilitate interpretation of the function, we transform according 
to a = l/(02 + 1), and find that dE/dR = dE/dP when P/R = 0. If A is 
the set of relevant documents and B the set of retrieval documents, 
then:

\A F B \
I5| and R  =

\AC\B  | 
\A\

E  now gives rise to the following special cases:

(1) When a =  1/2 (0 = 1) E = \A A B\I(\A\ + \B\), a normalised 
symmetric difference between sets A and B (A A B = 
A  U  B — A  O B). It corresponds to a user who attaches equal 
importance to precision and recall.

(2) E  -> 1 — R  when a  -*■ 0 (0 -> °°), which corresponds to a user who 
attaches no importance to precision.

(3) E  -> 1 — P when a  -»• 1(0 -» 0), which corresponds to a user who 
attaches no importance to recall.

It is now a simple matter to show that certain other measures given 
in the literature are special cases of the general form E. By the 
representation theorem, the <h/s are uniquely determined up to a linear 
transformation, that is, <!>'■ is defined by = 0 $/ + y ,• would serve
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equally well as scale functions. If we now set <l>i' = 2<S>1 - 1 /2 ,  
<h2' = 2<h2 — 1/2, and j3 = 1 then we have:

which is the measure recommended by Heine3.
One final example is the measure suggested by Vickery in 1965 

which was documented by Cleverdon et al.18 Here we set:

which is Vickery’s measure (apart from a scale factor of 100).

To summarise, we have shown that it is reasonable to assume that 
effectiveness in terms of precision and recall determines an additive 
conjoint structure. This guarantees the existence of an additively 
independent representation. We then found the representation 
satisfying some user requirements and also having special cases which 
are simple to interpret.

The analysis is not limited to the two factors precision and recall, it 
could equally well be carried out for say the pair fallout and recall. 
Furthermore, it is not necessary to restrict the model to two factors. If 
appropriate variables need to be incorporated the model readily extends 
to n factors. In fact for more than two dimensions the Thomsen 
condition is not required for the representation theorem.

Presentation of experimental results

In my discussion of micro-, macro-evaluation, and expected search 
length, various ways of averaging the effectiveness measure of the set of 
queries arose in a natural way. I now want to examine the ways in 
which we can summarise our retrieval results when we have no a priori 
reason to suspect that taking means is legitimate.

In this section the discussion will be restricted to single number 
measures such as a normalised symmetric difference, normalised recall, 
etc. Let us use Z to denote any arbitrary measure. The test queries will
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be Qi and n in number. Our aim in all this is to make statements about 
the relative merits of retrieval under different conditions a,b,c,. . .  in 
terms of the measure of effectiveness Z. The ‘conditions’ a,b,c,. . . may 
be different search strategies, or information structures, etc. In other 
words we have the usual experimental set-up where we control a 
variable and measure how its change influences retrieval effectiveness. 
For the moment we restrict these comparisons to one set of queries and 
the same document collection.

The measurements we have therefore are (Za(Q1) ,Z a(Q2), ■ ■ 
{Zb( Q i \ Z b{Q2\  . .  .}, (Zc (Qt ) ,Z c(Q2) , where Zx {Qf) is the 
value of Z when measuring the effectiveness of the response to Q{ under 
condition x. If we now wish to make an overall comparison between 
these sets of measurements we could take means and compare these. 
Unfortunately the distributions of Z encountered are far from 
bell-shaped, or symmetric for that matter, so that the mean is not a 
particularly good ‘average’ indicator. The problem of summarising IR 
data has been a hurdle ever since the beginning of the subject. Because 
of the non-parametric nature of the data it is better not to quote a 
single statistic but instead to show the variation in effectiveness by 
plotting graphs. Should it be necessary to quote ‘average’ results it is 
important that they are quoted alongside the distribution from which 
they are derived.

There are a number of ways of representing sets of Z-values 
graphically. Probably the most obvious one is to use a scatter diagram, 
where the x-axis is scaled for Z a and the y-axis for Z b and each plotted 
point is the pair (Za(Qi), Z ^Q ff). The number of points plotted will 
equal the number of queries. If we now draw a line at 45° to the x-axis 
from the origin we will be able to see what proportion of the queries 
did better under condition a than under condition b. There are two 
disadvantages to this method of representation: the comparison is 
limited to two conditions, and it is difficult to get an idea of the extent 
to which two conditions differ.

A more convenient way of showing retrieval results of this kind is to 
plot them as cumulative frequency distributions, or as they are 
frequently called by statisticians empirical distribution functions. Let 
{Z(Qi), Z(Q2) , . . Z(Q„)j  be a set of retrieval results then the 
empirical distribution function F(z) is a function of z which equals the 
proportion of Z(£?,)’s which are less than or equal to z. To plot this 
function we divide the range of z into intervals. If we assume that 
0 <  z <  1, then a convenient set of intervals is ten. The distributions 
will take the general shape as shown in Figure 6.14. When the measure 
Z is such that the smaller its value the more effective the retrieval, then 
the higher the curve the better. It is quite simple to read off the various 
quantiles. For example to find the median we only need to find the 
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Figure 6.14. Two cumulative frequency distributions showing the difference in 
effectiveness under conditions a and b

z-value corresponding to 0.5 on the F(z) axis. In our diagrams they are 
0.2 and 0.4 respectively for conditions a and b.

I have emphasised the measurement of effectiveness from the point 
of view of the user. If we now wish to compare retrieval on different 
document collections with different sets of queries then we can still use 
these measures to indicate which system satisfies the user more. On the 
other hand we cannot thereby establish which system is more effective 
in its retrieval operations. It may be that in system A the sets of 
relevant documents constitute a smaller proportion of the total set of 
documents than is the case in system B. In other words it is much 
harder to find the relevant documents in system B than in system A. 
So, any direct comparison must be weighted by the generality measure 
which gives the number of relevant documents as a proportion-of the 
total number of documents. Alternatively one could use fallout which 
measures the proportion of non-relevant documents retrieved. The 
important point here is to be clear about whether we are measuring user 
satisfaction or system effectiveness.

Significance tests

Once we have our retrieval effectiveness figures we may wish to 
establish that the difference in effectiveness under two conditions is 
statistically significant. It is precisely for this purpose that many 
statistical tests have been designed. Unfortunately I have to agree with 
the findings of the Comparative Systems Laboratory19 in 1968, that 
there are no known statistical tests applicable to IR. This may sound
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like a counsel of defeat but let me hasten to add that it is possible to 
select a test which violates only a few of the assumptions it makes. Two 
good sources which spell out the pre-conditions for non-parametric 
tests are Siegel20 and Conover21.

Parametric tests are inappropriate because we do not know the form 
of the underlying distribution. In this class we must include the popular 
t-test. The assumptions underlying its use are given in some detail by 
Siegel (page 19), needless to say most of these are not met by IR data. 
One obvious failure is that the observations are not drawn from 
normally distributed populations.

On the face of it non-parametric tests might provide the answer. 
There are some tests for dealing with the case of related samples. In our 
experimental set-up we have one set of queries which is used in 
different retrieval environments. Therefore, without questioning 
whether we have random samples, it is clear that the sample under 
condition a is related to the sample under condition b. When in this 
situation a common test to use has been the Wilcoxon Matched-Pairs 
test. Unfortunately again some important assumptions are not met. The 
test is done on the differences Df = Za (Q/) — Z b(Qj), but it is assumed 
that Dj is continuous and that it is derived from a symmetric 
distribution, neither of which is normally met in IR data.

It seems therefore that some of the more sophisticated statistical 
tests are inappropriate. There is, however, one simple test which makes 
very few assumptions and which can be used providing its limitations 
are noted. This one is known in the literature as the sign test (Siegel20, 
page 68 and Conover21, page 121). It is applicable in the case of related 
samples. It makes no assumptions about the form of the underlying 
distribution. It does, however, assume that the data are derived from a 
continuous variable and that the Z(Qi) are statistically independent. 
These two conditions are unlikely to be met in a retrieval experiment. 
Nevertheless given that some of the conditions are not met it can be 
used conservatively.

The way it works is as follows. Let { Z a ( Q ,  ), Z a ( Q 2 ) , . .  { Z b ( Q l ), 
Z b ( Q 2 )  • • •>} be our two sets of measurements under conditions a and b 
respectively. Within each pair (Za(Q,), Z b { Q i ) )  a comparison is made, 
and each pair is classified as ' + ' if Za(Q,) >  Z b ( Q i ) ,  as if 
Z a ( Q j )  <  Z b ( Q i )  or ‘tie’ if Z a ( Q , )  =  Z a ( Q , ) .  Pairs which are classified as 
‘tie’ are removed from the analysis thereby reducing the effective 
number of measurements. The null hypothesis we wish to test is that:

P(Za > Z b)= P (Za < Z b) = ±

Under this hypothesis we expect the number of pairs which have 
Za > Z b to equal the number of pairs which have Za <  Z b. Another 
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way of stating this is that the two populations from which Za andZfi 
are derived have the same median.

In IR this test is usually used as a one-tailed test, that is, the 
alternative hypothesis prescribes the superiority of retrieval under 
condition a over condition b, or vice versa. A table for small samples 
n <  25 giving the probability under the null hypothesis for each 
possible combination of ‘+”s and ”s may be found in Siegel20 
(page 250). To give the reader a feel for the values involved: in a sample 
of 25 queries the null hypothesis will be rejected at the 5 per cent level 
if there are at least 14 differences in the direction predicted by the 
alternative hypothesis.

The use of the sign test raises a number of interesting points. The 
first of these is that unlike the Wilcoxon test it only assumes that the 
Z ’s are measured on an ordinal scale, that is, the magnitude of 
\Za Z b | is not significant. This is a suitable feature since we are 
usually only seeking to find which strategy is better in an average sense 
and do not wish the result to be unduly influenced by excellent 
retrieval performance on one query. The second point is that some care 
needs to be taken when comparing Za and Z b. Because our measure of 
effectiveness can be calculated to infinite precision we may be insisting 
on a difference when in fact it only occurs in the tenth decimal place. It 
is therefore important to decide beforehand at what value of e we will 
equate Za andZ6 when |Za -  Z b\ <  e.

Finally, although I have just explained the use of the sign test in 
terms of single number measures it is also used to detect a significant 
difference between precision-recall graphs. We now interpret the Z’s as 
precision values at a set of standard recall values. Let this set be 
SR ={0.1, 0.2, . . ., 1.0}, then corresponding to each Re SR we have a 
pair (Pa (R), Pb(R)). The Pa’s and Pb s are now treated in the same way 
as the Za ’s and Z b s. Note that when doing the evaluation this way the 
precision-recall values will have already been averaged over the set of 
queries by one of the ways explained before.

Bibliographic remarks

Quite a number of references to the work on evaluation have already 
been given in the main body of the chapter. Nevertheless, there are still 
a few important ones worth mentioning.

Buried in the report by Keen and Digger22 (Chapter 16) is an 
excellent discussion of the desirable properties of any measure of 
effectiveness. It also gives a checklist indicating which measure satisfies 
what. It is probably worth repeating here that Part I of Robertson’s 
paper23 contains a discussion of measures of effectiveness based on the
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‘contingency’ table as well as a list showing who used what measure in 
their experiments. King and Bryant24 have written a book on the 
evaluation of information services and products emphasising the 
commercial aspects. Goffman and Newill25 describe a methodology for 
evaluation in general.

A parameter which I have mentioned in passing but which deserves 
closer study is generality. Salton26 has recently done a study of its 
effect on precision and fallout for different sized document collections.

The trade-off between precision and recall has for a long time been 
the subject of debate. Cleverdon27 who has always been involved in this 
debate has now restated his position. Heine28 in response to this has 
attempted to further clarify the trade-off in terms of the Swets model.

The notion of relevance has at all times attracted much discussion. 
An interesting early philosophical paper on the subject is by Weiler29. 
Goffman30 has done an investigation of relevance in terms of Measure 
Theory. And more recently Negoita31 has examined the notion in terms 
of different kinds of logics.

A short paper by Good32 which is in sympathy with the approach 
based on a theory of measurement given here, discusses the evaluation 
of retrieval systems in terms of expected utility.

One conspicuous omission from this chapter is any discussion of 
cost-effectiveness. The main reason for this is that so far very little of 
importance can be said about it. A couple of attempts to work out 
mathematical cost models for IR are Cooper33 and Marschak34.
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