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Retrieval effectiveness 
Cornells J. van Rijsbergen 

3.1 Introduction 

Information storage and retrieval systems have been with us for many years 
now. Attempts to evaluate or measure their performance have been going on 
almost as long. This is not an entirely unrelated development since in 
designing and building any new system the question of its desirability, 
quality, value and benefit should arise naturally. In evaluating information 
storage and retrieval systems, those that deal with the retrieval of references 
to documents, much of the effort has gone into measuring variables based on 
the relevance of documents to the question put to the system. This aspect of 
evaluation is clearly only one part of the overall evaluation of any retrieval 
system. These relevance-based variables are chosen to reflect in some way 
what has now become known as the retrieval effectiveness: the ability of the 
system to retrieve relevant documents while at the same time suppressing the 
retrieval of non-relevant documents. The most well known pair of variables 
jointly measuring retrieval effectiveness are precision and recall, precision 
being the proportion of the retrieved documents that are relevant, and recall 
being the proportion of the relevant documents that have been retrieved. 
Singly, each variable (or parameter as it is sometimes called) measures some 
aspect of retrieval effectiveness; jointly they measure retrieval effectiveness 
completely. 

The measurement of precision and recall, or of any other similar pair of 
variables, is different in many respects from the measurement of variables in, 
say, the physical sciences. Each variable is based on the availability of data 
about the relevance of particular documents to a query. Although one can 
make a case for an objective notion of relevance, many researchers believe 
that relevance is entirely subjective, that is, given the same query but put by 
different users, different documents will be judged relevant. In this respect 
relevance behaves more in the way an observable behaves in quantum 
physics, since its measured value is not determined except in probability. 
The distribution of values associated with an observable will follow a certain 
probabilistic law determined by the state of the system. Unfortunately in 
information retrieval a similar probabilistic law for relevance does not exist. 
Hypotheses about the user population could be formulated to establish such 
a law, but its usefulness would be doubtful. 
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This analogy between relevance and an observable in quantum mechanics 
(QM) should not be taken too seriously, its use is mainly to highlight the 
inherent uncertainty associated with relevance. One interesting aspect of the 
analogy is, however, that a further similarity between the formalism for 
information retrieval and QM becomes apparent when one considers the 
well established trade-off between precision and recall. This is similar to the 
Heisenberg uncertainty principle in physics, where for example momentum 
and position cannot be measured simultaneously to any desired level of 
accuracy: increasing the accuracy for one leads to a necessary decrease in 
accuracy for the other. Similarly in attempting to increase precision we 
always find a decrease in recall. In fact under some mathematical models in 
information retrieval the trade-off is a necessary one, and not simply observed 
empirically. 

It must be emphasized that measuring retrieval effectiveness is a form of 
derived, as opposed to fundamental, measurement. The fundamental 
'quantity' involved is relevance; once this has been establishedjwe can 
attempt to measure retrieval effectiveness. Because of the difficulties involved 
in establishing a theory of relevance, relevance-based measures have typically 
been used in an experimental (artificial as opposed to operational) context, 
that is, in one where the relevance of a document has been decided in 
advance. Given such an experimental set-up, it would appear that retrieval 
strategies can be evaluated for their effectiveness in terms of, say, precision 
and recall without any difficulty. Unfortunately life is not that simple, and 
difficulties arise with the form of measurement at different levels. A few are 
as follows: 

(1) Sampling level? 
(2) One or more variables? 
(3) How to normalize for relevance feedback information? 
(4) Effect of ranking on form of measurement? 
(5) Effect of interpolation, interpretation? 
(6) Effect of averaging technique? 

Each of these technical problems, except the first which has already been 
covered by Robertson, will be touched upon in the rest of this chapter. 

3.2 Theoretical foundations 

The problems of measurement in information retrieval differ from those 
encountered in the physical sciences in one important aspect. In the physical 
sciences there is usually an empirical ordering of the quantities we wish to 
measure. For example, we can establish empirically by means of a scale 
which masses are equal, and which are greater or less than others. Such a 
situation does not hold in information retrieval. There is no empirical 
ordering for retrieval effectiveness and therefore any measure of retrieval 
effectiveness will by necessity be artificial. 

The basic variables underlying any measure of retrieval effectiveness are 
usually precision and recall, or some other equivalent pair. The conventional 
way to define these is in terms of ratios; however, more recently it has proved 
fruitful to define them as probabilities. Recall is defined as the probability 
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that any given document (for the population of potential documents) that is 
input to the system and relevant to question Q will be retrieved in response 
to Q. Similarly precision is defined as the probability that a retrieved 
document will be relevant. Notice that these definitions refer to individual 
documents, so for these to make sense in terms of ratios I need to restate them 
in terms of sets. If A is the set of relevant documents and B is the set of 
retrieved documents then recall is P(B/A) (read, probability of B given A) 
and precision is P(A/B), these can then be estimated simply by the traditional 
ratios. Now let us look at the meaning of the probabilities more closely. Take 
the probability of retrieval given relevance P(B/A), or more precisely the 
probability of a document belonging to the retrieved set, given that it belongs 
to the set of relevant documents. If A and B are two simple primitive 
predicates, this conditional probability is easy to interpret, however B is not 
simple. If we are to estimate the probability P{BIA) then we can only do this 
reliably through a random process, but any retrieval strategy is not a random 
process and thus technically cannot be used to estimate P(B/A). 

One way of dealing with the definition of P(B/A) is to describe set B in 
terms of a random variable. One assumes that attributes of documents can be 
measured or ordered in some way in relation to a query, and that the values 
of these attributes can be mapped into a single variable (like co-ordination 
level or cosine correlation) having a well defined distribution. If one further 
assumes that the distributions of this variable on the relevant and non-
relevant sets of documents are different, then one particular value of this 
variable (the cut-off) can be used to discriminate between relevant and non-
relevant documents. Now the probabilities of a document belonging to B 
conditional on A is well defined, it is the probability that, say, the matching 
function for relevant documents exceeds some threshold. It is not difficult to 
see how P(B/A), fallout, can be defined in a similar manner. 

Both P(B/A) and P(B/3) can be defined as the expected value of some 
other variable. When defined in this way we refer to them as expected recall 
and expected fallout. For this we assume that each document has associated 
with it a unique description JC. The uniqueness is not necessary but it simplifies 
the discussion. Robertson1 in his paper on the probability ranking principle 
defined them as follows: 

P(B/A) = £ P(x/A) 
xeB 

P(B/A) = £ Pix/A) 
xeB 

In words, if one can associate a probability with each document description 
given that the underlying document is relevant (or non-relevant), then 
expected recall (or expected fallout) is simply defined as the sum of the 
probabilities over the retrieved set. If these probabilities were continuous, 
then the sum would represent the area under the curve P(x/A) or P(x/A) 
supported by the set B. This is of course how Swets2 originally defined these 
probabilities. 

A slightly different and perhaps more instructive way of defining expected 
recall and expected precision (rather than fallout, although this can be defined 
too) is in terms of the expected number of relevant documents in a set. For 
this we need to define P(A/x), or, in words, the probability that a document 
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is relevant given a particular description. This probability can be derived 
from P(x/A) through Bayes' Theorem (see van Rijsbergen3, p. 115). The 
expected number of relevant documents can now be simply defined as 

I Pttlx) 
xeB 

From this we get: 

P(Alx) 
Expected Recall £ T7\ 

xeB \A\ 

Expected Precision ]T —r—.— 
xeB \B\ 

Defining P(B/A) and P(A/B) in terms of expected recall and expected 
precision has many advantages, for one, it does not raise the same problems 
of interpreting the probabilities. Another major advantage is that the trade­
off between expected recall and precision can be shown to hold almost 
immediately for certain forms of retrieval4. 

We return now to the problem of constructing a measure of retrieval 
effectiveness. In some ways this is a secondary problem, particularly if one 
admits that any such measure will be a function of at least two variables such 
as precision and recall. Nevertheless it may well be possible to construct a 
sensible measure of retrieval effectiveness independent of the traditional 
parameters, but this would only be worth doing if it simultaneously led to a 
different theory of information retrieval. One of the present major advantages 
of measuring retrieval effectiveness in terms of recall and precision (or 
fallout) is that we are able to state categorically that if retrieval is done in a 
certain way it will be optimal in terms of its effectiveness measured by recall 
and precision. It is conceivable that optimality in terms of precision and 
recall does not result in optimality with respect to some measure of 
effectiveness, although to date most sensible composite measures are 
optimized as well. 

3.3 Optimal retrieval 

One of the more interesting things that has happened in information retrieval 
research in recent years is that theoretical work on evaluation and on retrieval 
strategies have fitted together. Of course much earlier Swets tried to do this 
and his work did cause a flurry of papers, but their impact on further 
theoretical and experimental work was not felt until much later. 

Probably the single most important result in which the definition of 
retrieval effectiveness and retrieval strategy interact is the probability ranking 
principle. This principle emerged in the work of Robertson and Sparck 
Jones5, and Cooper6. It reads as follows: 

'If a reference retrieval system's response to each request is a ranking of 
the documents in the collection in order of decreasing probability of 
relevance to the request as submitted by the user, where the probabilities 
are estimated as accurately as possible on the basis of content derivable 
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data made available to the systems for this purpose, then the overall 
effectiveness of the system to its user will be the best that is obtainable on 
the basis of those data.' 

The original formulation of this principle was in terms of the probability of 
'usefulness' instead of 'relevance'. To date most implementations of the 
principle have worked with the probability of relevance. It is not too difficult 
to formulate a relationship between usefulness and relevance so that 
optimality in terms of relevance implies optimality in terms of usefulness. 
The crucial point is though that the estimation of the probability of relevance 
is based on content derivable data whereas an estimate of probability of 
usefulness can only be based on data not concerned with the content, e.g. 
language of document, date of publication. A detailed discussion of this 
distinction can be found in Harper's thesis4. 

As I mentioned at the start of this section, retrieval effectiveness and 
retrieval strategy have been fitted together to guarantee optimal retrieval 
effectiveness for certain strategies. The easiest way to see this is to use the 
definition of precision and recall in terms of expected number of relevant 
documents in a set. If the probability of relevance of a document represented 
by x is given by P(relevance/jc) or P(A/x) then the probability ranking 
principle tells us that to achieve optimal retrieval we should rank the 
documents in decreasing order of this probability. Now the retrieved set B, 
defined by setting some cut-off on the ranking, will contain those documents 
with the greatest values of P(A/x). Therefore compared with any other set of 
documents of the same size as B, the sum, 

I P(A/x)9 
xeB 

will be a maximum, or in words, the expected number of relevant documents 
in B will maximized. This is true for any set B defined by a cut-off on the 
ranking. Since expected precision and recall are defined by dividing the 
expected number of relevant documents in B by the size of B and A 
respectively, expected precision and recall will be maximized at any cut-off 
by ranking the documents in order of their probability of relevance. The 
interplay of the measures of retrieval effectiveness and the definition of the 
retrieval strategy is quite clear. In fact ranking documents in this way ensures 
the optimization of a host of effectiveness measures expressed in terms of 
precision and recall. For example, any linear combination of precision and 
recall will be maximized as well. 

It is important to realize that in formulating this principle very little has 
been said about the structure of the description x associated with a document. 
To estimate the probability of relevance for a particular document some 
assumptions will have to be made about the form of JC. A common assumption 
is that JC is a binary vector representing the absence or presence of index 
terms. Also, assumptions about the statistical dependence or independence 
of the occurrence of index terms can then be made to help in the estimation 
of P(A/x). Briefly, this estimation is usually implemented through Bayes' 
rule, 

***-&£* 
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where we seek a sample of relevant documents to be able to estimate P(x/A); 
P(A) is the same for each x, and P(x) is given by the system data. 

It is possible to formulate an approach to optimal retrieval without using 
ranking. For this we need some elementary decision theory. The basis of it is 
that certain costs are associated with the decision that the retrieval system 
can make. If we assume that for each document the system can take one of 
two actions; ax: retrieve, a2: not retrieve, and that each document is in one 
of two states, either wx: relevant, or w2 : non-relevant. Then we can associate 
with each (action, state) pair a cost /«. A table shows the association: 

a2 

With each action a we can associate an expected cost, viz.: 
2 

Riajx) = £ hAwjM 
j = i 

where P{wjx) is the probability that the document will be in state Wj. 
Intuitively it would seem reasonable to perform that action which has the 
smallest expected cost associated with it. In fact, such a strategy is optimal 
in the following sense. If the decision rule is a(x), i.e. a(x) takes the value al 

or a2 for each x, then the overall risk R is defined as 

R = lZR(a(x)lx)P(x) 
X 

This function R can be minimized for each x by choosing the smaller of 
R(ajx), R(a2/x). Therefore the retrieval rule will read: 

IfR(aJx) < R(a2/x) then retrieve 
else do not retrieve* 

So optimality here means minimizing the overall risk function. 
It is interesting to analyse this retrieval rule in a little more detail. Writing 

out the expected cost functions in full we get 

R(ajx) = lnP(wJx) + ll2P(w2/x) 
R(a2/x) = l2lP(wJx) + l22P(w2/x) 

If we define a reasonable cost function we would set / n = / 2 2 = 0, thus 
reducing the comparison, 

R(ai/x)<R(a2/x) 

to 

l12P(w2/x) < l2lP(wJx) 

or equivalently 

Pjwjx) l12(_ , 

* As is usual, equality is treated by deciding randomly. 
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Since P(w2/x) = 1 -P(wjx), we can rewrite this inequality as 

1+a 

This rule is similar to the one specified by the probability ranking principle, 
the difference being that now we have an explicitly defined cut-off in terms 
of a cost function. If we choose /12 = /2i , i.e. a= 1 our retrieval rule becomes: 

IfP(wl/x) > \ then retrieve 
else do not retrieve 

Or in other words, if the probability of relevance is greater than the 
probability of non-relevance for a document we should retrieve that 
document. We vary the importance we attach to the cost of a false drop in 
comparison with the cost of a recall failure by changing the cut-off. For 
example, we may decide that 

/» 2' 
which means that the failure to retrieve a relevant document is twice as costly 
as the retrieval of a non-relevant document. For this the cut-off /? is set to i. 
By ranking we avoid having to specify the cut-off in advance, on the other 
hand we pay the price of ranking. It is important to realize that setting a cut­
off on P(wjx) still maximizes the expected number of relevant documents in 
the retrieved set. 

3.4 Measurement of effectiveness 

The measurement of retrieval effectiveness within an experimental set-up is 
beset with many difficulties. These difficulties have been with us for many 
years, and are likely to remain unresolved for many years yet. A typical 
retrieval experiment has been described in Chapter 2, so I shall not repeat it 
here, except to emphasize that its aim is usually to establish the absolute or 
relative effectiveness of some search strategy, information structure, ordering 
process, etc., within the context of an overall retrieval system. The output for 
such an experiment may be a ranking (partial or full) of documents, or simply 
an unordered set. Each query will have associated with it some output for 
which retrieval effectiveness measures can be calculated. In comparing the 
results for different tests with the same queries and document collection, one 
aims to produce statistical summary data which will enable statements to be 
made about the comparative merits of differently designed subsystems. In 
the main, experimentalists have concentrated on two types of statements. 

(1) What is the probability that a retrieved document is relevant for the 
system operating at that level of recall? 

(2) What is the probability of a retrieved document being relevant for a 
query at a particular recall value? 

How well these two questions are answered depends on the method of 
evaluation adopted. The discussion will concentrate on evaluation of 
rankings, evaluating unordered sets is a special case of this. 
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In the main there are two distinct ways of looking at the problem of 
measuring effectiveness. One way assumes that the effectiveness of a given 
system for a set of queries is a direct function of the effectiveness for 
individual queries without reference to how these might have been arrived 
at; let us call this the predictive approach. Another way is to insist that to 
represent the effectiveness for a set of queries one should set up a 
correspondence between levels of effectiveness of different queries based on 
some control variable (e.g. match value) used to generate the ranking of 
documents in the first place; let us call this the descriptive approach. A minor 
variation of this latter approach is to use the rank order number of the 
document as the control variable, the actual value is then ignored. 

Perhaps if the above is illustrated by describing what happens in terms of 
precision and recall it will be clearer. I shall limit the example to these two 
parameters as any other two parameters would be treated analogously. The 
first approach attempts to summarize, by simple averaging, precision values 
at given recall values. The second approach averages both precision and 
recall at a given value of a control parameter, e.g. co-ordination level. Both 
methods have problems, the first requires the precision value to be defined at 
recall values not necessarily achieved at any control variable value. The 
second method requires a decision about which value of the control variable 
for one query will correspond to what value of the control variable for 
another query, so that averaging may be done across queries for precision-
recall values at corresponding values of the control variable. This still leaves 
open the question, for either method, how might these averages be computed ? 
The predictive approach requires interpolation and extrapolation of precision 
values so that averages can be computed at given recall values. On the other 
hand in the descriptive approach one need not calculate precision-recall 
values for individual queries at any given value of the control variable; 
instead one pools the documents and calculates what are known as micro-
averages. In other words for all queries one pools the documents retrieved 
and the relevant documents retrieved and then calculates an average recall 
and precision. Once the averages have been calculated it would appear that 
the descriptive approach answers question (1), whereas the predictive 
approach answers question (2). Of course once the averages have been 
calculated we still only have a set of average precision recall values; a final 
step is to link these points into a continuous curve. 

There are arguments for both approaches. In an earlier publication I have 
strongly argued in favour of the predictive approach7. Sparck Jones8 has 
argued in favour of the descriptive approach. 

Although the above discussion has assumed that retrieval output is subject 
to a control variable leading to a sequence of nested sets of retrieved 
documents, some strategies will only retrieve one set of documents. For 
example, output from a boolean search, or from a cluster-based retrieval 
strategy, will be just one unordered set of documents. Problems arise when 
attempting to compare 'set retrieval' with 'ranked retrieval', which requires 
some statement about the comparative performance of two retrieval 
strategies, one for which the effectiveness is represented by a graph, the other 
by a point. It is for cases like this that a single number effectiveness measure, 
call it E, can be useful. If one assumes that for every point of the graph a 
single number measure can be calculated, then one way of comparing 
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effectiveness is to select a point in terms of E, this might be the best, worst or 
some other point, and then compare it with E for the set output. Once a single 
number measure has been adopted statistical summaries for sets of queries 
become straightforward, and interpolation and extrapolation are not needed. 
Of course in conflating the precision-recall (P-R) graph to one value there is 
loss of information, but this is not as severe as it may appear at first sight. 
There is a certain amount of evidence now that no matter what model is 
adopted for retrieval, the precision-recall graphs are constrained to some 
extent. In fact it is not difficult to prove that under the probability ranking 
principle expected recall and expected precision are inversely related. This 
means that given any E value for a point on the P-R graph, E values for other 
points are constrained by this trade-off. This is not to say that there is a 
functional relationship between P and R but that there is 'almost' one. In this 
sense the loss of information is not so severe, although it must be admitted 
that this loss has not been quantified. 

Further difficulties arise in evaluation when attempting to measure the 
comparative effectiveness of relevance feedback strategies. In these strategies 
certain documents are looked at on a first iteration to establish the parameters 
for the second iteration. Typically the documents looked at are the top 
documents in a ranking, the remaining documents are unsighted. To establish 
the effectiveness of the feedback, we must somehow measure how feedback 
improves retrieval. The most sensible way of doing this is to generate a 
residual ranking for the second iteration which is a ranking with the n 
feedback documents removed. This can then be compared with the ranking 
for the first iteration with the same n documents removed, in this latter case 
they are of course the top n documents. From these rankings, one for the first 
and one for the second iteration, precision-recall graphs can be generated. 
This method has been used extensively by Harper4 and Ide9 for evaluating 
feedback experiments. It neatly measures the effect of feedback on documents 
the user has not previously seen. 

3.5 Limits to retrieval 

In evaluating the results of retrieval experiments, it is often important to 
establish the bounds on retrieval. Trivial bounds obviously exist in that 
retrieval effectiveness cannot exceed precision and recall jointly being 100 
per cent, nor can it fall below both being 0 per cent. 

One interesting speculative question to ask is whether in fact we wish to 
design retrieval systems that achieve 100 per cent precision and recall. It is 
not too difficult to argue that this could be achieved for some specific query. 
Achieving 100 per cent precision and recall on the average for some unknown 
set of queries is a different matter. In designing any retrieval system we use 
certain models for the structures and processes involved. These models are 
necessarily an imperfect reflection of the reality they are trying to model. In 
particular any model for relevance we might invoke will have built in an 
inherent uncertainty. Therefore one would hypothesize that perfect retrieval 
is impossible, or to put it differently, that a retrieval system cannot be all 
things to all men. Let us now look at a possible objection to the above claim 
of the impossibility of perfect retrieval. One might claim it is the primitive 
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manner of representation that leads to the limitation on effectiveness. In one 
sense this is true. However, consider the situation where we could characterize 
and discriminate our documents perfectly, and let us assume that the system 
is very large and that queries can be arbitrarily complicated. Of course I do 
not believe that for an almost infinite collection we can represent documents 
perfectly with anything less than the complete semantic content (disregarding 
arguments as to how this might be done). To achieve perfect retrieval in such 
a case, one would need to know already what one was looking for, and hence 
the retrieval system would be irrelevant. The point of a retrieval system is to 
tell you what you do not already know in response to an incomplete statement 
of your information required. 

The computational process of locating likely relevant documents is not 
unlike the mechanical process of proving theorems within a formal system. 
If we assume, not unreasonably, that a computational model for retrieval is 
in power equivalent to arithmetic, then Godel's theorem by analogy also 
leads one to suspect that certain statements will be undecidable; or to put it 
more precisely, there will be documents whose relevance or non-relevance is 
'undecidable' within the formal system for retrieval, i.e. documents which 
the system cannot guarantee to find. What I am arguing is that there may be 
an essential incompleteness about retrieval systems, which although not 
apparent in current implementations, may well become apparent with 
increased sophistication of our systems. 

At the other end of the scale we have performance trivially limited by 0 per 
cent precision and 0 per cent recall. A less superficial bound is the one set by 
random retrieval, which is represented most naturally by recall = fallout. Any 
retrieval strategy worth its salt will do better than random. 

The limit set by random retrieval can be discussed at two levels: a global 
and a local level. At the global level it simply indicates that we can expect to 
do better overall by some retrieval strategy than retrieving randomly from 
the collection. At a local level a limit can be used in two ways. First, to set a 
natural cut-off when ranking with respect to the probability of relevance; at 
some point down the ranking the estimated P(relevance/x) will equal the 
prior probability ^(relevance) which is the point at which we are retrieving 
randomly, and beyond which point the strategy becomes useless. Of course 
this 'random' cut-off point will almost always exceed any cut-off set by the 
user. But since in most experiments we are dealing with simulated users it is 
as well to rank to this conservative cut-off point. Secondly, we can use 
random retrieval at a local level to motivate a particular way of interpolating 
between precision-recall points. It was pointed out earlier that in the 
predictive method of evaluation we needed to interpolate. One possible 
method is by step-function, the jumps occurring at actual changes in recall. 
One way of motivating, and to some extent justifying, this method is to argue 
in reverse, and say that given any recall-precision point which has been 
calculated for the retrieved set then it is always possible to retrieve randomly 
from this retrieved set. Therefore it is always possible in this way to generate 
points at the same precision value increasing in recall up to the recall of the 
given point. Thereby we can interpolate points between any two given points 
by defining firstly: 

G = {(Re9Pe)} 
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as the set of points at which there is a change of recall, and secondly an 
interpolation function 

P(R) = {sup P.R^R such that (Rf, P)eG) 

This is simply an algebraic expression for the interpolating step-function 
with the jumps occurring at (R0, Pe). One consequence of defining the 
function in this way is that certain points belonging to G may be 'ignored'. To 
see this consider two neighbouring points (Rt9 P{) and (R2, Pi) such that 
R2>Ri but P2 < Pi (normally one would expect P2 < Pi because of the trade­
off). Then in interpolating for a value R0 immediately preceding Rl the Px 

value will not be used since P(R0) = P2.In an earlier publication I referred to 
(Ri, Pi) as an anomaly emphasizing that it could legitimately be ignored7. 

Other limits to retrieval effectiveness are due to the nature of the 
mathematical model used to represent any subsystem. Any model is always 
only an approximation to reality, and will therefore have inherent limitations 
associated with it. The most important set of models for which limits have 
been calculated are the probabilistic ones. These models require the 
estimation of certain probabilities from sample information. If one assumes 
that these probabilities can be calculated perfectly then in some sense the 
model cannot be improved. Therefore using perfect or complete information 
for the probabilities should lead to the best possible retrieval under the 
model. 

One must be very careful in thinking about the limitations imposed by 
certain models. For probabilistic models there are at least two levels of 
approximation. At one level the model is approximating the particular 
process or structure identified as determining retrieval effectiveness, at 
another level one is estimating (or approximating) the parameters of the 
particular model. A good example of this can be seen when constructing the 
function P(x/C) where C might be relevant or non-relevant. As a first step 
one decides on the structure of x and its associated distributions. This could 
be to assume that the components of x are independent, or partially or fully 
dependent. This implies a series of models one of which may be a better 
approximation than any of the others. Once the particular model has been 
settled one attempts to estimate its parameters. Now it is impossible to 
establish which is the correct model; one can only demonstrate by experiment 
that one model will lead to better performance than some other model, and 
assume that because our experiment is random any future experiment will 
show the same result. 

Although in the above discussion I have blithely talked about perfect or 
complete information for estimating parameters, in reality we never have 
this. Our information fails to be perfect in at least two important ways. First, 
our documents are only a sample of a population of potential documents, and 
so even though we use all the information in the collection available to 
calculate our so-called perfect estimates, they are not the population 
parameters. Secondly, in most collections for which relevance judgements 
have been made, they are rarely 100 per cent exhaustive although they may 
be 80 per cent exhaustive, and so our perfect information falls short by 20 per 
cent. 

Upper bounds to retrieval effectiveness can be used in different ways, (1) 
as a general experimental yardstick for performance, (2) to compare the 
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potential performance of different models, and (3) to study the effects of 
small changes to any given model. Of course comparing upper bounds can be 
misleading for the following reasons. It may well be that upper bound A 
exceeds upper bound B significantly; however, it may not only be that it is 
not possible to design a reasonable estimation rule for A: it could be that the 
model for A is so complicated that we can not get sufficient data to estimate 
its parameters. 

3.6 Conclusions 

In this chapter I have tried to show the considerable interplay that exists 
between probabilistic definitions of effectiveness and certain models for 
retrieval. In the past researchers, including myself, have tried to argue the 
relative merits of different measures of effectiveness independent of how 
these might influence the design of retrieval systems. I now think that the 
most important consequence of defining a measure of retrieval effectiveness 
in a particular way is the ability it gives us to make theoretical statements 
about certain models. These statements can then be tested empirically 
against stimulated or real users. 
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