
IV-1

IV. The Cornell Programs for Cluster Searching

and Relevance Feedback

E. Ide, R. Williamson, D. Williamson

1. Design Criteria

For the present write-up, it is assumed that the reader is familiar

with the SMART project, originally implemented on an IBM 709*+ at Harvard [l,2].

When this information retrieval system was rewritten for a CDC l66k at Cornell,

the programs available at Harvard could not be used directly. At that time,

several design decisions for the Cornell system were made:

a. To continue to run the text analysis programs at Harvard [2],

and to rewrite only those programs dealing with document

abstracts and queries as numeric vectors;

b. to concentrate on two major areas at Cornell (the imple

mentation of Rocchio's clustering algorithm [3] and of

various relevance feedback algorithms [3*̂ 3)J

c. to write these programs to handle collections as large as

the 1^00 document, 225 query Cranfield collection;

d. to make the resulting system available for use and for

experimental reprogramming to students on one-semester

projects.

2. Basic Cornell System Organization

In order to implement the last of the points mentioned, the system

was designed using many small routines. This modular structure adds a large

degree of flexibility. An experimenter can generally achieve his purpose by

IV-2

modifying one or more small, self-contained subroutines rather than by

having to rewrite a subsection of a large, complex program. The system

subroutines communicate through COMMON blocks, and the common system

variables are rigidly defined for the experimental programmer. This pro

cedure minimizes errors and simplifies debugging. Further, it facilitates

expansion of the system. Often a new program can be built around a set of

basic routines already available in the system.

Most of the subroutines are written in Fortran rather than in basic

machine language. The sacrifice of speed over assembly coding is slight with

the fast Fortran compiler available on the Control Data l6ck* This decision

permits an easier modification of the code and makes conversion of the sys

tem to other computers more reasonable.

The large document collection with which the system was eventually

to be used (criterion C) precludes the internal core storage of all the

document vectors simultaneously, under any packing scheme. Thus, it is

necessary to put the documents onto a tape to be read serially, with ad

vance buffering to overlap computation and tape movement as much as possible.

Since it is desirable to use preliminary and cross-check runs on various dif

ferent collections, it was felt that it would be easiest if all document

collections were to reside on one system tape, rather than on many different

tapes. In addition, production runs referencing more than one collection

would be much more convenient to run, since only one tape would be needed.

3. System Implementation of Rocchiofs Clustering Algorithm

In future libraries, collections of fifty to one-hundred-thousand

documents are contemplated. For collections of this size, the linear

search schemes used for testing purposes would take an unmanageably long

time, even with batch-processed queries. If any direct user interaction

were desired, the time cost of a linear search would be prohibitive in

dollars, and the user probably would not be content to wait for up to

thirty minutes, the time required to perform a fast linear search on fifty-

thousand vectors.

A clustering system hopefully can group similar documents together,

and replace the group of documents usually correlated by a single vector

representing the general area covered by those documents. If one-hundred-

thousand documents could be usefully grouped into one-thousand groups of two-

thousand documents each (it is often desirable to place a document in more

than one group), only about three-thousand comparisons, as opposed to one-

hundred-thousand, would be needed to find most of the documents relevant to

a given query. This reduction of search time and money is desirable, and

hence considerable efforts are being made to generate effective clustering

algorithms.

A clustering algorithm is useful only if the resulting document

groups permit a more efficient search, while maintaining the same quality of

results provided by a full search of the document collection. Thus, there

are two separate problems associated with clustering algorithms; that of

clustering the collection into groups, or "centroids", and that of evaluating

the quality of the search results using these centroids. Each of these pro

blems is handled by a separate system subroutine. The first subroutine,

CLUSTR, groups the documents, and the second, CENVAL, evaluates these groupings,

or evaluates any other centroid groupings previously calculated.

IV-b

Subroutine CLUSTR forms clusters of documents for two-level searches

using Rocchio's algorithm. [3] The routine successively considers each

document in a collection as a possible root of a centroid. It then correlates

this document with all other documents in the collection, and applies Rocchio's

density test to the resulting ranked documents. If the root passes the den

sity test, it is considered to be a centroid root, and the documents which

will define the centroid are chosen from the top of the ranked list. A

"centroid vector" is then formed, which is the center in the document space

consisting of the defining documents. All documents are re-correlated with

this centroid vector and additional documents to be included in the centroid

are chosen from the top of the new ranked list. A user option allows the

centroid vector to remain unchanged or to be redefined at this time to in

clude all documents in the centroid. Another option determines whether

these documents now included in the centroid are dropped, or not dropped,

from the document space. The program then picks a second possible root

and repeats the above process, until all possible centroid roots have been

tried. If, at this point, there are documents that are not included in any

centroid, they may be inserted into the cluster whose centroid root is most

highly correlated with them. In this manner, CLUSTR places all documents

in groups represented by their centroid, as seen in Fig. 1. Parameters for

Rocchio's density test, number and size of clusters desired, and several

other experimental variables are controlled by the system user.

Subroutine CENVAL performs up to four searches of the document col

lection. One of these is a standard full search for comparison purposes.

The other three runs use the centroids, as generated by a CLUSTR run, for

the given collection. To search the collection using the centroids, a query

c CLUSTR

I }
1 = 0

I
1 = 1 + 1

Ith document a
possible centroid

root?

j

ISO

YES

Correlate Ith document
with all documents that
can enter the centroid;
rank these documents*

I
Sufficiently dense
(by density test)?

IYES

NO

Select documents to
define centroid of

cluster

I
Form centroid vector

i
Re-correlate centroid
vector with all docu

ments and rank

I
Select documents to

be in centroid

6

IV-5

Have all docu
ments been seen?

NO lYES

Blend each unclustered
document into centroid
of highest correlation

i
Return

©
Redefine centroid

vector? (user option)

IYES

NO

Re-form centroid
vector using all

documents in centroid

I
Drop documents in

centroid? (user option)

IYES

NO

Documents in centroid
can no longer enter

other centroids

Write centroid
on auxiliary tape

Flowchart for Routine CLUSTR

Fig. 1

IV-6

is first correlated with each centroid, and the centroids ranked according

to this correlation. Then for each of the three centroid searches, a user-

supplied number of these centroids are pulled off the top of the ranked

list, and the documents included in these centroids are ranked and listed.

The performance measure used to evaluate the "quality" of these searches is

the recall-precision graph normally used by the SMART system [5]- A recall-

precision graph is plotted for each query, and average statistics are given

for the set of queries. A flowchart for the CENVAL routine is shown in Fig. 2.

4« System Implementation of Relevance Feedback

Relevande feedback is a process whereby a poor query can be im

proved using feedback supplied by a user after he is shown a small fraction

of the documents in the system. The user first submits an initial draft of

his query, which is processed by the system. The user is then given a few

documents that the system believes to be most relevant to his initial re

quest. The user indicates which of these documents are relevant, and which

are non-relevant to his needs. The system uses this information to modify

the original query, and searches again. This process can be iterated as

often as desired. The relevance feedback process is often justified by

noting that if the query is not stated in terms similar to those used for

most of the relevant documents, the system may, nonetheless, be able to

locate one or two of the relevant documents. These documents may be more

highly correlated with the remaining relevant documents than the initial

query, and may therefore provide valuable input for a query modification

procedure.

IV-7

c CENVAL

I }
Read ML, N2, N3, and
other user options .

I
1 = 0

I
I = 1+1

Print average results

c I
YES

Have all queries
been evaluated?

Return 3
I NO

Search full document
collection

I
"Search" means

correlate each searched1

document (or centroid) |
vector with query I •
and rank the documents '
(centroid vectors) "by |
their correlation ,

Search centroid
vectors

Search documents
in the first Nl

centroids

Search documents in
the first Nl + N2

centroids

Search documents in
the first Nl + N2 +

N3 centroids

Print results for
query I

Flowchart for Routine CENVAL

Fig. 2

IV-8

The relevance feedback algorithm described is implemented in the

Cornell system by subroutine RELFBK. RELFBK first performs an initial

search of the collection. Three feedback iterations, each altering the

query, are then performed for each query. A feedback iteration first alters

the query by combining the weights in a given number of the documents most

highly correlated with the query, and then performs a new complete search.

By means of control cards, the experimenter can add to the query those con

cepts present in the relevant documents, or subtract those concepts which

are present in the non-relevant documents. The number of documents re

covered on each iteration (that is, the number that might be used to update

the query) can also be varied. (See Fig. 3)

5. Further Details of the Cornell System Organization

A) Routines Available Without User Reprogramming

A basic control routine was written to permit execution of same

standard jobs. This routine, named EXEC, can be used in most cases without

modifications to execute most possible sequences of desired procedures. The

EXEC routine reads control cards, each containing the alphabetic name of one

of the system subroutines. Upon reading a control card, EXEC calls the

named subroutine, which executes and then returns control to EXEC so that

another control card can be read. The basic system jobs listed below can

be executed with control cards through the EXEC routine:

a. START - initializes a new document tape with no collections.

This routine is used before making a new collection tape;

c RELFBK >i Read ML, N2, N3 and
other user options

I

IV-9

1 = 0

Have all queries been
evaluated?

YES I
I

I = 1+1

Print average results

c
I

wo

Return J

Search full document
collection with initial

query I

I
Modify query according
to user options using
relevance judgments of
the first Nl documents
in initial search

results

I
Search full document
collection with first

modified query

I
Modify query using
relevance judgments
of the first N2

documents in first
iteration search

results

I
Search full document
collection with second

modified query

I
Modify query using
relevance judgments
of the first N3

documents in second
iteration search

results

Print results for
query I

Search full document
collection with third

modified query

Flowchart for Routine RELFBK

Fig. 3

IV-10

b. RESTRT - initiates the use of a document tape which does

contain collections. Either START or RESTRT must be the

first control card in each computer run;

c. CLUSTR - groups the documents (or queries) in a given

collection using Rocchio's clustering algorithm (see part 3);

d. CENVAL - searches the documents in a given collection using

document clusters created by CLUSTR* (see part 3);

e. RELFBK - searches a given collection of documents using

a given set of queries, providing up to three iterations

of relevance feedback (see part k);

f. MAKTAP - reads a document (or query) collection from cards

and adds it to the document tape; MAKTAP also provides and

stores on the document tape summary statistics for the

collection, including the maximum concept number and maxi

mum weight of each document, and the maximum number of

concepts in any document in the collection;

g. LISTAP - lists a given document or query collection from

the document tape;

h. TIME (I) - prints the time recorded on the internal com

puter clock numbered I; if I is negative, TIME sets clock |l|

to zero. This routine is used to obtain the execution time

of any section of the run.

i. MASTER - an undefined system name to be used to call a user-

written subroutine from EXEC without modifying the existing

system subroutines.

B) Service Routines Available to the Experimental Programmer

Several input-output and other service routines are available to the

experimental programmer. These routines are also used by the basic sub

routines listed in section A above. All routines in section A can also be

called by user-written routines.

IV-11

A set of special subroutines, listed below, is used to handle all

movements of the document tape (DOCTAP). These routines provide buffering

and are efficient in tape movement. Further, if the experimental program

mer uses these routines exclusively for all DOCTAP movements, the document

tape is protected from unintentional change by his routines.

a. START, RESTRT, MAKTAP, LISTAP. (see section A)

b. NEWCOL - locates a given document (or query) collection on

DOCTAP, positioning the tape to read the first document of

the collection; it also reads and stores in COMMON the first

record of the collection, which contains collection para

meters used by other subroutines;

c. LOCDOC - reads a given document within the collection that

was selected by the last previous call to NEWCOL;

d. DOCMOV - a fast basic machine language subroutine that moves

DOCTAP forward or backward over a specified number of end-of-

files, which serve to demarcate collection boundaries. It is

used by the other subroutines that move DOCTAP.

A set of anuxiliary tape subroutines is available to be used for

temporary storage of data on tapes other than DOCTAP.

a. WRITE (VEC) and READ (VEC) - single-channel double buffered

tape reading and writing routines;

b. CRDCEN - generates a centroid tape from the documents,

specified on cards, defining a centroid (document group)

vector, and from the documents contained in that centroid.

This routine makes it possible to reuse the clusters resulting

from a run of CLUSTR.

IV-12

c. CENDOC - transfers a set of document vectors from an

auxiliary tape to DOCTAP, and defines these vectors as a new

document collection; this routine is used to store the cen-

troid vectors generated by CLUSTR on DOCTAP, to be used

later for centroid clustering or for re-evaluation of dif

ferent two-level search schemes;

d. DOCCEN - transfers a collection from DOCTAP to an auxiliary

tape; this routine is used to reverse CENDOC so that stored

centroid vectors may be reused•

Other important service routines available are:

a. INNER - forms the inner product (correlation) of two documents

in core storage. Any one of three different correlation co

efficients can be used;

, b. SRTUP and SRTDWN - sorts a system vector (called CORR) in

numeric (SRTUP) or inverse numeric (SRTDWN) order. These

sort routines are high speed routines and use n log n lo

cations in CORR, where n is the number of items to be sorted;

c. MKITAP - correlates each document in a centroid (read from

a tape of centroid vectors) with the centroid itself, and

graphs the distribution of documents within a centroid;

In addition, a system of associated printer-plotter routines is

available which can be used to print output graphs with user-controlled

scale and plotting characters.

17-13

References

[l] G. Salton et al., Report No. ISR-9 to the National
Science Foundation, Harvard Computation Laboratory,
Cambridge, Mass., August, 1965*

[2] G. Salton et al., Report No. ISR-11 to the National
Science Foundation, Department of Computer Science,
Cornell University, Ithaca, New York, June, 1966.

[3] J* J» Rocchio, Jr., Document Retrieval Systems —
Optimization and Evaluation, Report No. ISR-10
to the National Science Foundation, Harvard Compu
tation Laboratory, Cambridge, Mass., March, 1966.

[k] W. Riddle, T. Horwitz, and R. Dietz, Relevance
Feedback in Information Retrieval Systems, Report
No. ISR-11 to the National Science Foundation,
Section VI, Computer Science Department, Cornell
University, Ithaca, New York, June, 1966.

[5] G. Salton, the Evaluation of Automatic Retrieval
Procedures - Selected Test Results Using the SMART
System, American Documentation, Vol. 16, No. 3, July,
1965, pp. 209-222.

