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Abstract

This paper points out some mistakes that can be frequently found in IR publications:
MRR and ERR violate basic requirements for a metric, MAP is based on unrealistic as-
sumptions, the numbers shown overstate the precision of the result, relative improvements
of arithmetic means are inappropriate, the simple holdout method yields unreliable results,
hypotheses are often formulated after the experiment, significance tests frequently ignore the
multiple comparisons problem, effect sizes are ignored, reproducibility of the experiments
might be nearly impossible, and sometimes authors claim proof by experimentation.

1 Introduction

The field of IR is very proud of its long history of experimentation-oriented research. How-
ever, taking a closer look at current evaluation practices, one notices that some of them are
in conflict with basic theoretic findings. Since most of them have a long tradition, many
researchers regard them as established procedures which they also apply. Occasionally re-
viewers flag some of them as errors to be corrected, but this usually only affects the paper
under consideration.

Thus, the goal of this paper is to give a list of frequent bad practices, along with concrete
advice on how to avoid them.

2 The mistakes and how to avoid them

2.1 Thou shalt not compute MRR nor ERR

The definition of mean reciprocal rank (MRR) assumes that a user scans the ranked list and
stops after the first relevant. Let r denote the rank of the first relevant document, then the
reciprocal rank is defined as RR(r)= 1/r. Intuitively, this measure looks ok: it returns values
between 0 and 1, where the perfect result yields 1.0.

However, MRR shows some strange behavior, as the following example illustrates: As-
sume that we have three queries, and system A returns the first relevant document at ranks
1, 2 and 4, respectively, while system B returns the relevant answers in each case at rank 2.
So, with system A, we find the first relevant item on average at rank 2.33 (= 1

3
(1 + 2 + 4)),
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which is worse than what system B does. However, MRR(A)=1

3
(1/1 + 1/2 + 1/4) = 0.58,

while MRR(B)=0.5. So A outperforms B on MRR, but looking at the average rank, we get
the opposite finding! Obviously, this observation is due to the basic property of expected
values: E(1/R) , 1/E(R).

The major problem with MRR, however, is the following: as observed already in [19], the
difference between ranks 1 and 2 is the same as that between ranks 2 and ∞. This means
that RR is not an interval scale, it is only an ordinal scale [20] [22, p. 49–51]. However, one
cannot compute the mean for an ordinal scale! Only the median would be possible here —
which would produce ties in most cases.

As a simple way out, one can regard the rank numbers directly, without any transforma-
tion, and then compute the arithmetic mean for a set of queries (like we did in the example
from above). Let us call this measure ’mean first relevant’ (MFR). Although MFR has the
less common property of higher values being worse, its values are more understandable than
those of MRR. Moreover, MFR is even a ratio scale: Looking at the user effort for finding
the first relevant document, an MFR value of x means the x-fold effort in comparison to the
ideal value of 1.

One could think about computing the harmonic mean of the RR values, which would
result in the inverse of MFR, and thus be a correct operation.. However, when we want to
apply significance tests on these harmonic means, we have the same problem as before: since
it is not allowed to compute differences, neither t-test nor Wilcoxon would be possible.

The ERR measure proposed in [5] is a generalization of reciprocal rank to graded relevance
scales, and so it suffers from the same problem. ERR is based on the idea that the stopping
probability is a function of the relevance grade of the document under consideration (in
the binary case, this probability is 1 for relevant documents, and 0 otherwise): ERR :=∑

n

r=1

1

r
· P(user stops at position r). Instead, we propose as corresponding generalization of

MFR the ”expected first relevant” measure:

EFR :=
n∑

r=1

r · P(user stops at position r)

Even for single queries, ERR yields counter-intuitive results: As an example, assume that
system A returns a partially relevant document (with stopping probability 0.5) at rank 1 and
a fully relevant one (with stopping probability 1) at rank 5, while system B returns the same
documents at ranks 2 and 3, respectively. Then we would have ERR(A) = 0.5 ·1/1+0.5 ·1/5 =
0.6, while ERR(B) = 0.5·1/2+0.5·1/3 = 0.417. In contrast we have EFR(A) = 0.5·1+0.5·5 = 3,
while EFR(B) = 0.5 · 2 + 0.5 · 3 = 2.5. So A would be better according to ERR, but is worse
in terms of EFR; however, only the latter is directly related to expected user effort.

2.2 Thou shalt not use MAP

MAP was developed originally as a refinement of earlier methods of representing the recall-
precision-curve by a single number (e.g. 11-point average precision at 0, 0.1, . . ., 1 recall [12,
ch. 8]). Later Robertson [16] was able to show that it is possible to define a user model for
this metric, by making certain assumptions about user behavior: When scanning documents
in rank order

1. users stop only after a relevant document, and

2. the probability of stopping is the same for all relevant ranks.
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While the first assumption might be approximately true in some applications (but how
would users know when they have reached the last relevant document?), it is hard to imagine
any use case where the second one holds. Most users will stop early on, and only a small
fraction will go further down the ranked list; e.g., [10] points out that the distribution follows
the power law, and web search behavior shows similar patterns1 [9].

Therefore, it is more realistic to assume a skewed stopping distribution over the ranks,
and also allow for stopping after a nonrelevant item. This is exactly what rank-biased
precision (RBP) [13] does, where the user-defined parameter p gives the probability that
the user continues to the next rank. Thus, the fraction of users stopping at rank k is
s(k) = (1 − p)pk−1.

[17] mentions two weaknesses of this measure: First, the maximum possible value depends
on the parameter p; this seems to be a minor issue, since hardly anyone understands what
e.g. a MAP value of 0.234 means (see also Section 2.8). Second, RBP has less discriminative
power; this finding may be due to the fact that RBP puts more weight on the events that
most users observe (i.e. documents in the top ranks), while MAP gives equal weight to items
that hardly anyone looks at. Presumably, many systems yield very similar user experiences,
whereas MAP tries to differentiate on aspects hardly any user is interested in.

Just like RBP, discounted cumulative gain [11] also makes more realistic assumptions
about users’ stopping behavior than MAP; as an additional advantage, it can deal with
multivalued relevance scales. Most important, this is one of the few measures where we have
empirical evidence on the agreement between user preferences and evaluation metric [18].

While most of the other bad practices described here are clear errors, using MAP might be
theoretically correct. However, as it is based on a superficial user model, it yields misleading
results, and thus should be avoided.

2.3 Thou shalt not overstate the precision of your results

Standard IR evaluation software typically prints results with four decimal digits, and so most
authors copy these numbers directly into their paper. However, these four digits create the
illusion of a precision that hardly ever exists. In experiments, when we have only a few hun-
dred observations (e.g. relevance of documents), then four decimal places are inappropriate.
So, as a minimum requirement, a single positive observation more or less in the raw data
should affect at most the last digit shown.

When measuring precise quantities like e.g. in physics, it is common to denote the stan-
dard deviation in case there are repeated measurements. This would also be possible in
IR. On the other hand, given that we are dealing with stochastic experiments, the most
reasonable approach is to specify confidence intervals. For example, if we have 50 queries
and measure the P@10 value, then we have 500 observations; assuming these events as being
independent of each other, we could approximate the underlying binomial distribution by
a Gaussian, where the Wilson Score Interval2 (see also [22, p. 175]) yields for P@10=0.7 a
95% confidence interval of [0.658,0.739]. However, as we have only 50 independent events
(i.e. queries) here, the actual confidence interval is even wider – the variance in performance

1https://searchenginewatch.com/sew/study/2276184/no-1-position-in-google-gets-33-of-\

search-traffic-study, last checked: October 31, 2017
2https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval, last checked: October 31,

2017
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of different topics of a test collection is well-known. When there is no closed formula for the
confidence interval, one can apply bootstrap methods [7].

Although confidence intervals seem to be large, they highlight the actual precision of the
measurement as well as the effect size, and also avoid some of the problems with statistical
testing [6] (see also below).

2.4 Thou shalt not compute relative improvements of arith-

metic means

When comparing arithmetic means of measurements (e.g. over a set of queries), authors often
denote the relative improvements of their preferred method over competing ones. However,
this way of comparison is not appropriate, as the following example shows: assume that we
have two queries, where system A yields a value of 0.2 for query 1 and 0.5 for query 2, then
system B yielding 0.18 and 0.54 would be regarded as being better, based on the arithmetic
mean. On the other hand, a query-wise comparison shows that B looses 10% on the first
query, and gains only 8% on the second one, thus its average change would be -1%. More
generally, suppose that the random variable X denotes the performance of system A, and K

is the relative improvement of B over A. Then we have for the corresponding expected values
E(X · K ) , E(X ) · E(K ), and thus, we cannot compute E(K ) as E(X · K )/E(X ). Thus, for
arithmetic mean, only absolute improvements are meaningful (since E(X−Y ) = E(X )−E(Y )).

If one is interested in relative changes, one should use the geometric mean µG instead
(see e.g. the definition of GMAP [15]). This kind of mean can be applied to ratio scales
only, but it has the nice property that for two series X = (x1, . . . , xn ) and Y = (y1, . . . , yn ),
µG (X/Y ) = µG (X )/µG (Y ) .

The question of preferring either arithmetic or geometric mean depends on the nature
of the performance differences between the systems being compared (in face of variations in
the query/task-wise results): Assuming that the absolute differences are independent of the
actual values, then arithmetic mean would be the most appropriate averaging method. If,
however, we think that the differences are roughly proportional to the measured values, then
we should go with the geometric mean.

Sometimes, it is claimed that the geometric mean puts more emphasis on the weaker
results; again, this is true only if we assume that system differences are absolute rather than
proportional. Otherwise, arithmetic mean puts too much emphasis on the stronger results.

Overall, the best way to choose between arithmetic and geometric mean would be a
correlation analysis3 [21, ch. 5, p. 99ff] of system differences vs. absolute values.

2.5 Thou shalt not apply the simple holdout method

In classical system-oriented IR evaluation, the so-called holdout method of separating the
available data into a training set and a (disjoint) test set has been standard for many years.
However, this method yields quite unreliable outcomes, since the results may be heavily
dependent on the split (e.g. the nice reproducibility study [14] shows that the performance
on the two halves of the collection differed by 20%, and, for other splits, system differences
sometimes were significant, and sometimes not).

3https://en.wikipedia.org/wiki/Correlation_and_dependence, last checked: October 31, 2017
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In order to avoid these problems, cross-validation (see e.g. [22, p. 152-6]) should be a
minimum requirement for experimentation.

Some settings require not only a training set, but also a tuning set, e.g. for determining
the best parameter setting, or choosing the best one from a variety of methods (see also
the multiple hypotheses problem described below). Again, this tuning set should be disjoint
from the test set, so that we have to split the available data into three different subsets. For
k-fold cross-validation, after putting aside one fold after the other for testing, we can either
use just one fold for tuning and the remaining k − 2 sets for training, or we can perform an
inner loop where we rotate the tuning fold over the k − 1 folds.

In evaluation initiatives, the setting usually corresponds to the simple holdout method,
where participants are initially given some training data, and get access to the testing set
only for performing their runs, while the ground truth (e.g., relevance judgments) for this set
is disclosed later. Although there are reasons for this procedure, more reliable results could
be achieved (at a later stage) if one would also regard the results after switching the role of
training and test set, or apply cross-validation on the union of both.

When authors compare their results to the best published run for a test collection, then
the selection of the latter can also be regarded as a tuning process. Thus, such a comparison
cannot be fair, it should rather be performed on a separate test collection. While one would
be tempted to say that this disadvantage makes the new, better method even more valuable,
there are additional problems that need to be considered, as described in the following.

2.6 Thou shalt not formulate hypotheses after the experiment

Although this seems to be basic knowledge, many experimental papers give a different im-
pression: Usually there is a new method (possibly with some variants), for which experiments
are carried out, different measures are applied, and then significance tests are performed on
some or all of the observed differences. The hypotheses are usually only specified implicitly,
and often only after having seen the results; moreover, additional variants may be men-
tioned only in passing (and the authors also might have tried other methods not described
in the text). There are only few papers that specify the hypotheses explicitly (and before
the experiment), like saying: ”We want to compare methods A and B using metric X”.

The most crucial point here is that the complete set of hypotheses to be tested must be
known before the experiment, as this has consequences for the test setup — see below. For
example, it would be incorrect if an author first determines which of the competing methods
performs best on his data set, and then compares his own approach only to this one.

In evaluation initiatives, there is often the implicit goal of ranking the participating runs.
However, this means that we have to compare all pairs of methods. Looking at the results first
and then testing only for some of the observed differences would either require an additional
data set, or specific tests (see below).

2.7 Thou shalt not test multiple hypotheses without correc-

tion

When reporting experimental results, many authors regard several approaches/variants, and
then perform significance tests for each of them. Unfortunately, this procedure leads to the
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multiple comparisons problem 4 [21, p. 308]. An extensive treatment of this problem from
an IR point of view can be found in [4].

As a simple example, assume that we test a drug vs. a placebo on two groups of patients,
and then we regard 20 different symptoms after treatment. Applying significance tests with
p = 0.05 on each of these features, we can expect one ’significant’ difference, even if the drug
has no effect at all.

In general, when we test more than one feature on the same set of data, we have to
do appropriate adjustments. An extensive survey over correction methods can be found
e.g. in [1]. A simple (conservative) method is the Bonferroni correction: When testing m

hypotheses, we have to divide the desired p-value by m in order to get the significance level
to test on (e.g. when considering five metrics, for a p-level of 0.05, we actually have to test
with p = 0.01).

While the full problem only strikes when the different features are uncorrelated, the
problem is less severe when only several measures for a single approach are regarded. On
the other hand, if the measures are strongly correlated, then there is no need to test each
of them; in case they are less correlated, a correction is necessary. As long as there are no
better methods for dealing with this problem, we have to stick with the standard approaches,
or regard a single measure only.

[3] points to an even more severe variant of the problem discussed here: When test
collections are reused, chances increase that we observe random results. So collection reuse
is also a case of multiple hypothesis testing; however, here we perform sequential testing,
where we might use knowledge from the outcome of the previous tests, which makes things
even worse.

As a minimum requirement for reuse (that still ignores the sequence problem), one should
consider the set of tests already published for this collection, add the number of own tests,
and then apply a correction for the total number of tests. This approach would still blend
out the unreported cases of tests performed on the same collection.

For evaluation initiatives, this problem also has severe consequences, since the number of
pairwise tests grows quadratically with the number of submitted runs. The only reasonable
method for dealing with this problem is the application of a post-hoc test such as e.g. Tukey’s
test 5 [21, ch. 10, p. 325ff], which has been used frequently in CLEF [2]; this test checks all
pairwise differences between runs. However, when more than one metric is considered, an
additional correction is necessary.

2.8 Thou shalt not ignore effect sizes

Even when a (properly exercised) significance test rejects the null hypothesis, we can only
infer that it is unlikely that the methods compared yield exactly the same result. However,
the test does not tell us anything about the actual difference between the values to be
compared [6]. Especially for large data sets (e.g. from popular online services), almost any
modification will result in a significant, but tiny difference. Thus, it is essential to report
also the size of the effect achieved by the method under investigation.

For some transparent metrics like precision or recall, the difference of the arithmetic
means bears already some useful information. E.g., for P@10, a difference of 0.02 translates
into one more relevant document per five queries — which many users might regard as the

4https://en.wikipedia.org/wiki/Multiple_comparisons_problem, last checked: October 31, 2017
5https://en.wikipedia.org/wiki/Tukey%27s_range_test, last checked: October 31, 2017
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minimum noticeable effect; so smaller differences, even when they are significant, might be
irrelevant for most users. In case of more complex metrics like e.g. RBP or NDCG, the
difference is hard to interpret.

Effect size not only regards the difference, it also sets it in relation to the variance of the
test data. As stated in [21, ch. 7, p. 187] ”an effect size is a statistic quantifying the extent
to which sample statistics diverge from the null hypothesis”. For comparing two arithmetic
means µ1 and µ2, the effect size ∆ is usually defined as6 [21, ch. 7, p. 187ff]

∆ =
µ1 − µ2

σ

Here σ denotes the standard deviation based on either or both populations. In case one of
them plays the role of a baseline, then σ is its standard deviation.

2.9 Thou shalt not forget about reproducibility

Reproducibility of experiments is an important concept in research, supporting validation of
reported results as well as allowing for later comparison with new approaches. The ACM
task force on reproducibility stated: “A scientific result is not fully established until it has
been independently reproduced”7. Above, we have also pointed out that there is a need for
new testing data when the original test collection has been exploited for tuning, and/or been
’exhausted’ by testing too many hypotheses on it.

The PRIMAD model of reproducibility [8] distinguishes between the following compo-
nents of an experiment:

Research Goal characterizes the purpose of a study;

Method is the specific approach proposed or considered by the researcher;

Implementation refers to the actual implementation of the method;

Platform describes the underlying hard- and software;

Data consists of the input data and the specific parameters chosen to carry out the method;

Actor denotes the experimenter.

When another researcher tries to reproduce the experiment, she will change some of the
components, in many cases the implementation, the platform and the actor. In order to re-
produce the original experiment, she must have access to a sufficiently detailed description of
the other three components: the research goal usually poses no problem, but the description
of the method might already lack some details (like e.g. the methods used for tokenization
and stemming or the stopword list). When deep learning methods are applied, a precise
description of the network used is hardly possible. Thus, in many cases, the only way for
supporting reproducibility is via sharing of the implementation, using e.g. publicly accessible
code repositories.

As for the data, sharing of test collections has a long tradition in IR. However, when this
is not feasible (e.g. with proprietary data), reproducibility becomes nearly impossible. For
example, the SIGIR 2017 reviewing guidelines8 specify reproducibility as follows ”. . . other

6https://en.wikipedia.org/wiki/Effect_size, last checked: October 31, 2017
7https://www.acm.org/data-software-reproducibility, last checked: October 31, 2017
8http://www.informagus.nl/sigir2017/review/guidelines-pc-fp/reviewing.html, last checked: Octo-

ber 31, 2017
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researchers would be able to reproduce the method and/or results presented in the paper if
they had access to the same or similar resources”. The crucial point here is the similarity
of resources: How can another researcher check if her test collection is sufficiently similar to
the data used in the original study? (See e.g. the 20% difference between subsets of the same
collection mentioned above [14].) In other sciences, there may be standards for describing
the essential components of a experiment. In IR, however, we just don’t know which of
the many possible features characterizing a test collection are relevant for the outcome of
an experiment, and if these features describe the data in sufficient detail. In any case, the
current standard of mentioning only a few characteristics of the test data is clearly insufficient
– researchers should at least share extensive statistics about their data, again via publicly
accessible repositories.

2.10 Thou shalt not claim proof by experimentation

Sometimes authors use phrases like ’our experiments prove’. This demonstrates a fundamen-
tal misunderstanding of the role of experiments in our field. Proofs are about universally
valid statements, while experiments only demonstrate the validity for a single or a few data
sets. A good analogy for IR experiments are software tests: Positive outcomes for all tests
performed just show that the software worked properly in these cases, but it is never a proof
of correctness of the program under consideration.

Thus, even if a researcher has obeyed all the rules stated above while performing extensive
experimentation for a new approach, this is only empirical evidence that the new method
works as promised on the data used (and hopefully also in similar situations). Universally
valid statements, however, can only be derived at the theoretical level.

3 Conclusion and outlook

In this paper, we have discussed some common mistakes in IR evaluation. We have not cited
specific papers where these errors can be found, as one can easily spot examples for most of
them in a random volume of IR conference proceedings.

The goal of this paper is to improve the current practice of IR evaluation:

• Most important, evaluation initiatives should take a leading role in this effort. Bad
practices should be stopped immediately, and proper alternatives be established.

• In a similar way, program committees and editorial boards should develop a clear policy
regarding these issues.

• Researchers should avoid the mistakes outlined here, and switch to the better alterna-
tives.

A first step would be the publication of a checklist for evaluation along with CfPs, which
refers to the issues described above (and possibly others). This checklist should be used
by both authors and reviewers, thus helping to avoid publication of papers with flawed
experimentation.

One should bear in mind that the problems discussed here produce misleading or unreli-
able experimental results, and thus makes their experimental results useless. Only reliable,
reproducible results lead to scientific progress.
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