
Chapter 4 

Olive—an enhanced logging facility 

Introduction 

In the previous chapter, the need for a sophisticated transaction logging facility was 
identified. During the course of the project, such a facility was developed over two 
stages—the 'basic' and 'enhanced' logging facility. As the latter facility includes the 
former, only the enhanced will be described. 

The configuration for this purpose was a PC acting as front-end to the O P A C , 
but independent of it. The basic conception was of a general-purpose diagnostic tool, 
potentially at least usable with other OPACs or retrieval systems. Section 4.1 is 
devoted to this general conception, treated quite independantly of specific systems. It 
describes an ideal; inevitably, for reasons associated with limitations on resource and 
technological constraints, the systems eventually produced fell some way short of this 
ideal. Section 4.2 discusses how the idea was implemented with particular reference to 
the CLSI 's C L - C A T . Section 4.3 describes the system itself and how it may be used. 

4.1 Idea of an interception front-end 

4.1.1 Background: users, hosts, and front-ends 

The simplest form of 'front-end' system is a terminal emulation program. A user 
working on a PC will call up such a program in order to talk to a remote host. Once 
the program is running, the PC is to all intents and purposes transparent: a dialogue 
takes place between the user and the host without intervention by the front-end. 

Most terminal emulation programs also allow the user to interrupt the dialogue, 
holding the channel to the host open while conducting an exchange with the front end. 
The purpose of this exchange might be to instruct the front-end to log the user-host 
dialogue (as a simple form of downloading), or to send a pre-recorded sequence to the 
host. 

More sophisticated front-end systems may be translucent or opaque. Thus the user 
may instruct the front-end to establish contact with the host and interrogate it, driven 
by commands from the user, but without direct dialogue between the user and the host. 
Such a set-up may for example occur when the front-end translates from the command 

23 



language to another, so that the user does not have to know the native language of 
the host. Complete opacity would occur if the user did not know which host was being 
interrogated, or even whether such a dialogue was taking place. 

An alternative approach is described by the client-server model, where the 
functionality of the whole system is distributed between the local and remote systems— 
for example the local system handling all the display functions as directed by the remote 
system. Using this model, with a particular application design, a user would perceive 
the local system as providing channels of communications to the various functional 
parts of the application regardless of whether the processes supporting the functions 
ran on the local or remote system. The user can switch between windows, but when 
using a particular window, is normally in effect conversing directly with the processes, 
programs or systems associated with the window. 

4.1.2 Interception front-end 

The model proposed here is different again. We envisage a front-end system which 
in the first place operates like a terminal emulation programming with a full-screen 
logging facility. (Such a system could equally well be implemented as a application 
within the framework of a client-server model). However, we also envisage the front-
end observing the user-host dialogue, and having the ability (on certain pre-defined 
cues) to interrupt this dialogue and take its own intitiative. In other words, rather 
than simply mediating in a dialogue between the user and the host, the front-end itself 
is an agent in a three-way exchange. 

In the context of the present project, we see such interceptions as a vehicle for asking 
the users questions relating to their searching activity on the host (i.e. the O P A C ) . In 
other words, we wish to insert specific, highly targetted online questionnaires into the 
user-host dialogue. Each questionnaire would relate to a specific situation, and would 
not be seen by a user who did not reach that situation. Questions could then refer to 
and elucidate that particular situation. 

Such a tool could be of use more generally in the evaluation of interactive systems 
and in the investigations of human-computer interaction. Further, one could imagine 
its use to help the user in a more direct way, by providing very context-specific help. 

4.1.3 Analysis of the interception function 

The idea of the front-end observing the user-host dialogue and occasionally interupting 
it begs questions about the conditions under which an interruption would occur. There 
are two separate questions here: 

• At what point(s) in the dialogue would an interception take place; 

• What information about the history of the search should be used to inform the 
interruption. 

For example, one may be concerned with why some users repeat various searching 
activities without examining specific records, or why they switch from one type of 

24 



search to another. The first question relates to when it would be appropriate to 
interrupt the user, and the second is concerned with identifying whether this particular 
instance is one of the type required. 

In a screen-based menu-driven system with some form of hierarchical structure, it 
seems likely that appropriate interception points would occur at—or when the user 
returns to—the higher levels. For example, it would be inappropriate to interrupt 
a user as they move from examining a record to requesting information about its 
availability; but it might well be appropriate to interrupt if the user does not take that 
step, but returns to a higher level instead. 

When a possible interception point is identified, however, the front-end would have 
to go back over the history of the search, to establish whether it demonstrates the 
sought pat tern. The front-end must therefore keep a record of the search as it proceeds, 
and at specified stages (interception points) must compare the history with a template 
or pat tern for the required type. 

One major problem with such a system is the choice of level of abstraction or 
summarisation inherent in the history recording. At one extreme, the system could 
simply record every character, and leave to the pat tern matching operation the 
necessary summarisation. However, the character level seems very far removed from 
the level at which one would identify the pattern; it therefore seems appropriate to 
look for a higher degree of summarisation in the history recording. Again, if we are 
looking at screen-based menu-driven systems, an obvious level is the screen itself—we 
would look to record the identity of, and perhaps some information extracted from, 
each screen visited. 

If the system is to be used for online questionnaires, then the questions and answers 
themselves should also form part of the history. In other words, the questions to be 
asked at any stage may depend on the answers to previous questions. 

4.1.4 Function of the enhanced logging facility 

Apart from the interception function discussed above, several other functions were 
required of Olive, as indicated in the previous chapter. 

• First, the system had to log the user-host dialogue. In its raw form, the log had 
to include all screen displays, not just the user commands. This also implied a 
means of printing the log, even where it included screen-control codes. 

• Second, there had to be a condensing/summarising facility for the log. Full
screen logs are extremely voluminous, but for analysis purposes we required a 
terser account. 

• Third, we needed to be able to play back the log onto the screen, so as to elicit 
further information from the user. We required this playback to be simulated real
time (i.e. each steps to take the same amount of time as it had done originally). 
This requires some form of time-stamp in the log. 

• Fourth, as well as intercepted questionnaires, we needed to be able to include 
pre- and post-search questionnaires. 

25 



How Olive served these functions is described below. Possible additional facilities 
were discussed in the course of the project, but were not include in Olive for reasons of 
lack of time or resources and the need to obtain a stable system with which to collect 
data. These include some aspects of the interception points and conditions, discussed 
below, and also the following. As regards the user interface, it would have been better 
to have had some form of pop-up window, so that when the front-end intercepted the 
dialogue, it would be very clear to the user that this was indeed an interruption, and 
the real dialogue would eventually be resumed. Secondly, the playback system would 
be improved with some kind of speed control and rewind facilities. 

4.2 Interception and CL-CAT 

As discussed above, the implementation of the interception front-end requires an 
analysis of 

• appropriate interception points, and 

• the 'history of search' logging and associated pattern matching. 

4.2.1 Search structure in CL-CAT 

The menu system in CL-CAT guides the user's access to and view of the catalogue. As 
with many online catalogues the menu protects the user from the underlying system 
command language. For the user the catalogue exits as the CL-CAT menu structure 
and the terminal upon which information is displayed. 

C L - C A T s y s t e m v i ew of interact ion 

From the viewpoint of the CL-CAT system the menu and terminal is merely a stream 
of characters fired along a serial or network line. The system deals with transactions 
across many terminals asynchronously. For a given number of terminals in use the 
system is designed to give a response time sufficient to maintain the user's illusion of 
an interactive search. There is no high level or logical model of the user interface built 
into the CL-CAT system. 

The stream of characters sent out by CL-CAT consists of instructions to format 
text on a particular type of terminal and the text itself. The text is either menu options 
and instructions or information from the catalogue resulting from a search. Input from 
the user at a terminal is restricted to command sequences of characters—associated 
with function keys—and to strings or 'words' to search for in the catalogue. 

User ' s v i ew of interact ion 

On sitting down at a terminal a user is faced with an opening menu of six search 
options—numbered one to six—or else with a terminal left by the last user in the 
middle of a search. The initial menu options are 1. Subject, 2. Author, 3. Title, 
4. Author-Title, 5. Keyword, 6. Shelf-mark. These may represent different ways or 

26 



modes of searching to the user. A terminal includes a qwerty keyboard for text input 
and up to 12 labelled function keys to issue commands to the system. Some of the 
function keys allow the user to navigate between menu screens (e.g. refine search), 
some to qualify the kind of searching with a particular mode (e.g browse an alphabetic 
list or look for words anywhere in a part of a record) and others allow the user to page 
back and forth through the lists displayed from the catalogue. One function key, the 
restart key, always takes the users back to the opening menu. 

Menu selection takes the form of selecting a number perhaps being prompted to 
type in text—e.g. authors last name and first initial—and also being prompted to press 
a particular terminal key after entering text. For instance, selecting 4 gives author-title 
prompts and a message to press return after having typed in first the author and then 
a few title words. Other options require the user to select a number, enter some text 
and then select a particular terminal key to press according to whether they wish to 
'Browse' or 'Search'. The distinction is not obvious but implies browsing an alphabetic 
list—e.g. of titles—or searching for keywords anywhere in a particular set of fields and 
receiving a count of the number of hits (records whose fields contain strings that match 
the words typed in). 

The course of a user's session at a catalogue can be charted as a progression through 
a series of screens in selecting menu options and entering text and search commands. 
An example of a real session is charted here: 

s t a r t menu 

AU / HB / BR / CA / HB / BR / CA 
r e s t a r t 

AU / HB / BR / HB 
r e s t a r t 

SU / HB / BR 

end of s e s s i o n 

The screens recorded are author (AU), heading browse (HB), brief record (BR), copy 
availability (CA). At the end of chain 1 the user pressed the restart key (go to the 
opening menu command) and started another author search. Chain 2 ended at heading 
browse and the user restarted, and in chain 3 selected subject from the start menu. 
Notice the user left the catalogue without restarting so that the new user would find 
the catalogue at the brief record screen. 

It is possible to produce an exaustive map of all screens and paths to screens for 
the CL-CAT system. This exercise, of itself, is not very informative as to what users 
actually do when faced with many options. Some options—e.g. shelfmark—were used 
very infrequently. During the course of the project the library service discontinued 
the subject option in the opening menu of the catalogue and 'keyword'—option 5— 
was re-describe as 'keyword or subject'. In fact users could browse—look through 
an alphabetic listing—on any option, including 'keyword' by selecting the option and 
pressing the browse function key. 

cha in 1 

cha in 2 

cha in 3 

27 



The menu structure of CL-CAT is best regarded as a means to hide the underlying 
search command language—qualifying searches by field labels and using boolean 
operators to specify a target set of sought items—and also as being based on grouping 
the elements within the structure of a catalogue entry (e.g title proper, parallel title, 
other title information as derived from MARC and AACR2 et al.). None of this relates, 
in a direct or obvious way, to how users think of what they are doing in searching. 

For instance a user may select 2—Title option—then type in a few words and press 
the search function key to do a keyword search on the title fields. This is quite a good 
way to find some items with the keywords in the title and may be regarded as searching 
on a topic by the user. The system copes with this quite well since it reduces potential 
hits by limiting fields looked at and gives the user a greater chance of getting a small 
set to browse through. This may be a successful strategy in terms of outcome for the 
user, i.e. a good experience. Is this use of the title menu option an intentional feature 
of the system design or is it a feature discovered by users through finding out what get 
results? 

It is interesting to note that many failures to find specific items both on title and 
t i t le /author searches occur when users at tempt to type in a whole title exactly as 
given in a reference—not just keywords from the title. The system carries out implicit 
'ANDing' on all words typed in. This means a search for an item by typing in the title 
is very sensitive to any typing error. The length of title increases the chance of typing 
errors. As a result users experience fruitless searching of booklists because of typing 
errors. Depending on the user's competence in typing and checking miskeyings, the 
obvious strategy of citing a whole title as a way of finding a particular item may not 
in practice be found to get results, i.e. a bad experience. 

The map of CL-CAT screens and the paths between screens does not map the users 
view of negotiating a search. 

4.2.2 Conditions for questions at Interception points 

Appendix A sets out the points of interception, and kinds of conditions giving rise to 
interceptions, which were discussed as being potentially useful within the project. 

In fact only a subset of these were implemented in Olive. This was both due to 
project software engineering limits and the constraints of producing a stable system 
with which to gather data. In the event extensive debugging time was required to 
generate a stable, useful system. 

Part ly as result of software engineering constraints the interception point was 
limited to the user pressing the restart key. The conditions giving rise to questions 
was limited to the sequence of screens visited between restarts—to a single chain1. 
Olive covered conditions of: 

• occurrence of a particular screen 

• occurrence of a fixed sequence of screens 

• occurrence of two screens with any other screens in between 

^ e e Appendix A for explanation of a 'chain' 

28 



• the ending of a chain of screens on a particular screen. 

Out of all the possible conditions that may be used to trigger a given question 
only a very few were required by any given experiment. But actually deciding which 
conditions and questions were suited to the purpose of a given experiment was not an 
obvious matter and required tried and error with real users. This process is complicated 
by the fact that the user's answer to a question—say a multiple choice question— 
formed a condition for the decision as to which question to ask next. Everything 
required testing in the actual library situation with real users before each experiment 
could be run. It must be borne in mind that in a real library setting the catalogue 
system is not always operational and users come and go with the flow of day (e.g. 
heavy lunch time use) and period of the year (e.g. start of the term or just before 
exams). 

4.2.3 History and pattern-matching 

The mechanism for specifying which conditions would give rise to a given set 
of questions within Olive is a very general one and highly reconfigurable by the 
experimenter without reference to programming. This is absolutely necessary where 
a series of experiments are being carried out in an actual library setting. Corrections 
and setup need to be done on the spot if unforeseen problems are to be coped with. 

The questions to be asked and the conditions prompting questions are set out in 
text files, the question file and the conditions file. These are created and modified by 
the experimenter using a text editor. 
The format for a conditions file is relatively simple. Each line of the conditions file 
consists of: 

• condition of screens visited 

• condition of answer to previous question 

• identification of question to ask if conditions are true 

• code for the question type. 

For example: 

C X 7 A 
C 7D 1 Y 
C 1Y 2 Y 
C IN 3 A 
C IN 6 T 
C 2N 8 A 
C 2Y 3 A 
C 2Y 4 A 
C 4B 5 A 
C 8B 5 A 

29 



This condition file deals with the condition of having visited copy availability screen 
and prompts for questions from the question file give below. Line one says Copy 
availability (code C) then independent of answers to other questions (code X) ask 
question seven which is a multiple choice question (code A). The next line also has 
the same condition (code C) but question one (a yes/no question) is only asked if the 
answer to question 7 is D. Each line is processed in turn, thus controlling the order in 
which questions are asked. 

The first two lines of the question file shown in figure 1, make up the text header 
which appears on top of the screen each time a user is asked a question. In the 
case of the example above the header reads 'Olive questionnaire' then on the next 
line 'Catalogue evaluation project'. The text header includes format instructions— 
Esc[l:36m—to highlight the header on top of the display screen. Each question occupies 
the whole screen so obscuring the catalogue screen which is effectively underneath the 
question the user is being asked. The user on entering a valid answer to the question 
either gets the next question, if the conditions file gives rise to one, or else is returned 
to the catalogue to observe it restarting at the opening menu as the user had requested 
before being interrupted by Olive. 
The questions themselves are of three kinds according to the type of answer which is 
valid: 

• Boolean or yes/no questions (code A conditions file) 

• Multiple choice, i.e. A or B or C or D (code D in conditions file) 

• Text questions, requiring free text input (code T) 

4.3 Olive system description 

The Olive system consists of two stand alone programs. The major program —named 
major.exe—was written under contract for the project by staff of the Systems Science 
Department of City University. The second program called quest.exe was created by 
the research assistant to the project for the purpose of administering pre- and post-
search online questionnaires. 

4.3.1 How to use major 

On being called major displays the following menu: 

Welcome To t h e OPAC System 

A. Start a Session 
B. Print a Session 
C. Replay a Session 

D. Initialize Start of Day. 

Enter Selection, (Enter to Quit System): 

30 



These options are designed to be used by the experimenter. On pressing the key 'A' the 
catalogue opening menu appears on the display and the PC functions exactly like any 
catalogue terminal of the VT100 type. When the system is running library patrons do 
not distinguish the the PC from dumb terminals if the main unit of the PC is mounted 
of the terminal desk (e.g. on the floor). All the user sees is the visual display unit and 
the keyboard. If the experimenter wishes to distinguish use by each individual patron 
then a 'call major menu' key is pressed once the patron has left the catalogue. This 
saves the session in a log file and next session can be set up by selecting menu option 
A. Each session is stored in a separate log file and sessions greater than one hour have 
been successfully logged. The terminal can be left to run unattended where there is 
no need to log individual patrons ' use of the catalogue. 

The sessions were logged anonymously with the following text displayed as a notice 
next to the terminal. 

Olive 

When you use this terminal Olive—Online Interactive 
validation and evaluation—may appear on the screen to ask 
you a few questions. Olive will keep an anonymous record of 
your search to help us with the experiment to evaluate the 
library catalogue. 

4.3.2 The structure of the major program 

A front-end system which takes the place of a dumb terminal has to extract information 
about the dialog between user and system from the low level character stream sent to 
the terminal. Although for the user the system is screen based the actual screens 
are only identifed by format character sequences to clear the screen and home the 
cursor. There is no logical system screen object. With the City University CL-CAT 
system each screen could be identified by extracting the text from the character stream 
which represented the top line of each screen following a clear screen and home cursor 
instruction. This works because each screen has its own identifying heading on the top 
line of the screen. 

Major employs the communication library supplied by Zortech Ltd. This enables 
an IBM AT PC to act as a terminal and receive the stream of characters directed to 
the serial port by the CL-CAT system. 
Major consist of the following functional parts each written in the C programming 
language. 

• major.c—main module giving menu of options to call program actions. Covers 
starting and logging a session, printing a session to printer, replaying a 
session. All keyboard processing including recognition of CL-CAT function keys. 
Functions needed to open and set up serial port called from the communications 
library. 

31 



• vtemu.c—module to parse format effect characters from input stream effectively 
providing for the display of text characters on the terminal screen in the intended 
place. 

• repl.c—module to parse characters from the log file to simulate (replay) the 
display of a particular logged session on the terminal in real time. 

• prtemu.c—module (with shtlog.c) to format a text file for dispatch to a printer. 
Also produces a summary of each session at the head of each print out. 

• old.c—module to intercept the user and prompt with question from the questions 
file and get valid answer to store. The number of question asked and answer given 
is logged and reproduced in the printed version of the session (prtemu.c above). 
This module matches the pattern found in the conditions files against a record 
of the screens passed through in an actual session, using a mechanism similar to 
regular expression matching found in many UNIX2 utilities. 

4.3.3 Problems in writing and testing major 

There were many problems in ensuring the link to the CL-CAT system. The bought in 
communications library included source code but testing for possible causes of problems 
was not helped by the lack of adequate documentation for the source. In the course of 
the project an entirely new library computer was installed to run the CL-CAT system. 
The major program after teething problems provided a reliable link to the new system. 
The nature of the conditional interception—asking users questions if conditions were 
matched—required extensive testing. Faults were found which occurred sporadically. 
These had to be corrected before use in actual experiments, and caused delay in the 
data collection stages. The best circumstance for testing was observation of sessions 
with actual library patrons to see if the correct interception and questions were asked. 

Some elements of the program design were inadequate. For instance printing logs 
of schedules (the main analysis was from the printed log) was very time consuming 
since major had to be instructed to print each log one at a time. A stand alone print 
program which processed a whole day's sessions would have been far more effective. 

4.3.4 How to use quest 

Quest was developed as a stand alone program to present online questionnaires to users 
rather than make major any more complex. It is useful for questionnaires administered 
before the start or after the end of a search. 

On being called, quest displays questions from a text file (quest.txt), one a at time, 
in a window on the top halve of the screen. A message is displayed in a separate 
window prompting the user for an answer. Three types of question can be put to user: 

• T free text question 

2UNIX is a trademark of AT&T Bell Laboratories 

32 



• Y yes or no questions 

• A multiple choice question (A or B or C or D). 

In the case of text questions the user is prompted with an editing window into 
which they may type and edit the text describing their answer. Quest goes through 
the questions in order indicated in quest.txt and exits after the last questions. A 
maximum of 200 questions can be asked. Each question (including prompt and help) 
is limited to under 1000 characters. In quest.txt every question must begin thus: 

s t a r t mark quest ion number quest ion type next ques t ions by ans 

for example: 

> 1 T3 (start question 1 a text question and then go to question 3) 
This is the text of question one. 

or 

> 1 A2B3C3D4 (start question 1, multiple choice, go to 2 if A . . . ) 
Text of question. 

A question is ended by a blank line (no spaces on line). 
The user responses are written to the end of a text file (answer.txt) preceded by 

the question number. The first question (question one) is preceded by the time and 
day—taken from the computer clock—that the answer session started. 

4.4 Limitations of the Olive system 

As it stands the Olive system only intercepts when the user presses a restart 
key. This may minimize interference with the user's search. However for certain 
kinds of question—for example asking the users about their interpretation of what 
a high number of hits means—interruption while a particular catalogue screen is 
being displayed may be more effective. This would require the Olive system to 
extract information from the screen —e.g. number of hits—and decide to interrupt 
immediately. This level of program complexity was not at tempted. 

Olive is currently designed specifically for the CL-CAT system at City University. 
Most aspects of the program could be altered to work with other systems. The 
interception code is the most CL-CAT specific part of major and would require changes 
for each kind of OPAC. Development of the interception function to cope with other 
kinds of online searching (including command language based systems) would be the 
most challenging aspect of generalising the approach of the Olive system. 

33 



Figure 1. Example of Olive question file 

Esc[l;36mOLIVE QUESTIONNAIRE 

Catalogue evaluation projectEsc[Om 

1 

Have you found the book you wanted? 

Please answer Y or N 

2 

Is it available for loan? 

Please answer Y or H 

3 

What did you look for in the catalogue 

[a] A book (or books) some of whose details you know 

[b] Something on a topic 

[c] Combination of A and B 

[d] Give up 
Please select A or B or C 

4 

What will you do? — now that the book is available for loan 

[a] Look for just that book on the shelves 

[b] Look for that book and something on the shelves 
Please select one option [a]-[b]. 

5 

Will you look for: 
[a] another book with similar details 

[b] something else on the same topic 

[c] something else on a different topic 

Please select one option [a]-[c]. 

6 
Please could you summarise what you wanted? 

Type in a few phrases or a sentence — For example 

1) The book "Wealth of Nations by Adam Smith" 

2) Information about industrial relations in the car industry 

[To END press enter twice] 

7 

» RESTART — go on with your searching 

Press C: to Continue 

>> END — finished with the catalogue 
Press D: when Done 

8 
What will you do? — now that the book is not available for loan 

A) Try the catalogue again another time 

B) Go to the shelves 
C) Reserve the book 

D) Give up 

Select: A or B or C or D 

34 




