
87

6 Search functions and
search trees

This chapter describes the search functions available in Okapi from the
system's point of view, and how its use of them is controlled by search
trees. The topics discussed include string comparison, the possible results
of an index search, conditional searching, Booleans, "hyper-Booleans",
string searching, and search trees. These functions are used automati­
cally, rather than at the request of the user, although the user is kept
informed (see Section 7.5.2).

6.1 String comparison

When the system compares two strings it makes use of a special string
comparison routine. This routine is essential. A simple character-by-
character comparison would find neither of the following pairs of strings
equal:

BBC B.B.C.
SMITH A.B. Smith, A B

Okapi's string comparison routine ignores case (i.e. it treats upper and
lower case letters as if they were identical) and it ignores most non-
alphanumeric characters such as punctuation. The characters are ordered
in the following sequence:

space and hyphen (equal)
0-9
A-Z and a-z (equivalent).

The routine will also accept question marks in the sought term to indicate
a match with any character in the index term. For example: SM?TH
would be matched by SMITH or SMYTH. This feature has not been
used yet, for user interaction reasons (see Section 7.4.3).

The routine returns one of four possible results. For example, the sought
term "WOOD" is:

(i) higher than the index term "WOMB"
(ii) equal to "WOOD"
(iii) left-substring of "WOODS"
(iv) lower than "WOOL" (with mismatch before the end of the

sought term)

88 6. Search functions and search trees

The comparison routine also returns the lengths of the unmatched parts
of the strings, which can be used to find the "nearest" term (higher or
lower) where there is no exact match.

6.2 Possible results of an index search

When the index is searched for the presence of a given term there are
three possible results:

— exact match
— partial match
— non-match

In the case of an exact match or a partial match the result of the index
search will include the number of postings.

A partial match means that the sought term has no exact match in
the index but there is at least one index term of which it is a left-
substring.

Examples: "catalog" partially matches "catalogue"
"Smith A" partially matches "Smith A B "

Note that the string comparison result (i) (higher) listed in Section
6.1 does not correspond to any of the three possible results of searching
the index. If the string comparison result is (i) (higher) the search
continues forwards through the index until the result is (ii), (iii) or
(iv).

It could be argued that a more useful type of result than "no match"
could be returned when there is no exact or partial match. As soon as the
current index term becomes greater than the sought term the system
could go back one index term and decide which index term is "nearest" to
the sought term.

This nearest term feature might be useful, for example, in searching for
"WOODLOUSE" in an index containing the following terms:

6. Search functions and search trees 89

WOOD
WOODLICE
WOODS
WOODWORKING
WOODWORM

there is no exact match and no partial match but "WOODLICE"
matches on five characters whereas "WOODS" matches on only four
characters. "WOODLICE" could therefore be returned as the nearest
match.

In addition to regarding the longer matching length as better, a
refinement might be to regard a match which terminated at a word
boundary as more significant. Further rules would have to deal with cases
where the end of the match was not the end of a word in both the sought
and the index term, or where more than one index term matched the
sought term up to a word boundary.

Imprecise string matching is discussed further in Section 9.4.1.

6.3 Conditional searching

An index search can be made conditional and be restricted to one or more
types of data using "beasts". The concept of beasts was introduced in
5.2.3. Using the beast indicators in the index, searches can be restricted to
a specified data type or combination of data types. There are several
situations in which this is necessary or useful.

For example if the user is looking for items containing the personal name
"Wood" the system will ignore postings for beasts such as "title word" or
"subject word", and only select postings for "author word", "author
phrase" or "general person". If it knows that "Wood" is an author
(rather than a person as a subject) then it only selects postings for "author
word" or "author phrase" beasts.

6.4 Booleans

Of the three basic Boolean operations AND, OR and NOT, only the more
useful pair, AND and OR, are currently implemented in Okapi. They are

90 6. Search functions and search trees

not explicitly available to the user but are called by the system when
appropriate.

AND

For example, if the user requests a "known item" search for a book
entitled "Lovers and Sons", and there is no exact match of this title
phrase, the system will automatically carry out a Boolean operation
searching for postings of "lovers" AND "sons", which should
successfully find the title "Sons and lovers".

OR

One purpose of the OR function would be to achieve truncation, by OR-
ing all the partial matches of a sought term. For example, "comput"
partially matches "computable", "computation", "compute", "com­
puter", "computing", OR-ing these terms would be the result of
searching for "comput ".

Similarly, suppose that there is no exact match for the author "SMITH
A". In this case it might be helpful if the system were to OR all partially
matching authors: "SMITH A B", "SMITH A D " , "SMITH A J",
"SMITH A J D " , etc.

6.5 Hyper-Booleans

In some cases a simple Boolean operation is not appropriate or results in
no postings. At this point the system can automatically perform what can
be called a "hyper-Boolean", i.e. an operation that combines a number of
simple ORs and/or ANDs.

Two such hyper-Booleans have currently been implemented. One is the
"hyper-OR", which is a quorum search [1] incorporating term
weighting and a cut-off rule. The other is the "H-AND" operation: a
combination of a simple AND with a hyper-OR.

Hyper-OR

A number of different algorithms have been suggested for a quorum or
weighted search. In most cases they are intended to form part of a front
end to an existing IR system. One method is to save the set of postings for
each term, and then to perform successive ANDs, of all possible

6. Search functions and search trees 91

combinations of terms. The ANDs are performed on decreasing numbers
of terms, and the results are presumed to be of decreasing relevance. This
can be very costly and time-consuming for large sets if there are more
than a few terms. Robertson and Bovey [2] have implemented quite an
effective version of this approach in a recent project.

An OPAC is a somewhat different environment. Quick response is a high
priority, but there is an advantage in being able to design the system to
incorporate the algorithm, rather than having to graft it on.

The project team decided to implement a "hyper-OR", based on a very
simple and elegant algorithm given by Harper in [3, Chapter 7].

The hyper-OR is called automatically by Okapi in certain cases where the
user's original request cannot be matched exactly, and there are more
than two words in the user input. It is designed to retrieve relevant,
though not exactly matching, material without further intervention from
the user.

In the hyper-OR the postings for several terms are merged, i.e. they are
OR-ed, and a weight is calculated for each posting. The value of this
weight is the sum of the weights assigned to the terms to which the
posting relates (see below). Records can then be displayed to the user in
weight order, which it is hoped will have some correspondence with their
degree of relevance to the user's request.

For example, the user requests a subject search for:

4'the use of microcomputers to teach the mentally handicapped"

this phrase contains five keywords or terms, for which there are the
following postings:

mentally (58) 107, 135,
microcomputers (87) 104, 121, 135,138,
teach (114) 107, 122, 145, 196,
handicapped (132) 104,107, 135, 196,
use (863) 102,104, 121,122, 150,

In the absence of relevance feedback, a reasonable weighting rule is one
which assigns a weight to a term based on the inverse of the number of
postings for that term [4]. The reasoning is that rare terms are better for

92 6. Search functions and search trees

discriminating between relevant and non-relevant records than are
common terms. In the example, the terms "mentally" and "microcom­
puters" would be assigned relatively high weights compared with "use"
which occurs much more frequently.

The postings shown above would be displayed to the user in the following
order:

135 (mentally, microcomputers, handicapped)
107 (mentally, teach, handicapped,)
104 (microcomputers, handicapped, use)
196 (teach, handicapped,)
etc

Using a weighting system can mean that postings for n rare terms are
displayed before postings for n +1 common terms. In a strict quorum
search, postings for n + 1 terms are always regarded as more relevant than
postings for only n terms. Note that a hyper-OR becomes a quorum
search if all terms are assigned equal weights.

The hyper-OR can put quite a load on the system if some of the terms
have many postings. This load can be reduced by implementing a cut-off
rule. The terms are merged in weight order, i.e. rarest first. The cut-off
rule prevents new postings being saved if they cannot score the minimum
weight already achieved by the best n postings (where n is some
predetermined minimum number of records to be retrieved). This helps
to reduce the size of the merged set, since many postings have only to be
read to see if they are new. If they are not new, they add to the weight of
existing postings in the merged set.

H-AND

The H-AND is a combination of the hyper-OR (on up to eight terms)
with a single AND. It can therefore be regarded as a hyper-OR with one
compulsory term.

This function has not been used in Okapi yet, for lack of time. It could be
used in a known item search, making the author the compulsory term and
performing a hyper-OR on the title words. It could also be used in a

6. Search functions and search trees 93

subject search where one topic is known to be regarded as essential by the
user.

6.6 Computational aspects

Online reference retrieval systems invariably make use of temporary files.
A temporary file is storage space, usually on disc, which is used as
working space at run-time but does not contain any permanent
information. Temporary files are typically used for saving sets of postings
and for saving intermediate results of searches.

The implementation of Boolean and hyper-Boolean functions are the
only parts of Okapi that currently require the use of temporary files.

Of the three simple Booleans AND, OR and NOT, it is OR that is most
likely to create a set of postings too large to be held in core. The number of
postings for "X OR Y" can never be less than the number of postings for
" X " or "Y" , whichever has more. Suppose there are 100 postings for
" X " and 60 postings for "Y" , then the number of postings for "X OR
Y" cannot be less than 100. Conversely the number of postings for "X
AND Y" and "X NOT Y" cannot exceeed 60 and 100 respectively. Each
new term OR-ed tends to increase the size of a set, whereas each
successive term AND-ed or NOT-ed will tend to reduce it. From a purely
computational point of view AND and NOT are very similar and will
usually be implemented with shared code.

The hyper-OR described in Section 6.5 has been implemented by
performing a series of ORs, or two-way merges, which has the advantage
of enabling the cut-off rule to be implemented, the result being a list of
postings in address order. An alternative approach would be to save the
current state of the system and to make use of the extra space to perform a
multi-way merge. This could be adopted when large numbers of postings
were involved, in order to speed up the process. However, it is in just such
cases that a cut-off rule is useful.

Whichever method is used to perform the hyper-OR the resulting
postings have to be sorted by weight either before, or while, being
displayed to the user.

Okapi currently begins to display the results from a hyper-OR as soon as
the merge is complete. It makes a number of passes through the merged
list of postings (which is usually stored as a temporary file). On each pass
it displays postings with a given weight (starting with the highest), and

94 6. Search functions and search trees

looks for the next highest weight which will be used during the
subsequent pass. Postings with the same weight will be randomly
distributed through the temporary file, which results in random delays
between the display of postings. The displayed postings, now in rank
order, are also written to a new temporary file so that any user request to
backtrack through the set gets a quick response.

The alternative is to sort the results into rank order before displaying any
postings to the user. The user will then experience only one (longer)
delay.

6.7 String searching

Explicit string searching (sequential scanning of source text) is not
currently implemented. There are occasions when it would be of
considerable use, for example in limiting by location, or in resolving
certain other queries where the index does not contain enough
information.

A string searching routine is used, however, during the full record display
in order to highlight the first occurrence of the sought term in the actual
record text (see Section 7.5.3).

6.8 Search trees

At each stage in a search Okapi makes use of a "search tree" in order to
decide what to do next. The action taken by the system depends on what
the user has requested, and the result of each index search, including the
number of postings.

The search tree is a set of paths with branches or choices, which enables
the system to carry out the most sensible search function at each stage of a
search. Part of a search tree is shown in Figure 6.1.

The development of search trees is one of the most distinctive features in
the design of Okapi. After the original idea had been formulated the
search trees evolved through a process of discussion and trial and error.
There is an approach to formalisation of the principles involved in a
recent paper by Mitev and Walker [5].

An early version of Okapi's beast schedule made a clear distinction
between personal and corporate names and this was reflected in early

6. Search functions and search trees 95

phrase
match

part ial match

how
many words

in phrase
9 ^

f>0

fill s topwords

offer word search
or index display

" A N D "

hyper-OR

0 or 1 of n

1 of 1

offer to display brief/full records
depending on no. of h i t s

- • display t i t le index

- • display t i t le index

• offer to display index

- • offer to display brief/full records

- • offer to display brief/full records

-*• offer to display index

->• display full records in ranked order

Figure 6.1. Title only search tree

96 6. Search functions and search trees

versions of the search decision trees. However, experience showed that
the data did not have correspondingly clear-cut categories. For example,
the corporate name "OPEN UNIVERSITY" had sometimes been
allocated a personal MARC name tag (100, 600 or 700), and such entries
were therefore omitted from results of searches restricted to corporate
names. This experience led to the adoption of the set of author and name
beasts given in Section 5.2.3, which does not distinguish personal and
corporate names. Instead there is a name phrase beast (a whole personal
or corporate name) and a name word beast (a surname or a word from a
corporate name). This practice of combining personal and corporate
name data types also simplifies the input of authors (see Chapter 7); it has
been followed in several other OPACs.

6.9 Functions not implemented and reasons why

A number of search functions commonly found in reference retrieval
systems have not been implemented, namely:

NOT
explicit saving of retrieved sets for re-use
explicit truncation facility
explicit OR and AND
saving of search statements

These functions are less useful in an OP AC and are not really appropriate
for the majority of users. The whole approach adopted for Okapi, which is
described in detail in Chapter 7, is that the user should be able to express
his or her request without having to bother about sets, truncation
notation, the explicit use of Booleans, etc. In other words the system is to
appear simple. This does not at all mean that the system actually is simple.
In some ways the opposite is true. It is simpler to write a system which is
commanded to perform each step in a logical sequence, than to write a
system that decides for itself what is the best or most helpful course of
action at each stage. A natural development of this approach is to engage
the user in the process. For example it should be possible for the system to
decide for itself that a term should be NOT-ed, as a result of obtaining
feedback, or having a simple ''conversation" with the user. This is
discussed further in Section 9.4.4.

The team had hoped to build another level of interaction to cater for the
more experienced or knowledgeable user. This would have probably
included some of the omitted functions, perhaps using a command

6. Search functions and search trees 07

language (see Section 7.4.1).

References

1 Cleverdon C. Optimising convenient online access to bibliographic
databases. In: British Library Research and Development Department.
Seminar on Basic Information Research. Cranfield Institute of
Technology, 21-23 July 1983. Report by Mary Rowbottom. pi3-15.

2 Robertson S E and Bo vey J D. A front-end for IR experiments. Final
report to the British Library Research and Development Department
on Project Number SI/G/569. December 1983.

3 Harper D J. Relevance feedback in document retrieval. PhD thesis.
University of Cambridge, 1980.

4 Croft W B and Harper D J. Using probabilistic models of document
retrieval without relevance information. Journal of Documentation 35
(4), 1979, p285-295.

5 Mitev N N and Walker S. Information retrieval aids in an online
public access catalogue: automatic intelligent search sequencing. In:
Informatics 8: Advances in intelligent retrieval. Proceedings of an
Aslib/BCS conference. Oxford, 16-17 April 1985. To be published
1985.

