
52

5 Access to catalogue
files: indexing

5.1 Introduction and guide to the chapter

In the sense in which it is used here, the term ' "index" refers to a file or set
of files which is used to provide a means of access to the bibliographic
records in the catalogue file.

It is not always misleading to think of an index in this sense as
being rather like a back-of-the-book index. In many reference retrieval
systems an index does indeed largely consist of an ordered list of words
or phrases each associated with an ordered list of record numbers.
However, the analogy should not be relied on: some IR systems (the
Cambridge University OP AC is an example) do not have an ordered
index, but it is not true to say that such a system does not have an
index.

The chapter falls fairly naturally into two sections: readers who are
interested in indexes from the users' viewpoint — that is, in the contents
and use of indexes — should read Sections 5.2 to 5.5; the remainder of the
chapter gives a brief introduction to some of the computational aspects of
index storage and searching, as much as is relevant to an understanding of
the design of Okapi.

Most of the sections in this chapter cover their topic from a general
point of view, followed by an account of how it was applied in the
design of Okapi. They cover the content of indexes (by source and
by type) (Section 5.2), the display of indexes and the closely connected
question of filing order (Section 5.3), then techniques for deriving and
selecting index keys from catalogue files (Sections 5.4 and 5.5). These
are followed by the sections on the more computational aspects: Section
5.6 gives a general discussion of storage of and retrieval from indexes
and Section 5.7 gives a fairly detailed description of the methods used
in Okapi.

5. Access to catalogue files: indexing 53

5.2 OP AC index contents

However indexes are stored and structured, they contain the keys by
which bibliographic records are retrieved. In Section 2.4 OPACs were
categorised by their mode of indexing. OPACs derived from circulation
systems are indexed on field contents — that is, index keys consist of the
contents of a MARC field or subfield, possibly truncated on the right.
Sometimes (for example in Geac circulation systems) these keys contain a
portion from a second field, and are of fixed length. Indexes of the second
category of OPACs — those based on or similar to online reference
retrieval systems — consist in the main of individual words from the
bibliographic records.

The first type of indexing is referred to as phrase or pre-coordinate
indexing, and the second type as keyword or post-coordinate indexing (cf.
Section 2.4).

There is also a third type of index key. Cataloguing systems used
as OPACs (e.g. OCLC, SWALCAP) often also use "derived" or
"acronym" keys: a simple example would be the first four characters of
the personal author main entry (MARC 100 $a) followed by the first four
characters of the title (245 $a after removing the number of non-filing
characters given by the second indicator, typically a definite or indefinite
article). A key consisting of surname + initials could be considered as a
derived key (since it is constructed from separate MARC subfields),
although one which would appear natural to users. Some IR systems
include word stems such as medic and philosoph. These also are
derived keys.

5.2.1 Access points — the sources of index keys

The phrase indexed type of OPAC generally allows access by personal
names and corporate names from author and sometimes name added
entry fields, and by title, often including uniform, series and part titles.
Some OPACs index shelf mark or class number, and most of the
American systems index LCSH.

The keyword systems use words from all or most of these fields (a class
number or shelf mark counting as a word). There is an obvious problem
about what to do with personal names. Should a name be indexed as
separate words — surname and forenames, by surname only or by
surname with initials? There is a discussion of this in Section 5.4.1.

54 5. Access to catalogue files: indexing

In the systems which use acronym keys, these are commonly derived
from author and title fields, and sometimes from other sources such as
subject headings.

All types of OPAC may include in their indexes such keys as control
numbers, OCLC numbers, copy or accession numbers, which are rarely
of use to the public but are used by staff.

5.2.2 Data types

In catalogue records there are at least five types of indexable data:

personal names recognisable as such (there are of course also
personal names in title fields which are not identifiable by machine
— see Section 4.3.4)

corporate names recognisable as such

natural text: title-like data

controlled subject headings assigned by a cataloguer

codes and numbers — shelfmarks, class numbers, local numbers,
control numbers, dates of publication

The data type influences the way keys are extracted or constructed, the
way they are stored, and whether and how they should be displayed.

Each of these data types is discussed in more detail in Section 5.4.

5.2.3 Okapi index contents

The Okapi index contains items extracted from all the MARC tags listed
in Appendix 2 except control numbers, accession numbers and other local
data, and publication and edition data.

These are:

personal authors and added names

words and phrases from corporate and conference authors and added
entries

5. Access to catalogue files: indexing ^

words and phrases from all title-like fields

words and phrases from subject headings and verbal feature
headings

personal names from name subject headings

date of publication

Dewey number(s)

Keys are truncated when necessary, currently phrases at 40 characters
and other keys at 31 characters.

There are also three types of derived key:

surnames from all identifiable personal name keys

a 4/4 title/author key for the main title and every (corporate or
personal) author and added name

Dewey numbers truncated at segmentation points given by MARC
082 $b

At early stages in the indexing process much information about the
source and nature of keys is stored, but in the final index only the
following ten types of key are distinguishable:

AU author and added entry personal names (surname + initials) and
corporate author and added entry phrases

AW author and added entry surnames and corporate author and added
entry words

TPH title, series title, part title phrases

TW title, series title, part title words

CL Dewey numbers

DT dates of publication

56 5. Access to catalogue files: indexing

T/A 4/4 title/author keys from the first TPH and all AU

GS subject heading phrases, words, surnames and surnames +
initials from subject headings, title words, corporate name words
(overlaps with AW and TW)

GP all personal names and surnames (overlaps with AU, AW, GS)

GCL Dewey numbers and truncated Dewey numbers (contains CL)

The key types or roles are referred to as beasts in Okapi jargon. In the
Okapi prototype, the specific item search uses the first four of these beasts
and the T/A keys, and the subject search uses GS (Chapter 7).

5.3 Filing order and the display of indexes

5.3.1 Browsing and index order

In traditional IR systems — most of the older computerised and manual
IR systems — indexes are for the user. Some OPACs allow users to see
indexes, others do not.

Whether indexes are displayed or not, the ordering of their entries may be
important, because this may determine the sequence of records in a
browsing display. For example, index entries

economics of adv/chiplin
economics of adv/reekie w
economics of adv/schmalen

can be used to generate the display

Economics of advertising. Chiplin B
The economics of advertising. Reekie W D
The economics of advertising. Schmalensee R

by selecting records from the source file in the order in which their keys
are stored in the index.

In the case of phrase indexes, display of the indexes themselves can be
useful, but whenever possible these should rather be used to give rise to
displays containing more information, such as the brief title records in

5. Access to catalogue files: indexing 57

the example above. In response to an author search for Einstein one
OPAC gives a display similar to the following:

EINSTEIN

1. Albert (3 books)
2. Alfred (2 books)

Enter line number :

This is clear and useful, but since brief records for all the books by both
the Einsteins could be shown on one screen, would it not be even better to
offer the brief record display? (In fact the OPAC by which this example
was suggested asks for a "choice" even when there is only one author
satisfying the request.)

A browsing display of subject headings, with the number of items posted to
each, is more often useful than an author or title index display: the
display of alphabetically adjacent headings may help the user to find
suitable controlled terms. Subject headings may be stored in a separate
authority file rather than as an index derived directly from the
bibliographic file (Section 5.5.2). Browsing is discussed more fully in
Section 7.3.1 and also mentioned in Section 9.4.5.

Keyword indexes, in contrast to phrase indexes, should not be displayed —
they are used invisibly by the system, and would be unhelpful to most
users. An exception might be made for words from subject headings, but
automatically produced keyword indexes are generally quite "dirty" and
contain terms such as "adv", "dh" , "econmics", "gt" , which confuse
users and do not encourage faith in the system. Some keyword systems
even use post-coordination for personal names (Henry James from
Henry AND James), and few would find a use for a list of assorted
forenames and surnames.

5.3.2 The readability of index displays

If indexes are to be displayed they must be made as readable as possible.
Personal names should look like personal names, with initial capitalisa­
tion retained. Numbers should, if possible, retain their punctuation. It is
helpful to retain also capitalisation and punctuation in acronyms —
"bbc" may be comprehensible but " i t " for " I T " or " I .T . " is not. Note
that acronyms are like phrases or names rather than words (after all, they

58 5. Access to catalogue files: indexing

represent phrases), and they should be included with these for display
purposes.

5.3.3 Character coding and filing order in indexes

Assuming that an index is ordered, there are some rules that almost every
user would expect to be obeyed — that letters and digits should file
separately, that letters file in alphabetical order with upper and lower case
being indistinguishable to the system, and that digits file from 0 to 9.

CHARACTER CODING

Inside the computer characters are represented by codes (bit-patterns)
which have an order imposed by the CPU of the computer. There are also
conventional coding schemes, such as ASCII and EBCDIC, for
translating characters as entered at a keyboard into internal codes. They
all have the following properties: that digits file consecutively from 0 to 9
and that letters file consecutively from a to z and from A to Z. They do
not agree on anything else. In most codings, upper and lower case letters
file in separate sequences, so that, for example, a is less than b but greater
than Z, and there is no agreement about the position in the collation
sequence of blanks, punctuation and other non-alphanumeric characters.
This is not so important as might be expected, because it is simple to alter
the collation sequence to suit one's needs. A more serious problem is that
of handling a character set large enough to cater for the needs of multi­
lingual data. Most computer indexing systems do not attempt to deal with
such tasks as distinguishing the French noun the from the English
definite article the while ensuring that these two words will file
adjacently.

T H E EFFECT OF CHARACTER CODING ON FILING ORDER

Leaving aside digits for the moment, and assuming that upper and lower
case letters will not be distinguished in key comparisons, the designer of a
computer indexing scheme has to decide how to code (1) blanks, (2)
hyphens, (3) punctuation, (4) representations of letters which are not in
the alphabet provided by whatever display device is to be used, and (5)
characters which may occur in bibliographic records but do not fall into
any of these categories. It is the treatment of blanks and punctuation

5. Access to catalogue files: indexing 59

which has the most noticeable effect on the filing order of keys in phrase
indexes.

WORD-BY-WORD OR LETTER-BY-LETTER ORDER?

Word-by-word order is obtained by including blanks in the collation
sequence, giving them a value lower than any character which can form
part of a word. It is the form of ordering which traditional librarians may
feel happier with.

If blanks and all punctuation are ignored, letter-by-letter order is the
result. This causes Thorns, Bertrand to file before Thorn, Sylvia. It is
the scheme used in some forms of directory. A considerable number of
OPACs appear to be using it. The advantage of letter-by-letter order is
that it is easier and more economical to implement, both at the indexing,
and, more importantly, at the searching stage. There is no need for
elaborate parsing procedures to determine that Sa lmon S R = Salmon,
SR = Salmon S.R. It also deals rather satisfactorily with some of the
hyphenation problems, provided hyphens are treated as blanks. Its main
disadvantage (apart from the fact that it may occasionally confuse
people) is that some information is being thrown away in ignoring
blanks: this can cause spurious identification of keys (black bird =
blackbird and Salmons R is indistinguishable from Salmon S R) ,
resulting in occasional false drops.

There seems to have been little work done on the relative merits of letter-
by-letter and word-by-word orderings from the point of view of scanning
speed and accuracy [1].

HYPHENS

Letter-by-letter ordering deals with hyphens by ignoring them. In
keyword systems, they should be dealt with according to their function.
When used for attaching a prefix (e.g. non, hyper) they should be
ignored, since there is often no agreed spelling for such compounds.
When used to coordinate two or more meaningful words — the
assumption here is that a word is meaningful if it is not a member of a list
of prefixes — hyphens should be treated as blanks, and also the whole
compound should enter the index. Using this rule, user-friendly gives
user, friendly and user-friendly in the index.

60 5. Access to catalogue files: indexing

PUNCTUATION

Punctuation can normally be ignored, as can apostrophes and quotation
marks. Note that "—" and " - " , representing dashes, should be treated
as blank.

DIACRITICS AND NON-DISPLAYABLE CHARACTERS

Some characters which are in the MARC exchange tape character set
cannot be represented on many VDUs. Diacritics can be ignored and
characters such as Polish L, Scandinavian O and Thorn filed and
displayed as L, O and TH.

OTHER CHARACTERS

Other characters include ampersand (treat as AND), brackets, parenthe­
ses, dollar and pound signs (ignore). The solidus (/) may most
conveniently be treated as a hyphen.

5.3.4 Filing order and display of the Okapi index

After certain substitutions have been made (such as Mac for Mc and the
replacement or deletion of non-displayable characters) all types of key are
ordered according to the same procedure.

The collation sequence for the character set is:

blank and hyphen (equal)
0 - 9
a - z and A - Z (upper and lower case indistinguishable)

All other characters are ignored (although many of them are retained).
Repeated blanks are reduced to single blanks.

Since blank files before alphanumeric characters, word-by-word filing
order is obtained, and because punctuation is ignored keys which differ
only in punctuation or other non-filing characters will be treated as
identical, and will become amalgamated during the indexing process.

Numbers will file in a peculiar way (although modern librarians may not
be too upset — numbers often file in the same way in COM output). 100
will come before 20, and decimal points are ignored. Luckily MARC
records do not contain many numbers with decimal points, except Dewey

5. Access to catalogue files: indexing 61

numbers, and these file properly because they all have the same number
of digits to the left of the decimal point. Also, years file correctly because
most of them have the same number of digits.

DISPLAY ABILITY OF OKAPI INDEX

In the Okapi index, personal names and title phrases — AU and TPH
(Section 5.2.3) — are displayable. Names retain capitalisation, hyphens
and apostrophes, as do phrases. Phrases also retain most of their internal
punctuation, brackets, parentheses and quotation marks, and an
indication of truncation when they are over the maximum indexed
length. In the prototype these are the only two classes of index terms
which are displayed. In a more fully developed version Dewey numbers
(full or truncated), and possibly surnames, would be displayed. It is felt
to be a fault in the system that subject phrases are not distinguishable in
the final index from subject words, partly because they could usefully be
displayed.

The fact that each key is only stored once in the Okapi index (Section
5.7), regardless of its source(s), occasionally produces inconsistencies in
display, particularly between words and phrases, because a key can be
both a word and a phrase (for example title Economics and title and
subject word economics — whether or not the index entry economics
retains its initial capital depends on whether its first occurrence in the
source file was as a phrase or a word). The same applies to surnames like
Wood.

5.4 The construction of indexes for bibliographic records

Indexes may be constructed manually, automatically with manual
intervention or completely by computer. We are not concerned here with
the purely manual methods (although they are arguably the best for small
specialised collections).

Rules for automatic and semi-automatic indexing are of two types: rules
whose application depends solely on the source file and those which use
data external to the source file — stop lists, go lists, authority files
(Section 5.5).

The method of constructing index terms depends on the mode of
indexing (phrase, word or derived key), the purpose(s) for which the
index is to be used (subject searching, specific item searching, whether it

62 5. Access to catalogue files: indexing

is to be displayed to the user), and on the type of data in the field being
indexed.

It is worth pointing out that many of the same processes which are
applied to a source file when producing an index must also be applied at
search time to users' search statements. Some designers appear not to
realise this: it is common to find systems where a title phrase search will
fail if the user enters the title with a leading article. In general, procedures
which cannot be applied during searching, such as those dependent on
knowledge which will not be available during searching (for example
knowledge of the language of a title) or those which depend on access to
large files or tables, should not be used in indexing.

In the following subsections, there is a discussion of the first four of the
data types referred to in Section 5.2.2, with examples, recommendations
and comments. No detailed algorithms for the extraction of keys are
given, but as an example there is an outline of a procedure for keyword
indexing of title-like data.

5.4.1 Personal names

The simplest procedure is to concatenate the $a and $h subfields of
MARC 100, 600 and 700 fields to make keys like Austen Jane. Many of
the keyword systems make separate keys from $a and each forename in $h
in personal name fields. This immediately illustrates one of the
shortcomings of purely post-coordinate systems: a search for Henry
James cannot fail to retrieve also James Henry. One system avoids most
of these false drops by using a second derived key consisting of the first
letter of the surname followed by the first letter of the forename, so a
search for Henry James is submitted as henry AND james AND jh
(which still retrieves books by James Henry Jackson). On the positive
side, with such systems it doesn't matter whether the user enters a search
for Henry James or for James, Henry. Also, they avoid difficulties
which arise from users not knowing which is the entry element of a name
(Lloyd George, Mao Zedong, Van Rijsbergen).

Generally though, particularly in quite large collections, some pre-
coordination is highly desirable. On the other hand, consider a search for
Lawrence, DH in an index containing only full keys ($a + $h) of the
form lawrence david herbert. Depending on the design of the search
functions, a user who enters the probably unambiguous personal name
Lawrence, D H either has to do a good deal of browsing of index terms

5. Access to catalogue files: indexing 63

or brief records (and filing order becomes quite important) or a quite
elaborate ''multiple truncation" has to be performed, the index being
scanned from Lawrence D.. (D H having been recognised as initials). As
always, one has to find a trade-off between precision, processing demands
and storage.

If storage is not a serious constraint, then about as good a solution as can
be achieved is obtained by storing for every name the three keys
(sometimes the first and second will be identical) Lawrence, David
Herbert, Lawrence, D H and Lawrence.

Stop lists are not used for personal names, but a system with an authority
file can provide valuable cross references. If there is a MARC 900 tag
(personal name cross reference) arising from the field being indexed,
then this should also generate an index entry. The only OPAC we have
seen which does this is the Cambridge University system.

In a keyword system hyphenated names should probably be treated like
hyphenated words. Single character keys should not be omitted (U
Thant). With any mode of indexing, readable display requires that
hyphens and apostrophes be retained, but they should file as blank and
nothing respectively. Mc or M ' should file as or be replaced by Mac.

PERSONAL NAMES IN THE OKAPI INDEX

These come from field one (author main entry), field five (added names)
and field nine (subject headings) of the Okapi source file. Personal names
in these fields are identified as such in the source file (in field nine they are
only identified where their origin was a MARC 600 field). No pre­
processing is done except the replacement of leading Mc and M' by Mac.
Any non-alphanumeric characters apart from apostrophes and hyphens
would be removed, but there are unlikely to be any.

The "phrase" key consists of the entry element followed by an arbitrary
number of initials separated by blanks (or hyphens) (Taylor A J P,
Sartre J-P). This is how personal names are stored in the source file. The
average number of initials is just under two. It would not save an
appreciable amount of disc space to "pack" the initials (Taylor AJP)
because the occurrence of names with double-barrelled entry elements
and no initials means that Tong Zhou would be parsed as Tong Z H O U
unless an "initials-indicator" were used.

04 5. Access to catalogue files: indexing

The surname key is derived algorithmically from the phrase key, by
taking that portion of the phrase which lies to the left of the first blank (or
the entire key if it doesn't contain a blank). This doesn't work properly
for names like Lloyd George (surname key Lloyd). A sensible
algorithm would work by removing initials from the right of the phrase
key until it came to an item longer than one character, but this is one of
the pieces of code which was never written.

5.4.2 Corporate and conference names

These resemble both personal names and title-like phrases. Keyword
indexing is attractive because it is often difficult to remember the exact
wording — is it Institute or Institution of Electrical Engineers?
The OP AC user's problems in accessing corporate names will be familiar
to anyone who tries to look them up in telephone directories. However,
the leading words in corporate names cluster heavily around words like
Great (Britain), Institute, Committee, with the meaningful and
memorable parts of the name often being towards the end. Some OPACs
include items like Great Britain and Committee in the corporate
name stop list so that Great Britain. Department of Health and
Social Security, becomes Department of Health and Social
Security.

If pre-coordinate indexing is used, cross references from acronyms and
variant forms should be provided whenever possible.

In any case most library users do not recognise that a corporate body can
be an author, so, however they are indexed, corporate name keys are not
very much used. Among advanced searchers (those who chose
"COMMAND" mode) of the University of California's MELVYL in
May 1982, about 2% of searches were explicitly for corporate authors
(and only about one-third of searches used COMMAND mode — in the
simpler "LOOKUP" mode, an author search accesses both the personal
and corporate name indexes) [2].

Corporate names often contain some indication of the subject content of
an item, and this is very often in a MARC $c subfield (subordinate body,
related body etc). The $a element, particularly when it is "name of
government" can cause false drops in subject searches. When corporate
names are used for subject indexing, a stop list should include very

5. Access to catalogue files: indexing 65

common $a phrases (Great Britain). Words like department,
conference, committee although of little or no use in subject searching
are harmless enough.

In practice, the choice of indexing method for corporate names may be
influenced by a decision as to whether or not they should be stored
separately from personal name keys.

CORPORATE NAMES IN THE OKAPI INDEX

These occur in the same Okapi source fields as do personal names, from
which they are distinguishable. The phrase and word keys are extracted
exactly as the title keys (Section 5.4.3). The phrases are of limited use
where they contain more than one MARC subfield (strictly they are not
then phrases but several concatenated phrases): Open University is
useful, but few searchers will enter (nor should they have to enter) Great
Britain. Board of Trade. Copyright Committee, 1951. A future
version of Okapi should index the subfields separately.

5.4.3 Titles

Here is an example of a typical term extraction procedure for title-like
data in a post-coordinate system

1. Divide the field contents into words.
2. Replace non-displayable characters by their displayable

equivalents (e.g. Polish L by L) and discard diacritics.
3. Convert capital letters to lower case.
4. Discard characters other than letters and digits and

hyphens.
5. If a word doesn't contain a hyphen, do step 8.
6. (The word contains a hyphen.) Pass a copy to step 8, and

separate a second copy of the result into words.
7. Delete "words" which were prefixes in the hyphenated

phrase if they are in a list ("non", " in" , "de" , etc).
8. Remove items which are only one character long.
9. Remove words which appear in the title stop list.

10. Output the resulting terms.

Example: the title

Non-custodial and semi-custodial policies.

66 5. Access to catalogue files: indexing

would give the following index terms

non-custodial custodial semi semi-custodial policies

The above term extraction rules are only intended as an example, and are
oversimplified in several ways: they do not provide a means of
distinguishing between " I T " and " i t " , nor do they make any attempt to
handle input which is inconsistently or incorrectly punctuated (words
separated by a comma but no blank, for example). Note that two or more
full stops between single letters (B.B.C.) must not be treated as word
separators. The punctuation of numbers expressed in digits also creates
problems: in English, commas but not full stops may be removed, but the
reverse applies in many other languages; the safest course may be to
retain punctuation in numbers in an index, but to ignore it when
searching (see also Section 5.3.4).

Titles are more easily and accurately remembered than are corporate
names, and phrase indexing is rather effective for specific item searching
(Section 2.4.1). That indexing keywords only is not ideal for titles is
illustrated by the following nice example of a false drop in a title keyword
search:

Sense and sensibility

retrieved a work with the subtitle

sense of impending crisis, refinement of sensibility, and life
reborn in beauty

However, if titles are to be used to provide input to a subject index the
keyword approach would normally be taken so both pre- and post-
coordination are needed.

A compromise between phrase and keyword searching is offered by the
modified Geac installation at the University of Sussex, which does not
offer Boolean combination searching on keywords, but provides a degree
of pre-coordination by generating a 16-character key starting at the
beginning of each (unstopped) title word. For example the title

Britain's married women workers

gives rise to the keys

5. Access to catalogue files: indexing 67

Britains married
married women wo
women workers
workers

of which the first can be used as a title phrase key, and all four can be used
as subject keys. The fact that the first is useless (as a subject key) and the
fourth too broad is less important than the highly pertinent nature of the
second and third/n

Some points to be borne in mind when deciding how to index titles:

from MARC 245 and 440 only fta ("title proper") is needed for
phrase keys — people don't usually recall subtitles; on the other
hand, when present, $b ("other title information") often contains
better subject content so subtitles must enter into keyword indexing.

statements of responsibility should not be indexed, as the names are
not identifiable as such, and occur elsewhere in the record; it is
unfortunate that with all its elaborate structure, MARC does not
provide the means of searching for a specific person in a specific role
(editor, illustrator etc) — see Section 9.4.5.

TITLES IN THE OKAPI INDEX

Title-like entries occur in the second and fourth fields of the source file.
The fourth field may contain more than one series and/or part title, but
these are identified. Subtitles are not identifiable with certainty, but they
are separated from main titles by blank colon blank.

A title is pre-processed to rationalise punctuation. This is mainly to try to
compensate for typographical mistakes in records which were retrospec­
tively converted: any comma, semicolon or colon not followed by a blank
has a blank inserted after it, double hyphen intended as "dash" is
replaced by blank hyphen blank, as are hyphen blank and blank
hyphen. If there is any punctuation preceded by a blank the blank is
removed (mainly this only affects " : " between title and subtitle). Blank
hyphen blank is then replaced by a single blank, as are any repeated

(1) Complete rotation of titles, permitting a KWOC-like display, would of course be very
expensive on disc storage. It has been suggested by Mischo [3] and by others as a means of
generating printed subject-rich indexes from titles.

68 5. Access to catalogue files: indexing

blanks. The phrase is then output, truncated to forty characters if
necessary; if it is truncated, a dollar sign is appended.

The procedure for extracting words is applied to the (untruncated)
phrase resulting from the phrase extraction procedure. The rules for
word extraction are very simple, since the preprocessing has resulted in
text in which every word is followed either by a blank or by an end of field
marker. All non-filing characters are ignored, and a word ends when the
next character is either a blank or an end of field character. Acronyms
are preserved automatically, whether or not full stops separate the
initials. Hyphens are not properly handled (again, this was something
there has not been time to write); a simple rule of thumb is used: if
a hyphen appears in the second, third or fourth character position it
is deleted, otherwise it is retained. There is no special treatment of
numbers.

Finally, the word is output unless it is one character long or in the stop list
(Section 5.5.1).

5.4.4 Subject headings

It is difficult to generalise about the indexing of subject headings as their
nature varies so much from one library to another. In general there are
three types of item which one might extract from subject headings. First,
there are long, LCSH-like headings such as

Islam—Africa, North—History

These are useless in an OPAC index except for browsing purposes. Even
for browsing, their usefulness is severely limited unless they are rotated.
Similar headings derived from PRECIS strings may be found in the
MARC 083 Verbal Feature Heading tag.

Then there are personal name headings from 600 and short phrases from
subfields of 650 and 651 (topical and geographical LCSH). These can
usefully enter a subject index. (Often these subfields are single
words.)

Finally, individual words can be extracted to allow purely post-
coordinate searching.

5. Access to catalogue files: indexing 69

Methods of term extraction do not differ noticeably from those used for
other textual data. A minimal stop list may be used.

SUBJECT HEADINGS IN THE OKAPI INDEX

These are held in the ninth field of the Okapi source file, and consist of
words, names or short phrases separated by full stops. Names are marked
as such when they occur in the MARC 600 or 610/611 tags; identifiable
names are indexed as described in Section 5.4.1. The phrases are indexed
both as words and as phrases, the procedure used being identical to that
used for titles (names in topical subject headings give rise to a separate key
for each element, just as names in titles do).

5.5 Stop lists and authority files

In most IR systems some common terms are taken as stop words and are
not indexed. A sensible system will ignore the same words if they occur in
users' search requests. Authority files are lists of preferred or accepted
forms of names or other headings.

5.5.1 Stop lists

What goes into a stop list depends on the degree of specialisation of the file
and on the type of searches that are to be made. Subject searching requires
a much larger stop list than is needed for known item keyword searching.
If a file covers a narrow field then many words should be stopped which
could not be stopped in an OP AC containing items in many subject areas.

In phrase indexing from MARC records, leading definite and indefinite
articles are given by the second indicator in most of the title-like fields, so
these can be stopped. This is not as helpful as it might be because the same
procedure cannot automatically be applied to users' input (Section 5.4),
and hence it is still necessary to have a list of words which are or may be
articles. Some OPACs simply fail to find a title if the user enters it with a
leading article; some at least issue a warning. One problem here is that it is
often not possible to tell whether a word should be stopped unless the
language is known. French and Italian " L ' " are particularly trouble­
some, as apostrophes are almost universally ignored in indexing and must
be removed from search statements.

It is arguable that no words except initial articles should be stopped in a
keyword system used for specific item searching. There are distinct titles

70 5. Access to catalogue files: indexing

Systems of organization and Systems organization, although in a
small file such coincidences will be rare.

The well-known hyperbolic law of word frequencies means that there are
a small number of very frequent words. One approach is simply to
exclude from an index to be used for specific item searching the ten or
twenty commonest words — these can best be determined by doing trial
indexing runs, since the distribution of words from MARC records is
different from the distribution of words in other sources of text (see
Table 5.2).

A subject keyword index for a wide range of subjects needs a different
approach. There is an illuminating discussion of the use and dangers of
stop lists in subject retrieval systems by Bell and Jones in [4].

As well as articles and common conjunctions, most or all prepositions
should be stopped. Care should be taken not to exclude words such as
system, general, approach, theory which are generally "noisy" but
meaningful in some contexts, either in specific subject areas or when
adjacent to certain other words (System analysis, (army) generals,
theory of general relativity, approach roads). An examination of a
large number of subject statements submitted to an OP AC will show that
there are many common words which rarely if ever occur. These include
auxiliary verbs and many pronouns. One reason for large stop lists in
traditional IR systems, particularly in-house systems, is that indexes are
for browsing. In OPACs, word indexes should not need to be displayed,
so this does not apply.

For all types of searching, a large stop list will increase recall but increase
the number of false drops. Ideally, stopping procedures should be
context-sensitive, so that, for example, system might be stopped unless
adjacent to analysis, theory or design, or, in a system designed to
produce output ranked in probable order of relevance, some approach
may be made to probabilistic indexing: terms are assigned weights which
depend not only on their relative frequency over the whole file but also on
their role in a specific record. Thus, to take a simple example, words from
a corporate name field might be assigned a lower "prior weight" in a
subject search than words from a subject heading field.

Whatever policy is adopted with regard to stop lists, it is essential that the
rules should be applied to search statements, but they need not be applied
at the indexing stage. If they are applied to the index, this is only to reduce

5. Access to catalogue files: indexing 71

its size and slightly to increase search speed. There are some arguments in
favour of the inclusion of stop words in an index, together with the
information that they are stop words.

An extreme example of a sparse stop list is that used in MELVYL: the
title index stop list consists of:

A AND IN OF THE

and the subject stop list is
AND

T H E OKAPI STOP LISTS

Okapi removes leading articles from title phrases where they were
indicated in the original MARC records. So far as is possible, the same
procedure is applied to search statements, by automatically removing

A An The Der Das Le La El

when one of these is the first word in a title phrase. It should be noted
that, for example, II cannot be removed unless the language is known to
be Italian (not French) nor Het unless Dutch (and not English —
though it seems rather unlikely there is a title Het up in Samarkand).
There would be problems in dealing with words like ein and un which
may be either an indefinite article or the number one. The fact that the
may be a French noun is unfortunate but unlikely to be serious in mainly
English language files. A more intelligent system would carry a list of
words which could be articles, and automatically search with and
without, or issue a warning. It should be possible to cope with L', but this
has not been done in the prototype.

For word indexing, a single stop list is used, regardless of the source of the
term. It consists of the eight most common function words from a 30,000
record subfile, which were, in order of descending frequency:

of and the in to for on an

(The word a does not appear in the list because words of one character
had already been removed, and the frequencies of the and an are reduced
because they had already been stripped where either of them was the first
word in a title phrase.) (See Table 5.1.) The same stop list is applied to

72 5. Access to catalogue files: indexing

search statements when a keyword search is to be done.

5.5.2 Authority files

If a machine readable authority file is available it can be used either as a
form of index itself, or as an aid in the construction of an index. The latter
method is used by the University of California's MELVYL OPAC: the
Library of Congress Name Authorities file is used at indexing time to
provide index keys for all forms of names which occur in the
bibliographic records [5]. Whichever method is followed, the result is
that a search for Samuel Clemens retrieves books by Mark Twain.
(For libraries which do not have machine readable name authority files,
indexing the MARC 900 cross reference fields may be a good substitute.)

In addition to name authority files, some libraries have machine readable
subject heading lists which can be used in a similar way.

Okapi does not use nor make provision for the use of authority files.

5.6 Index s torage and access

An index system consists of the keys, lists of postings — one or more lists
associated with each key — and a means of rapidly accessing a given key,
or of finding the "nearest" index key to a given search term.

5.6.1 Methods of storage

Keys may be stored sequentially in order (for example in alphabetical
order), in trees or by address calculation storage {hashing). For a good
discussion of data structures appropriate to the storage of indexes, see
Knuth [6,7].

For fairly obvious reasons it is always easier to store keys in fixed units of
memory, but given the intrinsically highly variable length of IR system
index terms, particularly when some of the keys are phrases, the use of
fixed memory allocation is impossibly wasteful of storage space (perhaps
forty characters of memory would have to be assigned to each key, and the
mean length of a key might be about twelve characters).

For interactive IR systems, the three most important considerations are
(1) speed of access, (2) amount of storage and (3) ease of updating. These
three aspects all conflict with each other. Sequential storage is quite fast,

5. Access to catalogue files: indexing 73

needs the least storage space but is the worst for updating — the complete
index may have to be rewritten to add one new term. Tree storage, which
is very often chosen for IR systems of moderate size, is a very good
compromise: speed is fairly good (possibly an average of about three disc
accesses per search), there is a rather small structural storage overhead
and updating can be done without rewriting the whole tree (although it
may need to be pruned from time to time). Storing variable length data in
a tree results in slower access and slightly higher overheads than for fixed
length data. Hashing is extremely elegant and probably gives the best
access times (although there is a trade-off between memory usage and
speed); updating is almost trivial and memory usage fair. It has the
carious disadvantage for OP AC use that it is not possible, with any
conventional hashing technique, to locate keys in order. This means that
a search of a hashed index can only return one of the two results found or
not found. Since index terms cannot be retrieved in order, neither index
display nor truncation by amalgamation of adjacent terms is possible.
Hashing is ideally suited to the storage of keys which do not call for these
facilities, such as copy numbers or control numbers. Some OPACs,
including that of Cambridge University [8], use hash storage for their
word indexes.

CHOICE OF INDEX STRUCTURE FOR O P A C S

The normal choice for free text IR systems accessing files in the range ten
to a thousand megabytes would be either sequential or tree storage.
Which method is chosen may depend on the speed and frequency with
which the index may need to be updated. Some integrated library systems
which use the same file of bibliographic records for cataloguing and for
catalogue access offer immediate updating — a record is retrievable as
soon as it has been entered. With either method of storage there is a
penalty to be paid for this facility, taking the form of more elaborate
structure and access procedures. Batch updating is in general quicker
with a tree structure, but access is slower.

For files up to a few hundred megabytes which only need to be updated
weekly or monthly a sequential index structure may be the best.

5.6.2 Postings lists

Whichever method of storage is chosen for the keys, each key has to be
associated with its posting list — the list of source file records which are
retrievable by means of the key.

74 5. Access to catalogue files: indexing

Typically, each posting will consist of the number or address of a source
file record and some information about the position and/or function of
the key in the record to which the posting refers. It is easy to see that
methods of storing and updating postings lists and of linking them to
their index key also need some thought. One method is to store the
posting list for a key physically adjacent to the key; this is simple and
satisfactory for small files, but once a file grows to a size where there are
many keys with more than a few dozen postings a sequential index would
become unsuitable for browsing or truncation (in the sense of stem-
searching), and with a tree index there are problems in construction and
updating. Hence with medium to large files postings are stored separately
from keys and each key is associated with a pointer to its first posting:
before records from a successful search can be displayed, there must be
one additional disc access to read the posting list.

5.6.3 Searching an index

Except for very small files (somewhat larger with very fast advanced disc
systems), it is out of the question to search a sequential index
sequentially. Normal practice is to use one or two levels of directory
analogous to a set of volumes each of which has a thumb index: K - M is
in volume six and lead pollution to League of Nations is on page 215.
A search for leadership will cause page 215 of volume six to be read into
internal memory from the disc. The page is then searched using either a
sequential search or a binary search method. Obviously it is very simple to
find adjacent keys, so browsing and stem-searching are easily supported.
If the first level (volume index) can be retained in core it is possible to
search an index of millions of terms with two or three disc accesses for
each search (and at least one additional access to locate the first posting if
the search is successful). Search time only increases very slowly with
increasing index size (it doesn't take much longer to find a word in the
OED than it does to find it in a pocket dictionary).

Tree indexes automatically provide the equivalent of the several levels
described above, and the first level may be small enough to be retained in
core. Variants of the B-tree structure described in Knuth [7] can store
millions of keys using three or four levels, so a simple search can be almost
as quick as with sequential storage; finding adjacent terms may need
further disc accesses.

Searching a hashed index should need only one or two disc accesses, and
only a small amount of core for the address calculation routines.

5. Access to catalogue files: indexing 75

5.6.4 The representation of data in indexes

So far the discussion has applied equally to indexes containing any form
of data, but the actual method of storage may depend on the nature and
distribution of the keys — whether they are words and phrases, numbers
or codes. It may be possible to reduce the amount of storage required by
choice of representations of keys on disc. Numerical keys can often be
encoded: ISBNs, for example, can be stored comfortably in five bytes,
instead of the ten which are needed to hold them in character format.
With textual keys, there are many forms of data compression which can be
used. Many methods take advantage of the fact that the least quantity of
information which can be stored is often eight bits, making 256 distinct
character codes available, while the set of characters to be stored may
contain as few as 37 distinct characters (A - Z, 0 - 9 and blank), leaving
over 200 bit-patterns unused. The spare bit-patterns can be used to
represent the most frequent digrams (letter pairs) or trigrams (triples). It
is not difficult to obtain a storage saving of about a half.

Other methods take advantage of the ordered nature of the data. In a large
index, most keys will have leading characters in common with their
predecessors and successors. If at least the first two characters of a key are
the same as those of the preceding key, there is no need to store the
common characters: instead, the first byte of the key can say "the first N
characters of this key are the same as the preceding key". Methods like
this have been a good deal used in dictionary-type storage. They involve
less processing than encoding methods which use look-up tables or
extensive calculation. They do lead to complications in an index in which
it is necessary to scan forwards and backwards. They are more valuable in
phrase storage than in word storage.

5.6.5 One index or several indexes?

Most OPACs have several indexes, although a keyword system using
reference retrieval software may not. Even if the index is physically a
single sequence, practically all OPACs appear to the user as though there
are several indexes: users have to choose an author search or a title search
or a subject search; sometimes they can also choose an ISBN search or a
series title search. Some types of search may access more than one index.
The University of California's MELVYL has at least ten indexes. In
MELVYL's simple ' 'LOOKUP' ' mode an author/title search accesses

76 5. Access to catalogue files: indexing

personal author, corporate author and title (i.e. title word) indexes, and a
subject search uses subject heading word and title word indexes [5].

The number of indexes affects both the storage requirement and the
speed of searching — in particular the number of disc accesses which have
to be made. Unfortunately there are no clear cut rules for making this
design decision. However the index or indexes are stored, it is essential
that the system should include at least a certain amount of information
about the source, in the bibliographic record, of a given occurrence of a
given index term. If there are separate indexes, the word Wood as an
author surname is automatically distinguishable from wood in a title or a
subject heading, but the word has to be stored twice (at least). If, on the
other hand, there is only one index, the term "wood" need only appear
once, but there must be something associated with each posting which
indicates what sort of beast it is. Another factor which influences
decisions about the number of indexes is that, for structural and access
reasons, it is not easy to include keys of very different types in the same
sequence.

Examples of keys of very different types are words (wood), long phrases of
fixed length in a form suitable for display as a brief record (Hildreth,
Charles R Online Public Access Catalogs: the User Interfa) and
control and accession numbers (22.0041401).

5.7 The Okapi index: storage, access and construction

5.7.1 Summary

The index consists of three files:

a secondary index, which is a single sequential list of index terms each
associated with information about its source(s) in the bibliographic
file and, in most cases, a list of postings

a primary index, used to access the appropriate area of the secondary
index

a postings file, which contains the postings for frequently occurring
terms

5. Access to catalogue files: indexing 77

The secondary index is accessed (read from the disc) in fixed size
"chunks" of two kilobytes. Each chunk contains an integral number of
index terms and their associated data. No index term is split across a
chunk boundary. Once a term has been located in the secondary index,
the index can be scanned forwards or backwards from the term, without
further access to the primary index. Terms are stored in the order
determined by the collation sequence given in Section 5.3.4.

The primary index is held in core when the search program is running.
There is one record in the primary index for every second chunk of the
secondary index. Primary index records are condensed representations of
the last term in the corresponding secondary index chunk.

Each posting consists of the 24-bit disc address of a record in the source
file and six bits of information which associate the posting with up to six
items of source information. If a term has ten or fewer postings, the
postings are stored following the term within the secondary index; if it
has more than ten they are stored in the postings file, and a pointer to the
correct position in the postings file is held following the index term.

5.7.2 Choice of index structure for Okapi

It will be recalled (Section 2.7.2) that we started with two constraints: to
minimise storage requirements and to minimise the number of disc
accesses. The keys to be stored (words, phrases and class numbers) were
all of types where both index display and truncation (stemming) facilities
might be needed; this eliminated hash storage from consideration. The
choice had then to be made between sequential and tree storage. Since
Okapi was not envisaged as being part of an integrated library system, real
time or very frequent file and index updates would not be required, so the
choice fell on sequential storage on the grounds of simpler coding and
smaller core requirement during searching. For the same reasons, it was
also decided that only a single index sequence should be used.(1)

The disc storage constraint became less important after the PLAN 4000
LAN, with its larger disc, was acquired. The increased storage was used

(1) If Okapi were to be incorporated in an integrated system, the index should probably be
redesigned as a tree structure. There are also some quite strong arguments in favour of the
use of two or three separate indexes — a specific item index, a subject index and a librarians'
index containing control numbers and copy numbers.

78 5. Access to catalogue files: indexing

to provide more access points than had been intended. This is, in any case,
in line with the trend towards cheaper mass storage.0}

In conventional inverted file IR systems, indexing overheads (the
amount of storage required for the indexing) can be as high as 400% of
the storage needed for the source files, and are usually well over 100%. It
was estimated that the minimum overhead compatible with the range of
access points required for an OP AC would be around 60 % to 70 % of the
source file size. This influenced the decision to use a single index
sequence containing terms from all the indexed portions of the source file
records. The prototype Okapi gave an indexing overhead of 78 % on a file
of 90038 records (see Table 5.3).

Since Okapi was not designed to handle files of more than a few hundred
thousand records, it was estimated that it should be possible to store a
sequential index as a two level structure, with the first level, the primary
index, held in core memory at each user station. There must be a source
file size at which it would be necessary to go to three levels of index. It is
somewhat difficult to estimate this (it does not happen when the
secondary index contains a certain number of terms — rather it is a
matter of a trade-off between the number of chunks of secondary index
which may have to be read and scanned to locate the sought term and the
size of the primary index); certainly a file of a million records would need
a three level structure. With a three level index searches would be
appreciably slower, but there would be less core storage occupied by the
primary index.

5.7.3 The secondary index

A chunk (two kilobytes) contains a sequence of variable length index term
records. Each index term record consists of a pointer back to the beginning
of the previous record (used when scanning the index backwards), the
key itself, which is stored as a character string, and the number of
postings which the key has for each beast (source type). These are
followed either by a sequence of postings or (in the case of keys posted to
more than ten records) by the address in the posting file of the first
posting for the key.

(1) It seems likely that within the next few years many reference databases (ones which do
not need to be updated very frequently) will be stored on digital optical discs, where very
large amounts of data can be cheaply stored on one disc. It is not long since ten megabytes of
magnetic disc storage was a large amount for a micro system. However, storage cost is still an
important factor.

5. Access to catalogue files: indexing 79

When a search is taking place a secondary index chunk is read from the
disc and scanned sequentially from the beginning, because it is only the
first index term record in a chunk whose position is known (it always
starts in the second byte of the chunk). The sought term is not necessarily
in the first chunk accessed: a few searches require the scanning of three
chunks, and half the remainder require two to be read. The number of
index term records in a chunk varies considerably with the region of the
index being searched; the "low" region, which contains mainly Dewey
numbers, but also dates of publication and titles which start with a digit,
contains more terms per chunk than does the main alphabetical sequence.
The overall average number is about 80 terms, so a search involves one,
two or three disc accesses and a sequential scan of an average of perhaps
140 terms. The sequential scan is very quick compared with the time
needed to do the disc accesses, and the difference increases as the number
of users increases.

5.7.4 The primary index

Ideally, the primary level of the index should contain as much
information as the labels on catalogue drawers. In order to know which
drawer contains a given record (or would contain it if it were present),
the drawer label must consist of the complete key of the last (or first) item
in the drawer. To save one disc access per search, a complete copy of the
primary index was to be stored in core memory at each user station. Since,
with phrase as well as word indexing, the mean length of a key may be as
much as twenty characters, and there may be many thousands of
"drawers", twenty-character primary index keys would need a prohibi­
tively large amount of storage. The compromise solution which the team
evolved is described below.

It was estimated that, with careful programming, it should be possible to
have up to about 12 kilobytes of primary index resident in core at the same
time as the search program and enough storage for input/output buffers.

Each primary index record is generated from the last term in a secondary
index chunk. (There is no particular virtue in using the last term, the first
would do equally well.) To maximise the amount of information in the
primary index, that is, its discriminatory power, a minimum require­
ment is that all or at least most primary index entries should be unique
(this is less stringent than the requirement that index entries should

80 5. Access to catalogue files: indexing

contain full *'catalogue-drawer" information). It had been hoped that
enough discriminatory power could be achieved simply by taking the first
four characters — the initial tetragram — of the last term in a chunk to be
the primary index record corresponding to that chunk. Four-character
entries were chosen because three are clearly not enough for any but the
smallest files, and four permits a simple form of order-preserving data
compression.

The discriminatory power of initial n-grams depends on the number of
terms in the secondary index and on the secondary index chunk size (or
rather, the average number of terms in a chunk): the more terms there
are in a chunk, the more likely it is that the last terms in successive chunks
will differ in the first n characters. It also depends on the relative
frequencies of different initial n-grams in the language of the index file:
there are more words beginning with ELEC than with AARD. The
situation is further complicated when the same index contains items of
different source types. Non-fiction title phrases tend to begin with broad
subject descriptors or conventional adjectives — "economics of ..",
"brief history of ..". Subject heading phrases also start with broad
terms. Personal names have their own idiosyncracies (" M a c ") , but do
not cluster so seriously as do phrases.

Experimental indexes were constructed from subsets of the source file of
up to 33,000 records. At the 33,000 record level, there were a substantial
number of secondary index chunks which did not differ in the first four
characters of the last term. The worst case was "ECON", which filled
eight chunks. There were few cases of more than two repeats, and it was
felt that this structure would just be acceptable for a file of this size.
However, the tetragram key would clearly not be acceptable for the full
90,000 record source file. To check this, the complete file was indexed
(producing about 370,000 distinct index terms — see Table 5.3). Table
5.4 shows the distribution of the initial tetragram keys for this index.

A hybrid structure was devised in which tetragram clashes are resolved by
using a form of run-length coding and, where necessary, a pointer to a
"tail" record in a separate overflow area of the primary index. This could
be applied to indexes of any size, but the "tail" storage requirement
might become rather large. For the 90,000 record file, with its 370,000
distinct index keys, the tail section of the index is only 612 bytes (about
5% of the total primary index size). The method of searching this
primary index is a little more complicated than a simple binary chop. The

5. Access to catalogue files: indexing 81

structure does not quite contain full "catalogue drawer label" informa­
tion, but it guarantees that not more than two "drawers" need to be
scanned. (A "drawer" here is the equivalent of two chunks, since a
primary index record addresses a pair of chunks.)

5.7.5 Postings and beasts

Each posting is 32 bits long, and consists of a 24-bit source record address,
and a single byte, six bits of which are used to refer back to any
combination of up to six of the ten possible source types (which we refer
to as beasts —see Section 5.2.3). (The two spare bits are used to hold some
structural information which is used by the search and term combination
routines.) Thus a given index key can occur as up to six beasts. We tried to
think of examples of character strings which might come from more than
six different sources. "1984" is a possible candidate: title phrase, title
word, date of publication, Dewey 198.4 (unallocated, as it happens),
subject phrase and word, corporate name word. One indexing run failed
on "Aristotle", who turned out to be both personal and corporate and
has the unfortunate attribute of constituting both a phrase and a word
when he occurs as corporate name, title or subject. By the time the
prototype stage had been reached corporate and personal name beasts had
been merged, as had corporate name words and surnames. However,
Aristotle does still occur in six roles: AU, AW, TPH, TW, GS and GP
(these abbreviations are defined in Section 5.2.3).

The 24-bit record address in a posting allows access to 64 megabytes of
storage, or about 300,000 records of the size used in the Okapi prototype
(Chapter 4).

Postings for relatively uncommon keys, which would include almost all
title phrases, are stored in the secondary index itself, adjacent to the term
to which they belong. The figure of ten, above which postings are stored
in a separate file, is fairly arbitrary.

5.7.6 Construction of the Okapi index

The index is constructed by running a suite of three programs. The first
two can be run in parallel at a number of stations on the network, but for
simplicity the following description assumes that only a single station is
being used.

82 5. Access to catalogue files: indexing

The first program (key generation) operates by reading the source file
sequentially and extracting and generating the appropriate keys from
each record. When internal memory is full the keys and their associated
postings are sorted and merged in core, and output to a temporary file.
Each batch of sorted and merged keys is referred to as a "run". A run
contains typically about 2000 keys. The process is repeated until the entire
source file has been read, the result being several hundreds or thousands
of runs of keys stored in one or a few temporary files. This program makes
use of the procedures for key generation and construction described in
Sections 5.4.1 - 5.4.4.

The second program (merge) performs a series of simple merges, each of
which combines up to ten runs into a single, longer run of keys and their
postings. Each "pass" of the temporary file reduces the number of runs
by a factor of ten until finally there is a temporary file containing one
single run of index keys, each followed by all of its postings. A file of the
size on which the prototype Okapi operates needs three or four passes.

The final index production program takes the raw output from the
merging operation and generates from it the three index files described in
Section 5.7.1. This program could be described as the one which puts the
structure into the index, the raw material for which was produced by the
key generation program.

References

1 Harris J L. Alphabetical arrangement: some unexamined issues. In:
Proceedings of the 42nd American Society for Information Science
Annual Meeting, Minneapolis, Oct 14-18 1979, Information choices
and policies. Knowledge Industry Publications, Volume 16, 1979,
p214-218.

2 Larson R R and Graham V. Monitoring and evaluating MELVYL.
Information Technology and Libraries 2 (I), 1983, p93-104.

3 Mischo W H. A subject retrieval function for the online union catalog.
Technical Report. OCLC, 1981.

4 Jones K P and Bell C L M. The automatic extraction of words from
texts especially for input into information retrieval systems based on
inverted files. In: Research and development in information retrieval.
Proceedings of the third joint BCS and ACM symposium. King's
College, Cambridge, 2-6 July 1984.

5. Access to catalogue files: indexing 83

5 Radke B S, Klemperer K E and Berger M G. The user-friendly
catalog: patron access to MELVYL. Information Technology and
Libraries 1 (4), 1982, p358-371.

6 Knuth D E. The art of computer programming. Vol 1: Fundamental
algorithms. Addison-Wesley, 1968.

7 Knuth D E. The art of computer programming. Vol 3: Sorting and
searching. Addison-Wesley, 1973.

8 Cambridge University Library's catalogue takes on a new life. VINE
47, 1983, p4-7.

Table 5.1. The most frequent terms in a file of 30,081 MARC records

The list was obtained by extracting words from the title, name and
subject fields of the complete holdings of a Polytechnic site library. Initial
definite and indefinite articles had already been removed, and one-letter
words were ignored. A word is only counted once per record even if it
occurs in more than one field.

T e r m

of
and
the
in
social
to
britain
great
for
series
economic
on
studies
history
british
an
study

Freq

13576
11533
8815
7914
3251
3194
2652
2404
2387
2345
2146
1951
1921
1584
1497
1381
1358

T e r m

political
international
society
development
economics
library
management
politics
modern
aspects
research
university
sociology
theory
education
policy
american

F r e q

1346
1267
1214
1181
1173
1152
1150
1147
1108
1083
1060
1038
953
951
940
901
896

Evidently it is a humanities and social sciences library.
The high frequencies of study/ies, series, library, research,
university and some other terms are a consequence of indexing words
from series titles.

84 5. Access to catalogue files: indexing

Table 5.2. Analysis of index terms by type of key — file size 30,081 records
(the complete holdings of one Polytechnic site library)

T y p e of key

title phrase
title word
pers name(3 '5)

surname (4 '5)

corp phrase
corp word
subj phrase(6)

subj word(6)

class number

tota l

N u m b e r
of d i s t inc t

t e r m s

32841
18618
20441
11390

1479
1805
9261
6060
9425

99770(7)

M e a n no
of recs

per t e r m

1.3
12.2

1.7
3.1
2.4
9.8
3.6

10.7
3.3

M e a n
t e r m s

per rec

1.4
7.5
1.2
1.2
0.1
0.6
1.1
2.2
1.0

16.3

M e a n
t e r m

l e n g t h

32.0° >
8.0<2)

9.6
6.9

333d)
7.9(2)

21.4
8.0(2)

8.8

Notes

(1) This is the mean length after truncation, where necessary, at 40 characters.
(2) The mean word length is high because the mean is taken over types, not tokens. Mean

token length was not measured, but could be expected to be between five and six
characters.

(3) Surname + initial(s), separated by blanks.
(4) First element of surname only. 8620 (76%) of the surnames were associated with a

unique set of initials.
(5) Excluding names from subject headings.
(6) Quite a large proportion of records have no subject headings.
(7) Approximate total number of distinct terms.

Comments

The marginal number of new index terms per record is 3.6 — i.e. each
new record contributes, on the average, 3.6 new terms. Most of these are
title phrases and personal names. Because of the mixture of data types it is
very difficult to predict how this figure will decrease with increasing file
size. The rate of increase of the number of words with file size is already
low (about 0.6 words per record) even in so small a file. On the other
hand, many title phrases and personal names are unique.

5. Access to catalogue files: indexing 85

Table 5.3. Index size and term occurrence statistics (file size 90,038 records).
(From the inversion of the complete Polytechnic catalogue)

Number of terms Number of records

274995
42949
16647
8644
5497
3793
2646
2077
1539
1300

12766

372853

1
2
3
4
5
6
7
8
9
10

more th;

Total number of postings: 1515000 or about 16.8 per record

Marginal number of new keys per record: 4.1

Mean number of keys stored per chunk of secondary index: 69.8

Mean number of characters per key: estimated between 14 and 17

Secondary index size: 10680 kilobytes
Primary index size: 11 kilobytes
Postings file size: 3739 kilobytes

Total index size: 14420 kilobytes = 77% of source file size

86 5. Access to catalogue files: indexing

Table 5.4. The most frequent initial tetragrams (file size 90,038 records).
(From the inversion of the complete Polytechnic catalogue)

4-gram rank 4-gram rank 4-gram rank

inte

soci

intr

poli

comp

econ

brit

hist
mode

1

2

3

4

5

6

7

8

comm

cont
new
stud

elem
indu
theo

amer
cons
engl
grea
mana
prin

9

10

11

12

arch
euro
guid
nati
stat
the

appl
coll
diet
hand
lang
plan
stru
tran
univ
work

13

14

