7 System description

7.1 Introduction

This chapter describes and illustrates the catalogue systems used for Live evaluation. The description includes some background design information, some indication of what is going on "behind the screen" and occasional evaluative remarks.

As described in Chapter 6, for the Live testing we constructed two systems which differ in the extent of the automatuc search aids they provide. These are the experimental system (EXP) and the control system (CTL). There was also a third system (OSTEM) which used the same method of term combination as the live systems but performed mo stemming or spelling normalisation. This was only used by the experimenters for comparative repetition of live searches.

Both the EXP and the CTL catalogues offer only a subject search. This fact is clearly displayed on the introductory screen (Fig 7.1), and was emphasised while we were collecting the evaluation data by means of a notice on top of each terminal. Both catalogues accessed the same bitliographic files, and the record displays and screen layouts are identical. It is unlikely that more than a very few users moticed any difference between the two systems since the twa termirials were on different floors of the Library.

The CTL catalogue aplies "weak" stemming and spelling standardisation (6.'2) to all search words. The EXP cataLogue uses, in addition, "strong" stemming, a phrase dictionary, some automatic cross-referencing and will sometimes Cabout half the time) suggest an alternative for a word which it is unable to find.

The general appearance of the systems is quite similar to the subject search in the original version of Okapi COkapi '84) described in the first Dkapi report [1, [h 7]. The most noticeable difference is an additional screer. This is the lookup and search results screen illustrated Fig 7.4 etc. It appears as soon as a user has entered a search. This screen records the progress of the search and displays options as appropriate. In Okapi ' 84 the bottom half of the input sereen was used for these purposes.

Fig 7.1 Introductory screen

 ** OKAPI '86 **EXPERIMENTA. COMPUTER CRTRLOGE FOR SUBUECT SERRCHES

This catalogue has been developed by the library research team at PCL

You might have used Okapi ' 84 before. This version has been improved: Okapi '86 is easier to use and is more effective

Until this version is complete -

THIS CRTR OGLE WILL ONY DO SUREET SEPRCHES

If you want to look for a particular book - use the other catalogues

To start, press the GREEN KEY on the right of the keyboard...

Fig 7.2 Empty input screen
 SUBJECT SERPLH
** OKRPI

The computer will look for books which include all (or most) of your words in their titles or subject descriptions

Type a word or a phrase which describes the books you want:
E. \qquad

Fig 7.3 Input screen after user has started to type
 SUBUECT SEPRCH
 ** OKPPI

The computer will look for books which include all (or most) of your words in their titles or subject descriptions:

Type a word or a phrase which describes the books you want: arbitration, mediation, conciliation

Press the GREEN KEY when you have finished

WHITE KEY to change what you have typed
BLUE KEY to get rid of what you have typed

7.2 Keyboard and display

The user stations are Apple IIe microcomputers, with six of the peripheral keys painted for use as function keys. One of them, the yellow key, is not used in any of the systems described here. In Okapi ' 84 it was used to invoke help or advice. Examination of logs from the earlier system showed that it was rarely used, and this seems to be the case for most onl ine catalogues. The type of system we devised was intended to be usable at sight, and the incorporation of help adds an extraneous dependent variable to the more important ones which the systems were designed to investigate. (The yellow key is retained because it has a use in an as yet untested relevance feedback system.)

The other keys have the following general meanings:
GREEN proceed, browse forwards
BLUE go back one step, browse backwards
RED stop, go back (more drastic than BLUE)
WHITE delete last character conly works during input of search terms)
BLACK return to introductory screen (end session)
None of the screens indicates the function of the black key, but there is a label next to the key which says PRESS WHEN FINISHED. There is, of course, a time-out. This returns to the introductory screen if no key has been pressed for 80 seconds - except during record display when the time-
 these velues ere ebout right for normel use.

The space bar sis babebled with the messege Press TU MMKE R SPHCE, because bogs show that an appreciable proportion of users do not sepore te the worde of thezir search.

The Rpple ITE Keyboard ris very good for people without Keyboard kxperyience berause it has onky bl keys. Blesides the normel keys which meke displayable shareeters, blank and shift there are about 20 keys. Bll peripherely which sen be used as commend or function keys. Key spacing is sitanderd olthough some users familiser with romputer ter -
 Find meny of the more modern somputer termint s confusing: some terminals are easiby vendelised by people who play
 cetal ogue systems woul be well aidvised to eree te e demand for plemeanity simple keyboards biakore they become e fring of the pest.
7.3 User incuut End preprocessuing

Whin the green key is pressed Frem the introductory seresan the sereen of Fig 7 。it thpiears. Ds soon as the user types anyinivg this becomes the sereen of Fig 7.3. This is a
 Tithe argument is thot since the oreero white and buse keys have no effeet untab somehing has been tyoed there should bee no messeges sbout their used. Its ximplementation is ctependinit on e very feest and predictable chieraster output to the screan. This earnot be achievert without locel sternge and processing pownr.

There is room for the user to type about 7 en enaracters. Only in one or two of the 1900 searches studied in detail did the user rum out of typang space. The dots are of course meant to sugges t that itnis is abl the space which is avarblube
when the the user presses the green key the input strine is processed to produee a seerch gtatement which while being
 the user typed. D precisse description is out of place Nere, but the objert is to transiorm the input into a form in which it cen readiby bee parsed init the type of objects which are sixared in the indemss.

No đistzinetion is mede between vpper end lower cese and punc-
 \{o seperete words or denote en ${ }^{\circ}$ xinzit

It is rare for general users to use typographical devices meaningfully (initial capitalisation to suggest a proper name, ' - ', or parentheses to introduce a subordinate description or subdivision of a subject).

Initialisms are recognised as any sequence of two or more single letters separated from each other by a single dot or a blank. Thus B B C = B.B.C. = BBC, and no distinction can be made between IT and 'it' (nor can 'it' be a stop word).

Okapi users rarely type hyphens. They either omit them or use blanks instead (NON VERBRL COMMUNICRTION). This may be because it is not particularly obvious from the keyboard how to make a hyphen. If a word of the input string contains one hyphen, with an alphanumeric character on each side, the hyphen is removed (squashed) if it is in the second, third or fourth position in a word; otherwise is is replaced by a blank. This is a rule of thumb, probably due to Gill Venner, and makes the assumption that a short prefix is usually grammatical rather than part of a compound word. It works fairly satisfactorily because hyphenated pairs each make three index entries in Okapi ' 86 (GEOPHYSICS makes GED and PHYSICS and GEOPHYSICS). If a word contains more than one hyphen all the hyphens are replaced by blanks (before the space bar was labelled we occasionally had searches (ike TYPING-FDR-BEGINNERS).

After it has been pre-processed the input contains only alphanumeric characters and blanks.

In both EXP and CTL systems a second stage of processing ("weak stemming") is then applied: each "word" of the input is subjected to the weak stemming and spelling standard: isation procedure, and the phrase is reassembled. This procedure is described in 6.5.1.

Example of input processing

$$
\begin{array}{ll}
\text { [User] } & \text { post-war graphic designers in the U.S.A. } \\
\text { [Preprocess] post war graphic designers in the usa } \\
\text { [Weak-stem] post war grafic designer in the usa }
\end{array}
$$

Notice that the weak-stemmed string is not suitable for display to a user who doesn't know in some detail how the system works. The "searching" screen (Fig 7.4) displays the preprocessed string. Some users may come to appreciate that upper and Lower case are not distinguished, that initialisms are recognised and that hyphens are squashed or replaced.

7.4 The search

This proceeds in two phases: look-up followed by combination.

The screen clears and the top line of Fig 7.4 appears.

Fig 7.4 Screen during Lookup (EXP system)

Your search: 'arbitration mediation conciliation in industrial relations'

Looking up these words

```
    116 books under 'arbitration'
        Q books under 'mediation'
        २९ books under 'conciliation'
    464 books under 'industrial relations'
```


(RED KEY to abandon this search)

Figs 7.3 and 7.4 show a search which needs a boolean UR. The user has signalled this by using commas - which is unusual, and suggests a thoughtful or experienced user or one with a high expectation of the system. This search would fail to find any records on most onlime catalogues (using an implicit fiND). It succeeds moderately well on both the EXP and the CTL systems, al though not as well as it would if the parser were to interpret the commas or if the system knew that the first three words are quasisymonymous.

It is here that the control and experimental systems diverge. The EXP system regards "industrial relations" as a single term, and will consider records indexed under "arbitrate", "arbitrating", etc. as well as those under "arbitration" (and similarly for the other words).

7.4.1 Control system

Each "word" of the weak-stemmed string is looked up in the index, unless it is in the stop list or has already been looked up. The control system look-up procedure also rejects any index entries which are flagged as being members of a cross-reference class (see 6.3). USH, for

```
example, will find fewer postings in the control system,
because it is not equivalenced to UNITED STATES, US etc.
As each word is Looked up, a message is displayed.
If the weak stem has not already been looked up there is
either an 'N books under "(word\rangle"' message, or a 'CRN'T
FINL "<word>"' message. Since the components of the weak-
stemmed string are not, in general, suitable for display
the system shows the portion of the (preprocessed) source
string which gave rise to the stem which it is looking up.
In the case of a "CAN'T FIND", the user has to take some
action - replace the word, tell the system to ignore it or
abort the search. The display is illustrated in Fig 7.5.
If the weak stem has already been looked up, but the source
word is not the same (example: EFFECTIVE COST HNL SUCIHL.
COSlS) there is a message of the form
('costs' included under 'cost')
Fig 7.5 Display while looking up - word not found
```



```
Your search: 'aristotles poegics'
Looking up these words
    25 books under 'aristotles'
CAN'T FINO 'poegics'
BlE KEY to change this word 
GREEN KEY to continue without this word
```

Fig 7.6 shows the user being prompted for a replacement search term. If the user substitutes another word or words, the top line of the screen alters accordingly (Fig 7.7), the replacement string is weak-stemmed, the "CAN'T FIND" message disappears and look-up continues.

The system assumes that the most usual and appropriate action will be to replace the word, and so this is the first option. When the user does choose to have the word ignored we were unable to arrive at a wholly satisfactory way of indicating this in the top line of the screen. If the word is simply deleted from the displayed string one is often left with a non-meaningful phrase or sentence. For example, in the search POST WAR GRAPHIC DESIGNS NI THE USA, the user might quite sensibly tell the computer to ignore NI, but

Your search: 'post war graphic designs the usa'
does not look very sensible. The easiest compromise was to replace the ignored word by something which might remind the user that a word has been omitted: at the risk of looking prudish the system displays an asterisk, and shows "post war graphic designs * the usa".

Whether the word is replaced or ignored, the "CAN'T FIND" message disappears. This is mainly to avoid recording the progress of a search overflowing the screen. Also because of screen capacity, if the number of words with non-zero hits reaches 12, the remainder of the search statement is ignored.

Fig 7.6 Retyping a misspelt word

Your search: 'aristotles poegics'
Looking up these words
25 books under 'aristotles'
CRN'T FIND 'poegics'
Type your new word : poetics
GREEN KEY when you have finished
(RED KEY to abandon this search)

Fig 7.7 Display during and after merging

Your search: 'aristotles poetics'
Looking u these words
25 books under 'aristotles'
67 books under 'poetics'
Looking for books described by your search
1 book matches your search exactly
(91 books found altogether)
GREEN KEY to look at the book(s) found (the most similar books should appear first)

BLE KEY to correct or change your search
RED KEY to do a different search

The Look-up procedure is quite fast - half a second or less for each term - and it is independent of the number of postings. When look-up is complete, the system assigns weights to the terms and calculates maximum, "good" and "minimum acceptable" weights for records as described in 6.5.2.

The line "Looking for books described by your search" (Fig 7.7) appears. The system makes an estimate of the number of postings it is going to have to examine, and displays " - please wait.. " and a countdown if it is going to take more than a few seconds. A term combination, or merge, then follows. (This is, of course, trivial for single-term searches.)

7.4.2 Experimental system

Instead of looking for individual words, EXP submits the whole of the remainder of the weak-stemmed string for index Look-up (after removal of any stop words from the beginning of the string). This look-up procedure looks for the Longest match from the left of the string up to a word boundary, and returns either the number of characters matched, or failure.

For example, the search UNIIED STHTES RND THE WORLD WHR 2 ELCUNOMY matches on the 13 characters of UNITEU STHTES. Ihe
stop words HND and THE are removed. Lookup is re-entered with WORLD WAR 2 ECONOMY. WORLD WHR 2 is matched and removed, and finally ECONUMY is processed.

The count displayed for each term is the number of postings for the weak stem, just as in the coritrol system. In the case of a single-word search this can result in an inconsistency between the number of "books under" the word and the final number of books retrieved. No interviewed user mentioned this.

Whenever a single word which is not a member of an equivalence class is retrieved, it is subjected to "strong stemming" and the resulting strong stem is also looked up. In the example, UNITED STATES and WORLD WHR 2 are not strong-stemmed because they are "go phrases", but ECONDMY is looked up both as a weak and a strong stem. Hs a strong stem this will bring in postings for records containing "ecomumics", "economic" and also "ecomomical" and other potential causes of false drops.

When both the weak stem and the strong stem look-up return failure - that is, the index contains no match even on the strong stem of the first word of the sought string - the approximate matching techrizque descritued in 6.4 comes intol play, if the word is long enough. If the system can find what it thiriks is a mear match, this is presented as shown in Figs 7.8 and $\% .9$.

If there is no candidate replacement, or if the user rejects what the system offers, the procedure is as for the contral systern.

If the weak-stem look-up fails, but the strong stem succeeds, the "CAN'T FIND" message takes the form
[AN'T FIND 'manageability' - 3866 books under similar words
In the example the system will have found postings for stems arising from "manage", "manager", "management" etc. The user is not given the option of replacing the word (but can, of course, abort the search with the red key). Sometimes the strong stemming causes a user's misspelling to be matched, often to a misspelling in the source file or to a foreign word.

```
Fig 7.8 EXP system suggests a replacement
```



```
Your search: 'introductory sociolgy'
Looking up these words
    318 books under 'introductory'
CPN'T FIND 'sociolgy' - closest match found is 'sociology'
GREEN KEY to use 'sociology' instead
BLLE KEY to type a different word
```

(RED KEY to abandon this search)

Fig 7.9 User accepts suggested replacement

Your search: 'introductory sociology'
Looking up these words
$31 巴$ books under 'introductory'
3497 books under 'sociology'
Looking for books described by your search - please wait..
18 books match your search exactly
GREEN KEY to look at the book(s) fand
BLLE KEY to correct or change your search
RED KEY to do a different search

The "included under" messeag as more frequent in the Experimentel system tharn in the eonital system: this messege is displayed i\} two terms in the seerch belong to the seme seuxivalence class dithis is of EOUPse not known until the sesond term is booked up). An exemple is the

$$
{ }^{\circ} \text { uk }{ }^{0} \text { ancluded under }{ }^{\circ} \text { unżted kzingdem }{ }^{0}
$$

which is presumebly whet itne user intendied lit zis rether rare for users to think of including synonumg.

There is a descriotrion of the prosess itself in B.5.4. Mere we show how it iss preserited to the user.

If the merge wes obweys very auick bup to ebout three seconds. sey). there woule be no need to indicats anything furthier to the user except ithe number of books found.

However, with multi-word searches comieining some neaviby posted terms. Der ticulamby on the sxperdimeriteb system where both strong and weak stems gnter the merae. this process cauld take a marute or more. The computtr disalays "booking for books deseribed by vour search" ffig 7.0). If the total number of pestings te be sxemined is more than a §ew hupidped. "please weit it is appendied. This is fobbowed by acountdown" which is actuably ther number af disk gecersses needred to read all the postings winich may need to be cornsidzrge. It is cerfoinly not obvious te users whet the deceresing number represents o at beast one person thouyht it was atione in secorve - but people san see that something is hoppenirvg, and mone of those interviewed found it offoputring. It would be easy to display an estrimte of the time, or to provide range of messeges, but we did not think that this wiag riectesary.

Wht ithe end of the merge, the system knows how many postirigs thore are in its output bigt, and olso how many of these ore of meximum possible weight cio ee woula meve been reo triceved by e boolean pinl of abl the termsp and how many (are of "good" wisight

There are about ten different results messages deparnding on the oistrribution of weights in the output hist. Partby to avoia meking the system sometrmes book sibly and partby to anoid chut tering the sereen, the messege xis never more ther two linies. Sonte of the possible sombinetions ere


```
Fig 7.10 A search for two common terms which do not co-
                    occur
```



```
Your search: 'psychology of plants'
Looking w these words
    3034 books under 'psychology'
    1278 books under 'plants'
Looking for books described by your search - please wait
No books match your search
```

BLUE KEY to correct or change your search
RED KEY to do a different search

Fig 7.11 Two 'rare' terms which do not co-occur

Your search: 'yachting and boating'
Looking up these words
5 books under 'yachting'
5 books under 'boating'
Looking for books described by your search
10 books found but none match your search very well
GREEN KEY to look at the book(s) found I

BLUE KEY to correct or change your words
RED KEY to do a different search

The green (record display) option, the blue (correct or change your search) and the red (do a different search) are always in the same order and relative positions on the screen. In a production system this would be a desigri weakness, because there are some searches, such as HISTORY or SOCIULOGY, which may be sensible (the user may want to see where in the library these general topics are stielved), but are more likely to be associated with misconceptions about the size of the collection or the way the catalogue works. When the number of postings with "good" weight is greater than, say, fifty, it is appropriate to suggest quite prominently that the user might like to "make the search more specific" (while not preventing the display of records if that is what the user wants).

7.6 Record display

Ht first we tried providing both a brief one-line record and a "full" record. It was clear that single line records are not generally appropriate for subject searching because it is not possible to display the subject headings, or even the complete title. Experience with users of previous Okapi systems suggested that subject headings, while not being very good sources of index terms, are felt to be useful in making relevance judgments.

On the other hard, brief recurds do display slightly more quickly, and at least one user asked for them. The most serious difficulty is that of the number of options which would have to be offered durang record display. If brief display were the default, with full records selected by Line number and browsing forwards and backwards provided at buth levels, the red key could be used to return from full to brief display as in previous Ckapj. systems. However, there is little doubt that full records should be the default. It may, on balance, be worth providing an additional function key fur switching between full and brief displays. We did not provide this because the systems described here also form the basis of an experimental "relevance feedback" (RF) system, in which there are more options and questions at the foot of the full display screen CLOUK FOR DTHER BOOKS LIKE THIS ONE; SEE BOOKS SHELVED NEAR THIS UNE; IS THIS THE SORT OF THING YUU ARE LOOKING FOR??.

Fig 7.12 shows the information displayed and the layout of the records. The display is almost identical to earlier Okapis. Records never occupy more than one screen. In the rare cases when there would be an overflow they are arbitrarily truncated.

Fig 7.12 Full record display

Not in this branch
No. of copies in other PCI Libraries : MRd (1)
Shelved at : 306.36 WOR

RED KEY to search again or to finish
BLLE KEY to see the PREVIOUS book again GREEN KEY to see the NEXT book

7.6.1 Highlighting of search terms in records

Where possible, words in recurds which match search terms are tigghlighted. This feature is almost universally liked, but it is not at all easy to implement economically and universall.y in a system where the records retrieved may not contain the actual words of the search.

By far the easiest way to implement highlighting is by storing witt each bibliographic record all the terms under which it is indexed, in the form in which they appear in the index - i.e. words and phrases, with spelling normalised arid subjected to both weak and strong stemming. These index terms would be stored with puinters to the words or phrases in the body of the record which they represent. The storage overhead might be around 50%. (The stored index terms could also be used to compute measures of "similarity" between retrieved records and the query: the search WAR AND PEALE may be a better match with a record indexed only under WHR and PEACE tharn it is with une indexed additionally Ly HUSTRHLIA 1514-1546.)

A sbightly disferent epproach to naighlighting avoiding the Storaug outrhead. is to extrast the irodex terms from e retriceved record before it is formetted for bisolay. es if it were bexing indexets. CThis xis xin fect done xin preparataion for e relevence \}eedbeck system in which words extracted from relevent records would be consit tered for query Bxpansion. D However. shortage of memory prevents online storage of the bookoup table coolsee list et run time so this does not help with the haighlightang of terms such as FIRST WCVRLD WAR which Hove e number of equivelent forms CMORLD MPV ONE EtED.
7. [6. 2 Sequenexing of displayed records

Reeords are displayed rin deereasing order of weight so thet those conisinang ell or most of the words of in ousiry appene frirst, foblowed by ffose contexining onby some of the worts, with rare words being wortt more than common words in the scoring.

Where there is al "rurn" of records af equal weigiot the display sequence in these versions of ckepai is foffectively arbitrary. Reverse date order is aften febt to be more sensible. It is also desirable that different editions of tho same work appear together. toth these objects can be achieved by stering some represervtetion of the tait end the publicetion date with each pesting in the index. This is technicably easy but represents a substantioub storage overtioced.

Where not abl the petrievze records have the same weight, both the design team and a number of users would have biked some indicetion of the point in the deereasing weight stautriee which hes been peached. For exemple if thare are two recorde of maximum possibl weight fic BUOKS MavCH YUUR SEARCH EKACTLYD, iEn of "good" weiglot and 200 al.together. we could have provided obreek sereens or habrosereens which onpudi wher the green key is pressed from the secornd and tentiv record respertively. These could displey sometharog bike

The next B books probebly metch your seeret bess well
190 more books. but they don't match your seareh nery well

7.0 .3 (D)

In Okapi "BS the eurrent searek is bost an exit from record ©isplay - Except that the user is remiroded of at on the
 Key returning tho user to e sereen showing the resubts of the surrent searet. This seregn would contein opitons to Start an new searcho to abtre the current search or redisplay the records bpertians with a sub-optian of returring to the recory diselay 色t the poirt ot which it was betty.

This is the approach provided in the SWHLCHF LIBERTAS online catalogue. It is difficult to think of a suitably concise arde expressive message for the red key prompt.

We have no evidence as to the relative merits of the two approaches: the first has the virtue of simplicity, but the second provides more flexibility.

7.7 Second and subsequent input screens

When the user presses the red key from a record display, a modified input screen appears (Fig 7.13). Okapi ' 84 made it too easy for users to repeat their previous searches by always returning to an input screen with the previous search occupying the input field. In the new systems second and subsequent input screens have a blank input field but carry a brief reminder of up to three previous searches.

Fig 7.13 Subsequent input screen showing the results of previous searches

Previous search(es)	No of books
'domestic violence'	2
'battered women'	22
'women'	more than 500

Type a word or a phrase which describes the books you want:
\qquad

The "number of books" for previous searches is the total number retrieved, not the riumber which matched "exactly" or "quite well". It would be better to display something like

Fig 7. 14 Improved subsequent imput screen

Previous search(es)	No of books found
	good matches total

Reference

1 MITEU N N, VENNER G M and WALKER 5. Designing an online public access catalogue : Okapi, a catalogue on a Local area network (Library and Information Research Repurt 33). London : the British Library, 1985.

