
Chapter 5 

Towards an adaptive IR 

system 

5.1 Introduction 

1 Adaptive techniques are applicable to those computer systems that are 
subject to repeated use by particular users. The user's needs will be quite 
specific, whereas the system will be generally applicable. One such computer 
system is an online Information Retrieval System (IRS); a user can retrieve 
documents in any subject area through interactive sessions, and may use the 
system several times to satisfy a specific information need. The standard 
IRS does not, however, adapt to a user's need over repeated sessions: each 
time the system is used, the IRS starts from its general stance. Our work is 
aimed at overcoming this failing. 

IRS vary in their types of input and output: a common but somewhat 
rigid type of input is for users to represent their information need in a binary 
form through boolean expressions. The output from these systems tends 
to be an unordered list of documents and the query formulation requires 
knowledge of boolean logic. 

Systems accepting natural language input are more flexible when accept
ing user queries; although the mapping of the information need to the query 
may be easier for the user, interpreting and processing queries in this form 
is not as straightforward. Unlike boolean queries, the relationship between 
terms in the query is not explicit. A probabilistic IRS which accepts natural 
language input can rank the output documents by attaching scores (nu
merical measures) to the documents in the collection, based on the current 
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query [9]. The order of the references output reflects their probability of rel
evance, where relevance can be seen as a relationship between the document 
and the need. To improve the performance of a Probabilistic IRS further, 
relevance feedback is sought from a user. This permits users to choose doc
uments which are relevant to their need, and allows the system to expand 
the original query using additional terms from the relevant documents. 

We take this type of system one step further and introduce a learning 
component which adapts to a user over a period of online sessions. Rele
vance feedback from these sessions can be input to an incremental concept 
learner [6] which learns a 'context' or subject area for that user, and can 
utilise it to influence the ordering or inclusion of documents output in later 
sessions. In this paper we will first introduce the necessary background to 
the probabilistic model, then specify a learning component for a probabilis
tic IRS based on input from relevance feedback, and finally describe some 
results from a prototype implementation of the learning component. 

5.2 The probabilistic model for an IRS 

When a query is input to an IRS, the words can be extracted and stemmed 
in order to produce search terms. Probabilistic models attach weights to 
search terms and apply a match function to rank individual documents. 
The value or usefulness of a search term is not an uncommon concern in 
information retrieval. Relevance weighting theory [11] is an approach to 
quantify the value of a term based on its performance within a database: 
assuming document terms are independent of each other, the theory argues 
that the following formula can be used to achieve optimum performance. 
The weight of a term given by this formula is used in calculating individual 
document scores: 

- = * ( » < u > 

where wt — the weight of the term 
p = the probability that the term will occur in relevant documents 
q — the probability that the term will occur in non-relevant documents. 

This formula uses the relevance feedback information obtained from the 
user. Prior to relevance feedback, in the first iteration of processing the 
user's query, the formula reduces to collection frequency weighting [1]. With 
this weighting rare terms are given high weight and the more frequently 
occurring terms are given low weights. After relevance feedback with p 
and q estimated, however, the term weight can be expressed as follows (the 
derivation of which is given in [11]: 

Wt = l°g {(n-r + 0.o)/(N-n-R + r + 0.5)) ^ 
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where wt — the weight of the term 
n = the number of postings for the term 

(number of documents containing the term) 
N = a constant larger than n for the most highly posted term in the search 
R — number of records chosen as relevant 
r = number of chosen records containing the term 

Thus, the relevance feedback from the user enables a form of query expan
sion. Equation 5.2 can be used to select new terms and to calculate weights 
for them in order to merge them with the original query. The matching 
value of each document retrieved for that query is the sum of the weights of 
the query terms that index it. 

Recently, a theoretical argument for improving this baseline formula was 
presented in [10]. Here, at is used as a measure for term selection instead of 
wt. This improved version is given as 

at = wt(p-q) (5.3) 

Later we shall comment on how the use of this improved equation com- -
pares with output from the learning component explained in the next sec
tion. 

5.3 The learning component 

5.3.1 I n p u t s to t h e l e a r n e r 

To describe the learning mechanism, we will introduce the simplifying as
sumption that a document record (d) contains a unique identifier (did) to
gether with a set of stemmed terms which make up the record (dst). We also 
assume that each stemmed search term is stored in a structure (m) contain
ing the structure's identifier (ra^, the stemmed search term), the weight of 
the term (mwt)^ the number of relevant documents that contain the term 
(rude), ai*d a record of the origin of the term. We say that a term m covers 
a document d if mxd G dst. 

Relevance feedback results in the highest weighted search terms being 
collected from the relevant document records (32 in the the Okapi system 
described in section 5.4). Hence each learning session begins with input to 
the learning component, made up from: 

• A set of document records D which have been picked as relevant by 
the user. 

• A set of term structures M containing those terms (from D) with the 
highest weight, using the probabilistic model described in section 5.2. 
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To obtain maximum benefit from relevance feedback, a pre-condition of 
the use of the learning component is that the user is conducting a series 
of searches within a common context (there is evidence that users tend to 
repeat searches or conduct a series of closely related searches, hence this 
condition is not unrealistic). Within this framework it is assumed that 
a document marked as relevant in one session, while not necessarily still 
regarded as relevant in a later session, nevertheless remains representative 
of the context for the later search. Using relevance feedback from each of 
the searches the system will then create and evolve a context C, representing 
the users information need, that can be used in future searches to influence 
the ordering of documents displayed. 

5.3.2 Formulat ing and evolving the context 

The context C must be acquired and kept in an operational form, so that it 
may be easily utilised in future searches. Hence we define C to be a set of 
unique term structures, each with a corresponding set of attributes which 
adjust incrementally over a period of learning sessions. 

C should also be representative of all the examples provided (i.e. com
plete). This is accomplished by building up a set of terms which cover 
all the relevant documents during each learning session. Operationally is 
supported by admitting to C only a minimal cover of the set of relevant 
documents. For the purposes of brevity, in this paper we will assume that a 
context term has attributes similar to the term structures, and in the spec
ification below, we use the convention that X{d, where X is a set, stands for 
the set of identifiers of X's elements. 

An IRS online session may result in zero, one or more learning sessions, 
depending on how many times relevance feedback was provided; C incre
mentally evolves after each learning session, as follows: 

• Given inputs M and D, first remove any of the relevant documents 
which have been input in a previous learning session, since these doc
uments will already be covered by the current context description. 
Hence D may shrink and the terms in M may have to have their 
attributes adjusted accordingly. In the absence of some of the docu
ments a term's m^c component may be reduced to zero in which case 
the whole term structure is deleted from the input. 

• Next, the system forms a complete, minimally sized covering of the 
resulting documents in D in the form of a subset of M. It uses two bias 
criteria: favouring terms which cover more than one relevant document 
and terms of high weight. The covering takes the form of a subset of M 
we call .4, standing for Active set. All unused term structures, that is 
the set M — A, are put into a Passive set called P. A itself is the disjoint 
union of two component subsets A! and A". A' contains all those terms 
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which cover more than one document, and are not redundant in the 
sense that the documents they cover are not all covered by another 
term: 

A! - {m e M\mdc > 1A (Vn G M : ndc > 1 => 
3d G D : (rtid $. dstA m,^ G dst) V m = n)} 

A" completes the set of terms which cover D, picking the terms of 
highest weight from the documents that were left out of the covering 
provided by A!\ 

A!' = {m G M\3d G D :(mld G dst /\dst n A'ld = 0A 
Vx e M : (xid G d5< => ra^ > x ^ ) ) } 

Thus the set A is representative of all the relevant documents from 
the training session. Note that A" may well be empty, if A' provides 
a full covering of D. 

• If no previous learning has taken place then A is taken to be our initial 
context C. On the other hand, the system merges A into the existing 
set of terms which formed the old context. We will describe this by 
calling the former context OldC, and the new context NewC. Likewise 
we have the old passive set of terms OldP and the new set NewP. 

NewC is the disjoint union of three sets: 

- context terms unaffected by the new training examples: 

X = {c\c G OldC A ctd ?(AU P)id} 

- incremented context term structures whose names appear in both 
the new and the old data: 

Y = {add(c,m)\mid = C{d A mld G (A U P)ld Acld G (OldC U 
OldP)ld) 

- new terms that appear in .4: 

Z = {m\m G A A mid £ (OldC U OldP)ld} 

Here add is a function which takes two term structures which share the 
same identifier, and produces a new term structure with attributes com
bined. Each term's weight will be added together, as will be their document 
count. Thus NewC will be the set XuYU Z. Finally, NewP is formed by 
adding all those members of P to OldP which were not already present in 
OldC or OldP: 

NewP = {m\m G P A mld $ (OldC U OldP)ld] 
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5.4 Testing context formulation 

5.4.1 T h e Okap i s y s t e m 

The learning component described derives its input from online session logs 
from the use of Okapi. In this section we will briefly describe Okapi's oper
ation, and show some initial results from a prototype implementation of the 
learning component. 

Okapi is based on the probabilistic model, and uses relevance feedback 
to improve its effectiveness, as described in 5.2. The system is illustrated in 
Appendix A. It has three databases available in the current implementation: 
INSPEC - computer science and information technology sub-section; LISA -
Library and Information Science Abstracts; and the City University Library 
Catalogue. Academic users have access through the university's local area 
network and from dedicated terminals situated in various locations such as 
the university library. 

After selecting a database, users type in their queries in the form of 
natural language. Some input preprocessing such as parsing and stemming is 
performed in order to derive a set of terms that represent the query. Weights 
are calculated for these terms and the documents are ranked accordingly. 
Brief details of the documents (title, author etc) are then shown to the user 
in a document list. This is displayed in descending weight order, aiming to 
reflect the probability of the document's relevance. If a user chooses to see 
more details of documents from the list, these are displayed and he/she is 
prompted to make a relevance judgement on each one. Relevance feedback is 
then applied using the baseline formula (equation 5.2) and if the user chooses 
to do so, the initial query may be expanded using stemmed terms from the 
documents deemed relevant, and a further document list is displayed to the 
user on this basis [17]. 

Analysis of user's logs shows that their queries consist of two to three 
words on average and it is not uncommon for this description of the user's 
information need to be too general (4.4.2). This leads to a major problem: 
the resulting document list displayed to the user may consist of screenfulls 
of documents grouped in the same relevance band. When queries are too 
general or ambiguous, these long weight-blocks, may contain many irrelevant 
documents and can frustrate the user. 

5.4.2 A n e x a m p l e 

Knowledge of a user's needs from earlier sessions would help improve the 
document ordering within the weight-blocks so as to better suit his/her need, 
and is precisely the kind of problem we expect an adapting IRS to overcome. 
To illustrate this, and the workings of the learner, wre present an example 
using three separate online sessions, each involving one query and one set of 
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Table 5.1: 

Query 

q( i ) 

q(2) 

q(3) 

Active terms 

{c(directed,86,4,[m(l)]), c(edit,69,2,[m(l)]), c(graf,86,5,[m(l)]), 

c(grammar,105,5,[q(l),m(l)]),c(rewrit,78,2,[m(l)]),c(syntax,72,2,[m(l)])} 

{c(directed,86,4,[m(l)]), c(edit,69,2,[m(l)]), c(graf,86,5,[m(l)]), 

c(grammar,105,5,[q(l),m(l)]), c(rewrit,78,2,[m(l)]), 

c(syntax,72,2,[m(l)]), c(concurrent,107,9,[q(2),m(2)]), c(grafic,84,9,[m(2)]), 

c(interprocess,83,2,[m(2)]), c(notation,72,3,[m(2)]), c(program,63,9,[m(2)]), 

c(visualisation,61,2,[m(2)])} 

{c(concurrent, 107,9,[q(2),m(2)]), c(directed,86,4,[m(l)]), c(edit,69,2,[m(l)]), 

c(graf,86,5,[m(l)]), c(grafic,84,9,[m(2)]), c(grammar,105,5,[q(l),m(l)]), 

c(interprocess,83,2,[m(2)]), c(notation,72,3,[m(2)]), c(program,63,9,[m(2)]), 

c(rewrit,78,2,[m(l)]), 

c(syntax,72,2,[m(l)]), c(visualisation,61,2,[m(2)]), c(parallel,73,6,[q(3),m(3)]), 

c(supercomputer,72,3,[m(3)]), c(tool,71,6,[m(3)])} 

Passive terms 

18 passive terms 

36 passive terms 

57 passive terms 

relevance feedback. The queries were as follows: 

q(l) = "graph grammars programming" 

q(2) = "graphical programming concurrent" 

q(3) = "software tools parallel" 

Table 5.1 shows the evolving context (the Active terms) and indicates 
the size of the passive term set after each learning session. The particular 
representation we have chosen for the context is a set of c-structures consist
ing of a stemmed term, its total term weight, the total number of documents 
covered, and a list of sources of the term (cm' indicates that the term was 
used after query expansion, and 4q' indicates the term is from the user's 
query). 

Quite clearly the context's terms can be used to re-weight documents, 
and for a full evaluation of our learning algorithm we are currently aiming 
its use at solving the weight-block problem. Prior to this full integration 
with the IRS, we have gathered output from the learning implementation, 
such as in Table 5.1. The context formed after each iteration were shown to 
those more expert in the corresponding fields, and their comments on the 
context learned have been encouraging. 

Results also seem to correspond with the improvement made to the base
line formula (equation 5.2) by equation 5.3. Using the example above, after 
each feedback collection, the ranks of the terms used for query expansion in
corporating equation 5.2 are compared with their ranks using the improved 
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formula. All the terms that the learning system had acquired in the context 
were also ones that moved up in the ranked list of weighted terms between 
the baseline and improved formula. Hence the indications so far are that 
the learner is evolving contexts consistent with equation 5.3, although from 
a different approach. The learner also has the added advantage of using 
historical relevance feedback information. 

5.5 Conclusions and future work 

In this chapter we have specified a learning component which can use rele
vance feedback in a probabilistic IRS to adapt to a user's information needs. 
Initial testing, such as the example in section 5.4.2, suggests that the evolv
ing context can act as a useful background to users carrying out closely 
related searches. The learning algorithm will be fully evaluated by applying 
it to solving the weight-block problem using the Okapi system. We also 
suspect it will be useful in more radical document re-listing, and further to 
decide on the set of documents to be displayed. 

Possible improvements include the development of methods for removing 
redundant terms from the context, and the use of counter- examples to 
evolve the context. Finally, user groups with links to contexts shared by its 
members could be formed, suggesting terms to a user from the knowledge 
gained from other users' queries. 


