
Chapter 5

Towards an adaptive IR

system

5.1 Introduction

1 Adaptive techniques are applicable to those computer systems that are
subject to repeated use by particular users. The user's needs will be quite
specific, whereas the system will be generally applicable. One such computer
system is an online Information Retrieval System (IRS); a user can retrieve
documents in any subject area through interactive sessions, and may use the
system several times to satisfy a specific information need. The standard
IRS does not, however, adapt to a user's need over repeated sessions: each
time the system is used, the IRS starts from its general stance. Our work is
aimed at overcoming this failing.

IRS vary in their types of input and output: a common but somewhat
rigid type of input is for users to represent their information need in a binary
form through boolean expressions. The output from these systems tends
to be an unordered list of documents and the query formulation requires
knowledge of boolean logic.

Systems accepting natural language input are more flexible when accept
ing user queries; although the mapping of the information need to the query
may be easier for the user, interpreting and processing queries in this form
is not as straightforward. Unlike boolean queries, the relationship between
terms in the query is not explicit. A probabilistic IRS which accepts natural
language input can rank the output documents by attaching scores (nu
merical measures) to the documents in the collection, based on the current

!This Chapter is slightly adapted from a paper to be given by Ay$e Goker and T

L McCluskey at ISMIS '91: International symposium on methodologies for intelligent

systems, Charlotte, North Carolina, Oct 16-19 1991.

44

5.2. THE PROBABILISTIC MODEL FOR AN IRS 45

query [9]. The order of the references output reflects their probability of rel
evance, where relevance can be seen as a relationship between the document
and the need. To improve the performance of a Probabilistic IRS further,
relevance feedback is sought from a user. This permits users to choose doc
uments which are relevant to their need, and allows the system to expand
the original query using additional terms from the relevant documents.

We take this type of system one step further and introduce a learning
component which adapts to a user over a period of online sessions. Rele
vance feedback from these sessions can be input to an incremental concept
learner [6] which learns a 'context' or subject area for that user, and can
utilise it to influence the ordering or inclusion of documents output in later
sessions. In this paper we will first introduce the necessary background to
the probabilistic model, then specify a learning component for a probabilis
tic IRS based on input from relevance feedback, and finally describe some
results from a prototype implementation of the learning component.

5.2 The probabilistic model for an IRS

When a query is input to an IRS, the words can be extracted and stemmed
in order to produce search terms. Probabilistic models attach weights to
search terms and apply a match function to rank individual documents.
The value or usefulness of a search term is not an uncommon concern in
information retrieval. Relevance weighting theory [11] is an approach to
quantify the value of a term based on its performance within a database:
assuming document terms are independent of each other, the theory argues
that the following formula can be used to achieve optimum performance.
The weight of a term given by this formula is used in calculating individual
document scores:

- = * (» < u >

where wt — the weight of the term
p = the probability that the term will occur in relevant documents
q — the probability that the term will occur in non-relevant documents.

This formula uses the relevance feedback information obtained from the
user. Prior to relevance feedback, in the first iteration of processing the
user's query, the formula reduces to collection frequency weighting [1]. With
this weighting rare terms are given high weight and the more frequently
occurring terms are given low weights. After relevance feedback with p
and q estimated, however, the term weight can be expressed as follows (the
derivation of which is given in [11]:

Wt = l°g {(n-r + 0.o)/(N-n-R + r + 0.5)) ^

46 CHAPTER 5. TOWARDS AN ADAPTIVE IR SYSTEM

where wt — the weight of the term
n = the number of postings for the term

(number of documents containing the term)
N = a constant larger than n for the most highly posted term in the search
R — number of records chosen as relevant
r = number of chosen records containing the term

Thus, the relevance feedback from the user enables a form of query expan
sion. Equation 5.2 can be used to select new terms and to calculate weights
for them in order to merge them with the original query. The matching
value of each document retrieved for that query is the sum of the weights of
the query terms that index it.

Recently, a theoretical argument for improving this baseline formula was
presented in [10]. Here, at is used as a measure for term selection instead of
wt. This improved version is given as

at = wt(p-q) (5.3)

Later we shall comment on how the use of this improved equation com- -
pares with output from the learning component explained in the next sec
tion.

5.3 The learning component

5.3.1 I n p u t s to t h e l e a r n e r

To describe the learning mechanism, we will introduce the simplifying as
sumption that a document record (d) contains a unique identifier (did) to
gether with a set of stemmed terms which make up the record (dst). We also
assume that each stemmed search term is stored in a structure (m) contain
ing the structure's identifier (ra^, the stemmed search term), the weight of
the term (mwt)^ the number of relevant documents that contain the term
(rude), ai*d a record of the origin of the term. We say that a term m covers
a document d if mxd G dst.

Relevance feedback results in the highest weighted search terms being
collected from the relevant document records (32 in the the Okapi system
described in section 5.4). Hence each learning session begins with input to
the learning component, made up from:

• A set of document records D which have been picked as relevant by
the user.

• A set of term structures M containing those terms (from D) with the
highest weight, using the probabilistic model described in section 5.2.

5.3. THE LEARNING COMPONENT 47

To obtain maximum benefit from relevance feedback, a pre-condition of
the use of the learning component is that the user is conducting a series
of searches within a common context (there is evidence that users tend to
repeat searches or conduct a series of closely related searches, hence this
condition is not unrealistic). Within this framework it is assumed that
a document marked as relevant in one session, while not necessarily still
regarded as relevant in a later session, nevertheless remains representative
of the context for the later search. Using relevance feedback from each of
the searches the system will then create and evolve a context C, representing
the users information need, that can be used in future searches to influence
the ordering of documents displayed.

5.3.2 Formulat ing and evolving the context

The context C must be acquired and kept in an operational form, so that it
may be easily utilised in future searches. Hence we define C to be a set of
unique term structures, each with a corresponding set of attributes which
adjust incrementally over a period of learning sessions.

C should also be representative of all the examples provided (i.e. com
plete). This is accomplished by building up a set of terms which cover
all the relevant documents during each learning session. Operationally is
supported by admitting to C only a minimal cover of the set of relevant
documents. For the purposes of brevity, in this paper we will assume that a
context term has attributes similar to the term structures, and in the spec
ification below, we use the convention that X{d, where X is a set, stands for
the set of identifiers of X's elements.

An IRS online session may result in zero, one or more learning sessions,
depending on how many times relevance feedback was provided; C incre
mentally evolves after each learning session, as follows:

• Given inputs M and D, first remove any of the relevant documents
which have been input in a previous learning session, since these doc
uments will already be covered by the current context description.
Hence D may shrink and the terms in M may have to have their
attributes adjusted accordingly. In the absence of some of the docu
ments a term's m^c component may be reduced to zero in which case
the whole term structure is deleted from the input.

• Next, the system forms a complete, minimally sized covering of the
resulting documents in D in the form of a subset of M. It uses two bias
criteria: favouring terms which cover more than one relevant document
and terms of high weight. The covering takes the form of a subset of M
we call .4, standing for Active set. All unused term structures, that is
the set M — A, are put into a Passive set called P. A itself is the disjoint
union of two component subsets A! and A". A' contains all those terms

48 CHAPTER 5. TOWARDS AN ADAPTIVE IR SYSTEM

which cover more than one document, and are not redundant in the
sense that the documents they cover are not all covered by another
term:

A! - {m e M\mdc > 1A (Vn G M : ndc > 1 =>
3d G D : (rtid $. dstA m,^ G dst) V m = n)}

A" completes the set of terms which cover D, picking the terms of
highest weight from the documents that were left out of the covering
provided by A!\

A!' = {m G M\3d G D :(mld G dst /\dst n A'ld = 0A
Vx e M : (xid G d5< => ra^ > x ^)) }

Thus the set A is representative of all the relevant documents from
the training session. Note that A" may well be empty, if A' provides
a full covering of D.

• If no previous learning has taken place then A is taken to be our initial
context C. On the other hand, the system merges A into the existing
set of terms which formed the old context. We will describe this by
calling the former context OldC, and the new context NewC. Likewise
we have the old passive set of terms OldP and the new set NewP.

NewC is the disjoint union of three sets:

- context terms unaffected by the new training examples:

X = {c\c G OldC A ctd ?(AU P)id}

- incremented context term structures whose names appear in both
the new and the old data:

Y = {add(c,m)\mid = C{d A mld G (A U P)ld Acld G (OldC U
OldP)ld)

- new terms that appear in .4:

Z = {m\m G A A mid £ (OldC U OldP)ld}

Here add is a function which takes two term structures which share the
same identifier, and produces a new term structure with attributes com
bined. Each term's weight will be added together, as will be their document
count. Thus NewC will be the set XuYU Z. Finally, NewP is formed by
adding all those members of P to OldP which were not already present in
OldC or OldP:

NewP = {m\m G P A mld $ (OldC U OldP)ld]

5.4. TESTING CONTEXT FORMULATION 49

5.4 Testing context formulation

5.4.1 T h e Okap i s y s t e m

The learning component described derives its input from online session logs
from the use of Okapi. In this section we will briefly describe Okapi's oper
ation, and show some initial results from a prototype implementation of the
learning component.

Okapi is based on the probabilistic model, and uses relevance feedback
to improve its effectiveness, as described in 5.2. The system is illustrated in
Appendix A. It has three databases available in the current implementation:
INSPEC - computer science and information technology sub-section; LISA -
Library and Information Science Abstracts; and the City University Library
Catalogue. Academic users have access through the university's local area
network and from dedicated terminals situated in various locations such as
the university library.

After selecting a database, users type in their queries in the form of
natural language. Some input preprocessing such as parsing and stemming is
performed in order to derive a set of terms that represent the query. Weights
are calculated for these terms and the documents are ranked accordingly.
Brief details of the documents (title, author etc) are then shown to the user
in a document list. This is displayed in descending weight order, aiming to
reflect the probability of the document's relevance. If a user chooses to see
more details of documents from the list, these are displayed and he/she is
prompted to make a relevance judgement on each one. Relevance feedback is
then applied using the baseline formula (equation 5.2) and if the user chooses
to do so, the initial query may be expanded using stemmed terms from the
documents deemed relevant, and a further document list is displayed to the
user on this basis [17].

Analysis of user's logs shows that their queries consist of two to three
words on average and it is not uncommon for this description of the user's
information need to be too general (4.4.2). This leads to a major problem:
the resulting document list displayed to the user may consist of screenfulls
of documents grouped in the same relevance band. When queries are too
general or ambiguous, these long weight-blocks, may contain many irrelevant
documents and can frustrate the user.

5.4.2 A n e x a m p l e

Knowledge of a user's needs from earlier sessions would help improve the
document ordering within the weight-blocks so as to better suit his/her need,
and is precisely the kind of problem we expect an adapting IRS to overcome.
To illustrate this, and the workings of the learner, wre present an example
using three separate online sessions, each involving one query and one set of

50 CHAPTER 5. TOWARDS AN ADAPTIVE IR SYSTEM

Table 5.1:

Query

q(i)

q(2)

q(3)

Active terms

{c(directed,86,4,[m(l)]), c(edit,69,2,[m(l)]), c(graf,86,5,[m(l)]),

c(grammar,105,5,[q(l),m(l)]),c(rewrit,78,2,[m(l)]),c(syntax,72,2,[m(l)])}

{c(directed,86,4,[m(l)]), c(edit,69,2,[m(l)]), c(graf,86,5,[m(l)]),

c(grammar,105,5,[q(l),m(l)]), c(rewrit,78,2,[m(l)]),

c(syntax,72,2,[m(l)]), c(concurrent,107,9,[q(2),m(2)]), c(grafic,84,9,[m(2)]),

c(interprocess,83,2,[m(2)]), c(notation,72,3,[m(2)]), c(program,63,9,[m(2)]),

c(visualisation,61,2,[m(2)])}

{c(concurrent, 107,9,[q(2),m(2)]), c(directed,86,4,[m(l)]), c(edit,69,2,[m(l)]),

c(graf,86,5,[m(l)]), c(grafic,84,9,[m(2)]), c(grammar,105,5,[q(l),m(l)]),

c(interprocess,83,2,[m(2)]), c(notation,72,3,[m(2)]), c(program,63,9,[m(2)]),

c(rewrit,78,2,[m(l)]),

c(syntax,72,2,[m(l)]), c(visualisation,61,2,[m(2)]), c(parallel,73,6,[q(3),m(3)]),

c(supercomputer,72,3,[m(3)]), c(tool,71,6,[m(3)])}

Passive terms

18 passive terms

36 passive terms

57 passive terms

relevance feedback. The queries were as follows:

q(l) = "graph grammars programming"

q(2) = "graphical programming concurrent"

q(3) = "software tools parallel"

Table 5.1 shows the evolving context (the Active terms) and indicates
the size of the passive term set after each learning session. The particular
representation we have chosen for the context is a set of c-structures consist
ing of a stemmed term, its total term weight, the total number of documents
covered, and a list of sources of the term (cm' indicates that the term was
used after query expansion, and 4q' indicates the term is from the user's
query).

Quite clearly the context's terms can be used to re-weight documents,
and for a full evaluation of our learning algorithm we are currently aiming
its use at solving the weight-block problem. Prior to this full integration
with the IRS, we have gathered output from the learning implementation,
such as in Table 5.1. The context formed after each iteration were shown to
those more expert in the corresponding fields, and their comments on the
context learned have been encouraging.

Results also seem to correspond with the improvement made to the base
line formula (equation 5.2) by equation 5.3. Using the example above, after
each feedback collection, the ranks of the terms used for query expansion in
corporating equation 5.2 are compared with their ranks using the improved

5.5. CONCLUSIONS AND FUTURE WORK 51

formula. All the terms that the learning system had acquired in the context
were also ones that moved up in the ranked list of weighted terms between
the baseline and improved formula. Hence the indications so far are that
the learner is evolving contexts consistent with equation 5.3, although from
a different approach. The learner also has the added advantage of using
historical relevance feedback information.

5.5 Conclusions and future work

In this chapter we have specified a learning component which can use rele
vance feedback in a probabilistic IRS to adapt to a user's information needs.
Initial testing, such as the example in section 5.4.2, suggests that the evolv
ing context can act as a useful background to users carrying out closely
related searches. The learning algorithm will be fully evaluated by applying
it to solving the weight-block problem using the Okapi system. We also
suspect it will be useful in more radical document re-listing, and further to
decide on the set of documents to be displayed.

Possible improvements include the development of methods for removing
redundant terms from the context, and the use of counter- examples to
evolve the context. Finally, user groups with links to contexts shared by its
members could be formed, suggesting terms to a user from the knowledge
gained from other users' queries.

