
!8 -

Chapter 6

Thoughts on the future development of cirt

A'J_* Dividing cirt into two processes

6̂_L_.J_. The problem of size

At present cirt is about as large as it can get without running out
of core space, so before more facilities can be added some way round
this problem will have to be found. There are three obvious approaches
to the problem:

1 Upgrade the hardware to a processor which supports separate 1/D
spaces (11-24?).

2 Install a version of UNIX which supports overlaying. There are a
number of these available: e.g. the DEC release of UNIX (which they
have in the Computer Science Department at TCU), the Berkeley
release and probably others. Whatever version was used would have
to be compatible with the network software. This question has not
been investigated fully.

3 Split the program into two processes. This is quite an attractive
option for a number of reasons and is discussed in detail below.

A*JL*A* Splitting the process

A natural way to divide the program is as follows

Process 1 Process 2

front end
search algorithm

results of searches,
lists of seen docs,
relevance assesments,
etc.

->
universal
search
protocol

<-

X29 and Database
dependent code.

docs retrieved
from host but not
yet sent to PI

->
search-
statements ,
documents
etc.
<

Host
e.g.
Data
Star

Essentialy Process 1 would contain the code now in cirt.c and search.c
along with any improved front-end code, additional search algorithms
etc. Process 2 would contain the code in x29.c and lex.yy.c. The code
in print.c would have to be rewritten and the new code would be split
between the two processes. ;

The idea is that Process 2 should contain all the Host and Database
dependent code and that the two processes should talk to each other
using some sort of universal search protocol (USP). Process 2 then con­
verts between the USP and the Search statements and document listings

- 29 -

required by and sent from the Host. How universal the USP can really
be, is debatable. Probably the best thing to do is to make it as
universal as possible consistent with easy compatability with Data-Star.

This setup has a number of advantages:

(i) It should solve the space problem, at least for a while.

(ii) The viewing of documents will be speeded up because it will be
possible for Process 2 to be retrieving and storing documents
while Process 1 is waiting to be told the verdict on the previous
document.

(iii) The data base dependent code is all in one process and it should
(if the USP is adequate) be possible to convert to another Host
by just rewriting Process 2.

To set against that there may be a slight slowing down of the
search process.

6_•JL^- Communication between the processes

This should be done with pipes and possibly intercepted kills.
Briefly the way it is done is as follows.

Process I is executed in the usual way from the shell. Process 1
then calls pipe twice to set up a two way communication channel. It
then calls fork and if fork returns zero it executes Process 2 using
execl and passes the file descriptors returned by pipe (one read and one
write) as arguments. The integer file descriptors should be converted
to ascii strings before passing them and then converted back to integers
by Process 2.

It will probably prove to be necessary for Process 1 to be able to
interrupt Process 2 while Process 2 is waiting for material from the
Host. This would have to be done using signal and kill. A description
of pipe, fork, execl, signal and kill can be found in chapter 2 of the
UNIX manual.

<6._1_.4_. Flow of Control in P2

Normaly P2 would run through a cycle as follows

1. Get next USP command from PI

2. Hold dialog with Host.

3. Send reply to PI

4. Goto 1.

Sometimes there would be no stage 2 but probably every command
should get a reply.

- 30 -

Occasionally it will be necessary to force P2 to stop waiting for
Input from the Host and to reply to a command. This could be done1 by
using an intercepted kill but this sort of interrupt would be kept for
emergencies.

6.1.5. The Universal Search Protocol

A suggested outline for the USP is described in Chapter 7.

A*JL*_6.# Notes

1 In addition to providing different versions of P2 for different
Hosts it would be possible to provide a P2 which actualy did
searches on its own database.

A'!.* Other Additions

There are a number of facilities we would have liked to have
included in cirt but either we didn't have time or there wasn't room.
These are listed below.

6_.2.1. Save and Restore

It would be useful to be able to save a search so that it can be
restored and completed at a later date. This could be used in conjunc­
tion with the Data-Star ..Off Continue command. There should be no
great difficulties but there are a number of different data structures
which would have to be saved. These include the search tree, the query,
the list of seen documents and a number of single parameters.

6.2.2. Term deletion and improved term addition

It might be useful to be able to delete query terms which have been
used in a search but this would involve extensive modification of the
search tree. This would be made simpler if instead of storing the
search as a number it could be stored as a string consisting of a
boolean combination of search numbers.

Another possibility which should be looked at but might prove
unworkable is the addition of new terms within the search tree. This
might prove more efficient for terms with low frequencies and high
weights.

A third possibility, mentioned in Chapter 3, is the addition of new
terms by ORing with existing terms in the search tree.

J^.2.3. Other search algorithms

At some time the Jamieson algorithm ought to be implemented on a
proper data base, if only for comparison. We think that it will remain
impossible to use the Morrissey algorithm, at least in the near future,
but people may well think of other promising algorithms.

- 31 -

^.2_.4_. Automatic query expansion

With the current search algorithm the possibilities for this are
rather limited but something should be done.

A*̂ .*̂ .- Other Databases on Data-Star

The main problem at the moment is that cirt expects a numerical
field in the AN paragraph. This applies to Medline but not to some
other databases (e.g. Inspec). To get round this either the document
identifier could be stored as a string or some sort of hash coding could
be used. There may also be other problems with as yet untried data
bases.

$Lm?L9—m Checking the X25 connection is up

The PAD program checks the state of the X25 connection before it
issues its first prompt and cirt should probably do the same. There is
a routine called 12trace in the X25 library which does it. Its source
code can be inspected in /x25/rel2/usr/src/netio.c. The source of the
PAD program would also help.

A*A*Z.# A l°6out: command

This would send a ..o [cont] to Data-Star and reset the data
structures.

.̂•A*̂ .* ^ Help Command

This clearly needs doing, as part of a more Nuser-friendly' front-
end (see below).

6_.̂ .9_. A_ Limit Command

This is a command to enter a query which will be AND'd with every
query sent to the Host. This effectively restricts the data-base to
those documents which are retrieved by the limit query. Unfortunately
it is intrinsic to our search algorithm that the limiting has to be done
before the search is started, whereas the Data-Star Limit command which
would be used by our limit command is called after the query is done.
This makes the implementation of a limit command a bit fiddly.

6_.̂_. Making cirt more user-friendly

Although fairly straightforward to use and having a simple command
language, cirt could certainly be made more user-friendly in a number of
ways. Cirt's own messages to the searcher tend to be terse, and could
perhaps do with some expansion. Certainly a Help command should be
implemented. The searcher should perhaps have more control over the way
the documents are displayed on the screen - e.g. an automatic title
display, with the abstract available on request.

The extent to which cirt is adapted in this direction must depend
on the kind of user envisaged, with a considerable difference between

- 32 -

trained intermediaries and end-users. Since the immediate plan is for
use by intermediaries (see Chapter 8), it is considered that the changes
required are not very extensive at this stage. Furthermore, the best
way to determine an appropriate set of changes to cirt would be to allow
an experienced intermediary to use the system over a period of time.

A-iL# Bugs

The treatment of truncated search terms which match more than 100
actual search terms could be considered to be a bug. It is certainly
unsatisfactory.

If a query gets garbled on the way out (this should never happen
but it seems to sometimes), then cirt doesn't notice.

The BREAK key doesn't always work properly when in TALK mode.

