
- 19 -

Chapter A_

The searching algorithm

[Note: This chapter has been written as a self-contained paper]

A*JL* Introduction

Much current work in 1R is concerned with the reconciliation of
Boolean and associative retrieval methods• One problem within this gen
eral area is the design of front-end systems which will organise a
weighted search into a series of Boolean search statements, which can
then be transmitted to a traditional Boolean search system. The front-
end system should then process the output of the Boolean searches, to
present documents to the user in rank order.

This paper presents an algorithm for generating an appropriate
series of Boolean search statements, and storing the results in an
appropriate form, for such a front-end. The algorithm presented has
some advantages over the two previously proposed.

A*A* Previous suggestions

The central problem is that for a request of any size, a very large
number of Boolean statements may theoretically be generated - in fact at
least 2**n - 1 for an n-term request. Many of these statements may
retrieve no documents. Jaraieson's (1979) approach is to select out a
number of the possibilities by doing initial term-pair searches: any
term-pair which retrieves no documents eliminates a whole series of more
complex statements.

Morrissey's (1981) approach, following earlier work by Harper
(1980), is to send only single-terra requests, and to bring back to the
front-end large sets of document identifiers. The front-end then per
forms the necessary comparisons between the sets to arrive at the ranked
list.

4/3/ Constraints on the present approach

The present algorithm was devised in the context of an experimental
front-end system, connected into the public packet-switched network and
interrogating a commercial on-line retrieval host.

In initial experimentation, it was found that requesting large sets
of document identifiers was out of the question for this particular
host, because the transmission of these sets over the network would take
an inordinate amount of time. (Clearly the host's software is designed
on the assumption that there is a human being at the other end, and no
serious attempt has therefore been made to speed up such processes
beyond a certain point.) This effectively eliminated Morrissey's
method.

- 20 -

It was decided, therefore, to adopt something closer to Jamieson's
approach. However, the present algorithm differs somewhat from
Jamieson's. Two particular considerations led to the present alterna
tive. It was thought desirable to have a more systematic way of elim
inating some of the possible search statements, perhaps using other cri
teria. There would also be some advantage in building up complex
Boolean searches stage by stage, rather than sending a complex statement
in one operation.

The result of these considerations is a backtracking algorithm
implemented as a recursive function, which explores and builds up a
tree-structure of Boolean searches, from the bottom up (Jamieson's might
be described as top-down). It bears some similarity to Weiss's (1981)
algorithm (but of course it uses an existing database and Boolean search
system, rather than requiring the database to be organised in a special
way).

4_.̂ _. Description of the algorithm

The root of the tree is the set of documents defined by ORing all
the terms. The basic procedure is to AND in each term in sequence
(decreasing weight sequence is appropriate, but not vital) and then to
backtrack, replacing each ANDed term by the same term NOTed, and explor
ing the corresponding branches. Thus the sequence for a three-term
request would be:-

A AB ABC
ABfJ

AJi Af*C
A W

A AB ABC

AB0
AJ4 AJ*c

A M
(where t is "not C M) .

However, some branches may not be fully explored. Criteria for
stopping exploration of a particular branch are:

(a) that the current search has retrieved no documents;

(b) that no document on the branch can exceed in matching-value
the x best documents found so far.

A formal description of the algorithm is given in section 4.8.

4_._̂ . Use of the algorithm

The algorithm as described can be used with any simple (sum of
weights) matching function. The terms would normally be sorted in
decreasing weight order (to maximise the extent to which large branches
can be excluded), and an initial search with all the terms ORed must be
performed. The results of the application of the algorithm, in the form
of a tree-structure as described, can form the basis for an algorithm
for presenting documents to the user in ranked order (clearly, this

- 21 -

involves additional commands to the host, to bring back details of the
documents).

Subsequent modifications to the request, in the form of (a) modi
fied weights, (b) additional terms, can be accommodated very easily.
Modified weights have the effect of modifying the matching values asso
ciated with each node; additional terms are added to the end of the
list, generating (potentially) two new nodes at the end of each branch.
In either case, the algorithm needs to be called up again, but many of
the results previously obtained can be used again without repeating
searches.

^.6_. Experiences

The algorithm has been implemented as part of a relevance feedback
system (weights are initially based on collection frequency and subse
quently on relevance data - Robertson and Sparck Jones, 1976; Croft and
Harper, 1979). It is written in C on an LSI 11/23 connected directly to
PSS, the British Telecom packet-switching network. It is designed to
interact with the Data-Star service of Radio-Suisse, using the Medline
database.

Clearly, a crucial aspect of such an algorithm is the length of
time it takes, which itself depends on the number of Boolean searches
which must be sent to the host. This is likely to be exponentially
related to the number of terms in the query.

On the assumption that it would be unreasonable to expect a user to
wait more than about five minutes for one search, our system is in
effect limited to queries of about 7 or 8 terras. Some sample .search
times are as follows:

4 terms: 50 seconds; 1 minute
6 terms: 2 minutes 20 seconds;2-40
8 terms: 5 minutes 30 seconds;6-20

(for these searches, the system was looking for the 15 best matching
documents). The second example in each case involved 12, 38 and 110
Boolean requests respectively.

4̂ 7_. Discussion

The algorithm presented exhibits some valuable positive features.
It is relatively simple (provided only that the programming language
allows recursive function definitions). Each search performed Is use
ful, in the sense that its results are stored and may subsequently be
used. In particular, it accommodates modifications to the request effi
ciently.

There are, however, some limitations. The size of the query
(number of terms) is clearly limited, if only by the time required to do
all the necessary searches (the implementation discussed is in fact lim
ited to eight terms). Further, the algorithm as described does not
allow term deletion; these two limitations taken together are fairly
severe.

- 22 -

It would clearly be possible to Implement a term-deletion algo
rithm; it would involve mapping one branch of the tree onto another,
node for node• But with the data-structure as presently defined, this
would involve some extra searching, A modification of the data-
structure which might obviate this necessity would be to replace the
search-set number by a string, which could be a search statement. This
change might also permit a speeding up of the main search algorithm, in
that the NOT nodes need not then be searched explicitly.

A further modification which might improve the efficiency of the
algorithm would be to include additional criteria for stopping the
exploration of a branch. In particular, a probablistic analysis might
be devised which would exclude large chunks, on the basis that they were
not likely to contain better documents than those found already.

It should be noted that we have not implemented Jamieson's original
algorithm, and have therefore not been able to make any direct comparis
ons as to efficiency. Some such comparison should be made in the
future.

A.•—• Appendix

This appendix presents the algorithm in the form of a recursive
function Rsearch.

The data structures required are a linked list of query terms and a
tree of search nodes. Each query term has associated with it:

Weight: the term weight
Num: the search set number of the single-term search

on the host
Next: a potnter to the next term

Each search node has associated with it:
Num: the search set number of the corresponding

search
Count: the number of documents retrieved by this

search
Wght: the Hatching value at this node (ie the total

of the corresponding term weights)
With: a pointer to the node which is derived from the

present node ANDed with the next query term
Wout: a pointer to the node which is derived from the

present node NOTed with the next query term.

Branches in the search tree are terminated by tags FREE or NULL in the
pointer position - FREE means "not yet searched"; NULL means "no docu
ments in this branch".

At each recursion of the Rsearch function, it starts from a node
that has already been searched (Prev), and performs the searches for the
corresponding With and Wout nodes. The call to the function passes a
pointer to the next query term Q and a pointer to Prev.

A second recursive function (Rmwt) is provided which finds the

- 23 -

matching values of the x top ranking document in the entire tree as
presently known. The matching value of the x'th ranked document is Mx.
Rsearch will not explore any branch of the tree which cannot yield any
documents with matching values better than Mx.

After a search is sent to the host, Result is the returned number
of documents retrieved; Nura is the search set number. Depth is the
current depth in the search tree.

Rsearch(Q,Prev,Depth)

if: Q is NULL (ie no more query terms)
then: return
if: Depth is one
then: call Rmwt
if: With is FREE
then: send search request "Prev-Num AND Q-Nura"

if: Result not zero
then: set With-Num = Num

set With-Count = Result
subtract Result from Prev-Count
set With-Wght = Prev-Wght + Q-Weight
set With-With, With-Wout = FREE
if: With-Wght > Mx
then: call Rmwt

else: set With = NULL
if: With not NULL
then: call Rsearch(Q-Next,With,Depth+l)

if: Wout is FREE
then: if: Prev-Count is zero

then: set Wout = NULL
else: set Total = Prev-Wght + weights of remaining terms

if: Total > Mx
then: set Wout-Count = Prev-Count

set Wout-Wght = Prev-Wght
set Prev-Count = zero
set Wout-With, Wout-Wout = FREE
if: With not NULL
then: send search request nPrev-Num not Q-Numn

set Wout-Num = Num
else: set Wout-Num = Prev-Num

if: Wout not NULL or FREE
then: call Rsearch(Q-Next,Wout,Depth+l)
return

The algorithm as presented works for repeated searches on the same
request, with new weights or new terms added, doing only those addi
tional searches that are needed (using the results of previous searches
where it can). For new terms, some preliminary work needs to be done,
in particular the base set has to be expanded (the additional documents
have to go in at the end of the Wout-Wout-Wout... chain).

- 24 -

The implemented version includes some additional data and opera
tions :

The node data includes Braap (a bit-map of the search pattern -
terms present and absent) and Print (the number of documents
already seen by the user). Both of these have to be adjusted by
Rsearch. If a node that has already been searched is split by the
addition of a new term, it must be assumed that none of the docu
ments at the new nodes have been seen, since the program does not
know to which of the new nodes the seen documents belong. Print is
used by Rmwt, which tries to find the matching values of the x top
ranking unseen documents.

Rsearch displays a representation of the tree as it goes along.

Query term data includes Searched (whether or not this term has yet
been reached by Rsearch), which is used to decide how to introduce
new terms into the list.

In order to conserve space, the implemented version allocates space
for the data associated with each node as it creates that node.

