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Section B : Statistical methods of determining relevance assessment 

requirements 

This section constitutes the main body of the Report, It is devoted 

primarily to the detailed presentation, in technical terms, of the statistical 

methods considered for determining relevance assessment requirements. The 

presentation is intended to be comprehensive and self-contained. But since 

it is recognised that some at least of these interested in the 'ideal1 

collection may not be statistically trained, an attempt has been made to 

provide separate, brief, Noddy-style accounts of the arguments as prefaces 

to the full presentation of each main method*. One of the methods, the 'Pool1 

method, was initially put forward in the design study report. This is 

therefore examined first. The other methods investigated, and in particular 

the main alternative 'Squares' method, are then described, and the Pool and 

Squares methods are compared. These methods are designed to provide 

assessments for future experiments comparing two indexing or searching 

strategies, and the section concludes with a discussion of approaches to 

assessment for multi-strategy comparisons. The structure of the section is 

therefore as follows. 

Bl Preface: note on the work proposed in the grant application, and 

its actual conduct by H. Gilbert. 

B2 The Pool method. 

B3 Other methods : dead ends. 

B4 The Squares method. 

B5 Comparison between the Pool and Squares methods. 

B6 Multi-strategy comparisons. 

B1 Preface: the re search propos ed_ _ a_nd _ i ts conduct 

The application was for a small grant to support a trained statistician 

for three months to carry out the following pieces of work: 

* There is thus a certain amount of repetition, but it was thought that this 
was acceptable in the interests of self-contained non-specialist and 
specialist presentations. 
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a) to approach the relevance assessment problem from first principles i) to 

check the initial approach of the design study report (Sparck Jones and 

Bates (1977)) and either confirm it or present an alternative; and ii) to work 

out the consequent detailed figures for the numbers of assessments required 

in different circumstances. This was envisaged as analytic work based on the 

assumptions originally made, and in particular on two strong assumptions, 

namely that at building time the searches could be guaranteed to draw out all 

the relevant documents for a request, and all the documents which would be 

retrieved in any sensible search. 

b) to develop the argument to cover the cases where these assumptions are 

weakened, as they certainly should be, i.e. to allow for only most (some 

specified percentage) of the relevant or possible output documents being 

retrieved. This development could perhaps be pushed through analytically, or 

could involve some fairly straightforward computer simulation using standard 

statistical packages. Again detailed figures should be derived. 

In general, where appropriate, tests with available collections should be 

conducted to check the statistical arguments. 

The work has been carried out by H. Gilbert, a graduate student from the 

University Statistical Laboratory, with advice from Dr. P. Altham of that 

Laboratory, and from Dr. S.E. Robertson and Dr. C.J. van Rijsbergen. In 

general the conduct of the project has been as proposed: the main difference 

has been that a range of methods has been considered, even though the study 

of the initial method confirmed the arguments on which it is based. 

The project work can be split into two parts. Firstly, a detailed 

examination was made of the method of the design study report, here referred 

to as the Pool method. This examination took the form of tightening the 

assumptions made and improving the accuracy of the figures produced. Secondly, 

alternative methods were considered in the hope of finding one which reduces 

the number of assessments required. Of these alternatives two are presented 

in detail, one of which was abandoned for reasons stated in chapter B3 and 

the other, referred to as the Squares method, is presented as a viable 

alternative in chapter B4. The search for a suitable method of obtaining 

assessments involved a fairly extensive literature survey, so the discussion 

of approaches to assessment in this report is hopefully a comprehensive one. 
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Any lengthy tables have been relegated to Appendix 1, while the 

computing which the work involved is discussed in Appendix 2. 

Bl.l General requirement 

The main criterion used when calculating the sample size required to be 

assessed is that it should be large enough to make a comparison between any 

two retrieval strategies meaningful. 

Meaningful has a specialised interpretation here which is centred on the 

statistical concepts of significance level and power_. 

Suppose that we wish to test the hypothesis that there is no difference 

in recall between strategies A and B for a set of requests against the 

alternative hypothesis that strategy A is better. Denote the first hypothesis, 

the null hypothesis, by H . Then there are two possible mistakes which could 

be made 

(i) H could be rejected when it is, in fact, true 

(ii) H could be accepted when it is false. 

Clearly it is desirable in any statistical test to place an upper bound 

on the probabilities of these events occurring. The significance level of a 

test refers to the upper bound on the probability of event (i) occurring. 

Equivalent to placing an upper bound on the probability of event (ii) occurring 

is placing a lower bound on the probability of rejecting H when it is false. 

This probability is known as the power of the test. 

The calculations in the remainder of section B are based on a significance 

level of 0.05(or 0.01) and a power of 0.95. 

In general this means that the probability of making an incorrect decision 

has been reduced to an acceptable level. 

For example, it will be shown later (see Table 1) that if we have 

300 requests and an average of 25 relevant or retrieved documents per request, 

then if we wish the probability of error(i) (and the probability of error(ii)) 

occurring to be less than 0.05, there must have been 15 documents of known 
(defined as A better than B) 

relevance status assessed and the number of successes/friust be greater than 167. 

To achieve the 15 known documents 60% of the post must have been assessed. 
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B2 The Pool method 

B.2.1 Non-statistical summary 

The method discussed below is referred to for convenience as the 

Pool method. The argument for it is basically the same as that used in the 

design study report, with some alterations and improvements. 

One of the major changes from the original argument is that the strong 

assumptions concerning the output of possible future searches and the 

percentage of relevant documents contained in the pool are no longer 

necessary. The cost of discarding these assumptions is that instead of the 

argument resulting in what percentage of the pool should be assessed per 

request, it results in saying how many documents should be assessed given 

that the pool size is N. That is, for each different size of pool a 

separate calculation must be performed to reveal the number of documents to 

be assessed. 

A rough, non-statistical outline of the argument is as follows: 

suppose that there are k requests in the request set and that we wish 

to compare strategies A and B for this set. Then these k requests are thought 

of as k trials and in each trial the recall (or alternatively precision) 

value of strategies A and B are compared. To compare two strategies only the 

part of each output which has been assessed is considered. Note that the 

recall value is the probability of a document being retrieved given that it 

is relevant and the precision value is the probability of a document being 

relevant given that it is retrieved. 

Next it is noted on how many trials the recall (precision) value of A 

is better than the corresponding value of B. This number is then tested to 

see if it is likely to have arisen just through the variation due to sampling 

or whether it represents a real difference between the strategies. If the 

latter is the case then A is said to be better than B. 

Clearly, for the comparison between A and B (typically in future 

experiments using the 'ideal1 collection) to be valid on this basis, the 

assessed sample must be adequate. This assessment sample would be drawn from 
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the pooled output of searches done when the collection was built, and in the 

design study report it was assumed that the pool would contain the output of 

any future strategies and all relevant documents for a request. The pool 

could thus be quite large, but for increasingly large request sets it was 

found that progressively smaller samples would need assessment. The argument 

to establish the percentage sample required for a given request set size was 

essentially as follows. It works backwards from the way, described above, 

the assessments are to be used. 

We assume that what we are trying to establish is that there is a 

significant difference between two probabilities (or two proportions), based 

on sample estimates of them. That is we wish to show that there is a 

significant difference between recall, or alternatively precision, expressed 

as a probability, for two strategies A and B, given the results of applying A 

and B for a set of requests; the difference itself is to be analysed in terms 

of probabilities, respectively that strategy A is better than B (Prob(A>B)) 

and B better than A (Prob(B>A)). The sets of search results are regarded as 

samples because, as we cannot have exhaustive assessments, we compare A and B 

for each request with respect to a collection subset consisting of documents 

of known relevance status. (Notice that this will ordinarily be a subset of the 

sets of documents actually retrieved by A and B.) We therefore need to know 

how large this evaluation sample must be for a valid comparison between A 

and B for any request and hence over all requests, and further to know what 

size of assessment sample of the pool is required to ensure that the outputs 

of any strategies A and B respectively will contain large enough valuation 

samples. Different sizes of evaluation and assessment sample will be required 

for different sizes of request set and of germane document set, as described 

below. It must moreover be emphasised that while the formal argument for sample 

size is the same for recall and for precision, the evaluation sample for recall 

must consist only of relevant documents, while for precision the documents may 

be either relevant or non-relevant. The expression "documents of known relevance 

status" will be used to cover both cases where a specific distinction is not 

required, but the underlying difference between the two should be borne in mind. 

For the purposes of discussion we regard an occurence of A>B as a success. 

To characterise the probability distribution of successes we use the normal 

approximation to the binomial distribution. As a significance test to be applied 
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to our comparison between A and B we choos.e the sign test because it makes 

few a priori assumptions about the data. For the two strategies we order 

each request in terms of effectiveness, i.e. the effectiveness of a request 

under A > its effectiveness under B. Effectiveness here is either precision 

or recall, which are regarded as probabilities. The null hypothesis, H , is 
o 

that there is no difference between A and B for the set of requests, 
i.e. Prob(A>B) = Prob(B>A) = h. Since the test is based on the binomial 

distribution we can use the normal approximation in an entirely standard way 

to find the critical region for the test, that is, that value of the 

standardised normal variable which needs to be exceeded for H to be rejected 
o 

at 5% significance level. If k is the number of requests, and x the number of 
successes, then under H : Prob(A>B) = Prob(B>A) = h and we get 

o 
2 X " k * N(0,1) 

/k 

Using normal tables we then find 

2x - k 
> 2 

A 
gives 5% significance. This means, for example, that if k = 100 (requests), 

we must have at least 60 successes, i.e. 60 requests where A>B for either 

recall or precision, whichever we are using. 

Proceeding as just described would be all that was necessary if there 

were no uncertainties about the probabilities being compared, that is no 

uncertainty about recall or precision for each request, because strategy 

output could be related to global assessment information. Unfortunately it 

cannot, as this information is lacking, and we are in fact trying to decide 

whether A>B or B>A on the basis of two samples, one for A and one for B. 

Because requests differ, the difference between A and B will vary across the 

request set. So even if there is a real difference between A and B, it will 

be obscured, and even more so if the evaluation samples for the requests are 

unreliable due to size, or to bias in the assessment samples from which they 

are derived. Clearly if the samples for the requests are infinite (very large), 

the difference between A and B over the set can be confidently established; 

but such sampling is exactly what is not feasible. 

We therefore first assume that the probabilities we are trying to 

estimate, i.e. recall or precision, are constant over requests, that is that 
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the number or relevant documents or of retrieved documents are the same for 

all requests. This is clearly artificial, but may be interpreted from a 

practical point of view as referring to averages. We can then calculate the 

minimum evaluation sample size for each (and hence every) request necessary 

for the sign test to show a significant difference. This in turn requires 

an assumed real difference between the two strategies. The bigger the real 

difference, the smaller the sample size needed to reflect it; however prudence 

suggests assuming a small real difference, which may be taken, conventionally, 

as 5%, i.e. p - p = 5%. For the calculation a standard sampling theorem 

for differences, again allowing the use of the normal approximation to the 

binomial distribution, can be utilised. For a given real difference of 5% 

and some given (evaluation) sample size n, the theorem gives us P(x >x ), 
A B 

i.e. the probability of recall (or precision) for A being greater than that 

for B. Conversely, for given P(x >x ) we can derive the sample size n 
A B 

required to achieve P. Then as constancy across requests is being assumed, 

we can obtain, for P, the expected number of requests with A>B; or conversely, 

if we take as our expected number that number required by the sign test, as 

described above, we can work backwards to determine the sample size needed to 

achieve this expected number of requests with A>B. Thus for the example 

above with 300 requests, and an expected number of requests with A>B = 167, 

we would need an evaluation sample of 15 documents of known relevance status. 

However if we design our data for this expected proportion of successes, 

this is not sufficient because of the uncertainty introduced by the fact that 

we are sampling. That is, while our evaluation sample may in principle be 

adequate to tell us whether we have the required number of successes, in 

practice we cannot rely on accurate enough data to obtain the required 

evaluation sample in our output more than half the time. If we provide 

ourselves with a larger evaluation sample, supplying in principle more 

information than we need, we have a better chance of obtaining enough actual 

information in practice. In other words, referring back to the discussion 

of the significance test, in designing for the expected number, we may in 

practice find that the number of A,s>B,s will fall below the critical value 

represented by this number 50% of the time. We would in fact like a higher 

chance of significance in our results, i.e. a higher ck nee of rejecting the 

null hypothesis if it is indeed false (so p - p = 5% is true). This can 
A B 

only be done by increasing the probability of P(x >x ), which means increasing 
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the evaluation sample size- Specifically we. want to ensure a 95% chance 

when p - p — 5% that the number of A,s>B,s exceeds the critical value. 

We thus ask for what value P(x >x ) will it be the case that there is a 
A B 

95% chance of significance rather than only a 50% chance. We use the normal 

approximation -to the binomial, as before, to obtain this value, and hence the 

required size of evaluation sample. 

Once we have the sample size we can use it in a straightforward way 

to calculate the percentage of the pool to be assessed, and so can draw a 

random assessment sample from each request pool as appropriate. This is done 

by relating the number of specific documents with known relevance status of 

the evaluation sample to the presumed or known total number of documents 

associated with a request. For the computation of recall the latter is the 

total of relevant documents, for precision the total of retrieved documents 

for any strategy. Table 0 gives an illustrative selection of the somewhat 

crudely calculated figures of the design study report, to show how the argument 

works out in practice, throughout interpreting the constant figures of the 

statistical argument as averages. For example we see that for 5% significance 

and 500 requests, given 9 known relevance status documents and a total of 

50 relevant or retrieved documents per request, 18% of the pool needs 

assessment; for 300 requests and 15 known, 30% needs assessment. Thus if the 

pool obtained for requests in building the 'ideal1 collection contained 

1000 documents, this would imply assessment of a random sample of 180 documents 

in the first case and 300 in the second. 

In practice slightly different consequences ensue according to whether 

we are interested in recall or precision, because we are concerned with 

different document sets, the relevant and the retrieved, respectively, and 

these are normally different. If they were identical, as above, the same 

percentage of the pool would have to be assessed. However as the former is 

usually smaller this implies, for a given known relevant sample, a higher 

percentage assessment. Recall thus imposes more stringent requirements for 

assessment than precision, and should so be used in considering collection 

building effort. 
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As will be shown in the technical discussion, paragraph 2-2.2, the 

essential argument for the Pool method can be developed without the use of 

the two assumptions about the nature, but not size of the pool, but as a 

tradeoff a specific pool size must be given. 

For reference the complete set of assumptions underlying the whole 

argument as originally presented in the design study report may be summarised 

as follows, 

1 for future experiments comparing strategies A and B 

1 we evaluate using recall and precision; 
2 recall and precision are probabilities estimated by proportions 

based on samples; 
3 we use the sign test for validating performance differences; 
4 a percentage difference, say of 5%, between A and B, in recall or 

precision, is indicated by Prob - Prob = 5%; 
5 a normal sampling distribution for difference of proportions; 
6 a normal approximation to the binomial distribution for the power 

of the sign test. 

2 f or_ assessment data 

1 all relevant documents are contained in the pool; 
2 the output of A, and of B, is contained in the pool; 
3 a sample from the pool is a random sample; 
4 a pool random sample is also a strategy output random sample. 

3 for request data in evaluation and assessment 

1 the requests are independent; 
2 the probability of finding strategy A better than strategy B is constant 

across requests. 

The detailed analysis which follows confirms that the original argument 

for the Pool method was essentially correct, and that the detailed figures given 

in the design study report were relatively accurate. More carefully worked 

figures were derived, and are given in Table 1. With respect to the assumptions 

given above, those about the evaluation methodology were perforce retained. 

For the assessment data, the strong assumptions 2.1 and 2.2 could, as mentioned, 

be jettisoned. Overall, the really important assumptions are those about the 

requests, 3.1 and 3.2, and these cannot be avoided. 
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B2.2 Statistical presentation 

B2.2.1 Scrutiny of design study argument 

The experimental design assumed was that each of the two strategies 

was applied to a set of requests. The sign test was then used. That is, 

suppose there are k requests: then let n. be the number of assessed docu-
•f-V» 

ments relevant to the i request, a. and b, be the number of documents 
th 1 1 

relevant to the i request retrieved by strategies A ans B respectively 

(i = l,2,..fk), and let n , n be the number of documents retrieved by stra

tegies A and B respectively. 

The recall and precision values for strategy A can then be estimated 
a. a, 

by the proportions — and — respectively. So A is considered to, be better 
th n' nA a. b. 

than B for the i request (using the recall criterion) if — > — (that is, 
n, n 

a. > b.) . ... 1 l 

I l 

Define the random variable X. (i = l,..,k) such that 
l 

C 1 if a. > b, 

X = [ x 1 

i ( 0 otherwise. 
Then the sign test refers E X. to Bi(k,^). (1) 
The reason for this is that, if the statement H is assumed to be true 

o 
(H = that there is no difference between the strategies), then P(a > b ) 
o i I 

(= probability that a. > b.) - P(b. > a.) = *a for i = l,..,k. 
1 1 1 1 

From (1) the probability of any specific value of EX. occurring, given 

that H is true, can be obtained. If this probability is below the signifi

cance level of the test (and is therefore unlikely to have occurred due to 

sampling variation), then H is rejected in favour of A being better than 

• / ° 
B if EX. is large, and in favour of B being better than A if EX. is small. 

1 l 

Having decided on using the sign test the next stage was to find out 

the minimum number of requests for which strategy A would have to be better 

than strategy B in order to reject H in favour of A being better than B 

(at the 5% [or 1%] significance level). 

The way that this was done in the design study was to use the normal 
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approximation to the binomial distribution, that is: 

as k -> - , X ~ k p — a, N(0,1) (2) 
•kp(l - pf 

where x is the number of successes (that is, the number of requests on 

which A was better than B), and p is the probability of success (that is, 

P(a. > b.) for recall^ which is assumed to be constant over the request set. 

An improvement which was made here was to introduce the correction 

for continuity. This correction is necessary since the normal distribution 

is for a continuous variable while the binomial distribution involves a 

discrete variable. Regarding the observed frequency x as occupying an inter

val, the lower limit of which is half a unit below the observed frequency 

while the upper limit is half a unit above the observed frequency, the cor

rection consists of reducing by 0.5 the difference between the observed 

value of x and the expected value of x (kp). 

So (2) is replaced by 

( x i ° - 5 ) - - ^ N ( 0 , 1 ) . 
Sk/4 

(Note that p = h since we are assuming that H is true.) Clearly A would 

not be deemed better than B if x < hk, so it follows that x can be assumed 

to be larger than hk and so we have 

(x - 0,5) - hk ,„ ,, 
z = — ^ N (0,1) 

/k/4 

Using, the tables of the normal distribution (Cambridge Statistical 

Tables) it can be seen that H is rejected in favour of A being better than 
o 

B at the 5% significance level if 

X - °'5 " ^ k > 1.96 . 
yfk/l 

That is 

1.96/k + k + 1 
x > . 

Similarly H would be rejected at the 1% level if 
o 

2.58/k + k + 1 
x > 

This calculation provides us with column three of Table 1 (see 

Appendix 1). 
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Now that an upper bound on the probability of mistakenly rejecting 

H has been established we turn to placing a lower bound on the probability 

of correctly rejecting H , that is, on the power of the test. In this 
o 

particular case 0.95 is the lower bound which was chosen. That isr we now 

have to find the value of p (=p , say) such that 

• P(X> ^ V ^ V P ) ,0.95, Vp.p . 
1 o 

Define 

r1.96/k + k + 1-
x = [ ] 
c 2 

(the integral part); then, since x can only take integer values we require 

p such that 
o 

P(x > x / p) > 0.95, Vp > p 
c o 

That is, 
x - 0.5 - kp 

P(z > / p) > 0.95, Vp > p 
/kp(l - kp) ° 

where z ̂  N(0,1). 

This value can be found by experimenting with different values of 

p and using a set of tables of the standardised normal distribution. Hence 

the fourth column of Table 1 is obtained. 

Column five lists the values of the sample size required to identify 

a difference between the two strategies with 95% power and 5% (1%) signi

ficance. To obtain this column we need to use the following sampling theo

rem which can be found in Hoel (1971), p. 135. Since the pool is being 

sampled, the observed values of the recall (precision) proportion for 

strategies A and B are random variables. So let p and p represent the 

observed values based on n and n trials respectively, for a particular 

request, from two binomial populations with probability p and p res-
A B 

pectively. Then p and p denote the true recall (precision) values for 
A B 

strategies A and B. Applying the central limit theorem we obtain: 

Theorem 

When the number of trials n and n are sufficiently large (say, >25) 

or £> and j5 are normally distributed with mean y^ „ = p, - p_ 
*A *B ' ^PA - p *A *B 

(note that p - p denoted the true difference in recall [precision] be

tween strategies A and B) and variance 

? 
u p^ ' 
^A 

^ 
" P~ 

*B 

P A q A P B q B 
= + 

n^ n ^ A B 

where q = 1 - p . In the recall case n = n = the number of documents 
^A *A A B 
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which are relevant to the particular request, while in the case of pre
cision n and n an 

A B 
and B respectively. 

cision n and n are the number of documents retrieved by strategies A 

In the argument of the design study report it was then tacitly 

assumed that n = n = n, say. This assumption clearly holds for recall 

since the number of documents relevant to any particular request is in

dependent of which strategy is searching for them (remembering that we 

are dealing with documents which have already been assessed). However 

in the case of precision the assumption is saying that the number of 

assessed documents retrieved by each strategy is the same, which is clearly 

not a realistic assumption. 

The assumption can be avoided by defining n = min(n , n ). We now 
A B 

define 

a. b. 

(— - — ) - (PA " P j 
n n A B 
A B 

y,
PAqA P B % 

/( +- ) 
n n_ 
A B 

where a. and b. were defined on page BIO. Then z ̂  N(0,1) (by the theorem) 

Then we must choose n such that P(a. > b.) > p (see column four of Table 
1 1 o 

1) so that we have 95% power. Unless we assume a lower limit on the real 

difference in recall (precision), that is p - p , we are unable to do 
A B 

this, so assume that p - p > 0.05. 
^A *B 

We enlarge here upon the argument for precision, since the argument 

for recall is the same (with n = n ). 
A B 

Now 
a. b. 

, x 1 ^ / -0.05 
P(— > 0) = P( z > 

But we do not know the values of p and p r so we must use the inequality 
A B 

obtained by simple calculus, that p a < h, PDqo ^ h. This inequality is 
A A B D 

not too crude, since for h < p < h , pq only varies over the range 

(0.187, 0.250). 
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then 

Therefore , 

P ( z 

p ( Z 

i f 

> 

> 

-0 .5 /2n) 

- 0 . 

yAqA 

^ o 

05 , 
P R q R 

B 

(3) 

> i P o 

Using the tables of the normal distribution we can find the smallest 

value of n satisfying (3). If the recall criterion is being used, n is 

equivalent to the number of assessed relevant documents, and if we are 

considering precision then n is the number of assessed documents retrieved 

by a strategy. 

If exhaustive relevance judgement was possible then the above argu

ment would be sufficient, with n denoting the number of documents of known 

relevance status per request. That is, given the number of requests avail

able, the above argument obtains the minimum number of relevant documents 

in the case of recall, or retrieved documents in the case of precision, 

which must be assessed so that the result holds at the 5% significance 

level. This calculation was carried out in detail and Table 2 and Figure 

1 were constructed. 

Table 2(a) indicates how many requests are required so that a result 

can be obtained at the 5% (1%) significance level with 95% power, given 

the minimum number of documents of known relevance status (minimised over 

the request set). 

The reverse requirement, how many documents are required for a 

given number of requests, is shown in Table 2(b). For example, if there 

are 200 requests, then unless each request has at least 21 documents of 

known status a result cannot be obtained at the 5% significance level. 

Note that these figures only concern those experiments where the 

sign test is used to analyse the results. An alternative to the sign 

test is presented in chapter B4. 

PAqA PB qB 
In the theorem above it was stated that var (p - 6 ) = + . 

A B n n_ 
A R 

McNemar (1947) points out that this only holds when the samples from 

which the proportions p and p are drawn from are independent. In this 
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case however, since the two strategies search the same set of documents, 

there is a definite correlation between p and p . This correlation results 
A B 

in a decrease in the variance, which would mean that the values of n ob

tained in column five of Table 1 are slightly on the large size. 

B2.2.2 Improved sampling rationale: the modified Pool method 

In the argument used in the design study report, after n is calcu

lated, the percentage of the pool required to be assessed in order to 

have, say, n documents of known relevance status assessed is calculated. 

The way this was done was to say that, for recall, if one has K relevant 

documents altogether in the set and it is required to have n assessed 

then, if it is assumed that all the relevant documents are in the pool, 

one should estimate 100 x — % of the pool. For the precision criterion 
K 

the parallel argument assumes that all the output of future searches is 

contained in the pool. However, when the specified proportion is assessed 

then very often n required documents would not be obtained in the sample, 

since n is only the number which one would expect to obtain. 

An alternative method which gives more chance of obtaining the 

required number of documents of known relevance status is the following. 

Putting it in terms of recall, suppose that we have observed N documents 

in the pool, K of which are relevant, and suppose that at least n of 

these K must be assessed. Then, if a simple random sample of size S is 

taken for assessment, the probability that at least n relevant documents 

are contained in this sample is 

min(S,K) __ 
I (K) (* _ K) 

¥—H - — (hypergeometric distribution) 

(N) 
n 

where ( ) = 
n (N-n)!n! 

Therefore S can be chosen such that the probability of having assessed 

n relevant documents is at least 0.95. Table 3 lists the values of S for 

various values of N, K and n. In order to construct the table, a program 

was written in standard FORTRAN (see Appendix 2). (Note that the level 

of confidence is a user-controlled parameter of the program. We illus

trate the results of setting it to 95% but it could of course be set 

lower.) 



B16 

Note that this argument does not require any assumptions about the 

output of future strategies or whether or not all the relevant documents 

are in the pool; also, one can say with greater confidence that the re

quired number of relevant documents have been assessed. For reasons given 

in Appendix 2, there is small error in each of the figures, but it is 

still safe to use them provided the lower bound of 0.95 is taken as 

approximate (0.93 - 0.97). 

As an example, consider the case when there are 300 requests and the 

significance level is taken to be 5%. Then Table 1 states that 15 relevant 

documents are required to be assessed, and that if there are 25 relevant 

documents altogether then 60% of the pool should be assessed. 

However, if there are 1000 documents in the pool and 600 of them are 

assessed, then Table 3 states that we can only be "95% confident" that 11 

relevant documents have been assessed, and that at least 729 documents 

would have to be assessed to be equally confident of assessing 15 relevant 

documents. 

B2.2.3 Accuracy of estimators 

As was mentioned earlier, p and p are observed estimates of the 

true proportions p and p . If these estimates are required to have a cer

tain accuracy then this places another lower bound on the number of rele

vant documents to be assessed for recall or the number of documents re

trieved for precision. 

So suppose that n is to be chosen to ensure that 

P( lpA - PAI > d) < a (4) 

where d and a are small and 

A 

Assume, for the moment, that — (the sampling fraction) is small enough 
A N 

that 1 - — can be approximated by 1, and that N is large enough that 

is close to 1. Then 

z -
PA ' P A 

/ p A q A 
n 

A 

% N ( 0 , ,1 ) 
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So n must be chosen such that 
A 

P( |z| > — ^ — ) < a 

nA 

That is, 

d 

/p q 

n 
A 

> z 
a 

where z. is the double-tailed a-point of N(0,1). That is, p(|z| > z. ) = a, 

and it can be found from the tables. So 

2 
p q z 

^ ^A^A a 
n > 
A " .2 

The problem now is that p and q are unknown .but we know that p q 
A A A A 

has a maximum value of h, so taking 
2 

z . a 
n > 

4d 

will certainly satisfy the accuracy requirements of (4). 

If the sampling fraction is large enough that it has to be retained 

then 

n Np q 
var(p) = (1 - — ) N (N - l)n 

So to satisfy P( |p - p I > d) < a we need 

P A V , lr
PAqA „4-l 

(1 + H - ^ ^ - ID (5) 
A v N v 

where 

v = (—) 
z 
a 

(5) is not directly applicable since p is not known precisely. Again this 

can be overcome by replacing p q by \ . These calculations were performed 
Pi r\ in detail and tabulated in Table 4. 

Note that whenever we have used the inequality PAqA - ^ alternative 

forms of action could be 

1) perform a pilot study to yield a preliminary estimate of p , or 

2) earlier experimental work using strategy A may give an indication of 

the true value of p in this case. 
A 
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B2.2.4 Weakening the pool assumptions 

In paragraph B2.2.1 of the foregoing the Pool method was presented 

using the strong assumptions of the design study report to the effect that 

the pool contains all relevant and retrieved documents. In paragraph B2.2.2 

it was shown that these assumptions could be abandoned at the cost of having 

some specific pool size, i.e. knowing the pool size and calculating the 

assessment sample accordingly. The effect of weakening the assumptions with

out abandoning them altogether was therefore investigated to see what this 

would imply for assessment. Table 5 gives the percentage of the pool re

quired if only 90% of the relevant documents (or of the search output) is 

deemed to be in the pool. Weakening the assumptions presents no difficulties 

for the general structure of the argument, and does not have any very drastic 

effects on the numbers of documents requiring assessment, especially for 

larger numbers of relevant or retrieved documents. For example, for recall 

for 300 requests and 25 relevant documents, assuming only 90% coverage in 

the pool implies a 66.7% assessment sample rather than a 60% one. In gen

eral weakening the assumptions to the indicated extent means that the per

centage of the pool to be assessed increases by up to 10 percent, which in 

practice would probably, not be too costly. 

B2.2.5 Conclusion on the Pool method 

The argument presented in the design study report is statistically 

correct given that the assumptions hold; but the way in which the per

centage of the pool required for assessment is calculated can be improved 

on, as indicated. Further, the original assumption set can be reduced: 

specifically the assumptions about the content of the pool are not requir

ed. The important assumptions which are still required are therefore: 

3.1 the requests are independent; 

3.2 P(a. > b.) is constant for i = l,..,k. 

Assumption 3.2 that P(A > B) is constant across requests is clearly unlike

ly to be true, and if it were not then our calculations for column three 

of Table 1 would be invalidf although for the moment this assumption is 

sufficient to enable us to obtain an idea of the magnitude of the sample 

size required to be assessed. 

Also, in the case when there are only 5 or 10 documents of known 
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relevance status the sampling theorem cannot be used unless it is assumed 

that £>A and p g are normally distributed. How confidently this assumption 

can be made is a question which anyone using the sign test with a small 

number of documents of known status should consider carefully. 

As assumption 3.2 is somewhat unrealistic, alternative methods not 

requiring it or other equally strong assumptions were sought. The inves

tigation of alternatives was also stimulated by the desire to simply re

duce the number of assessments required, in order to lower the cost of 

building the 'ideal1 collection. The lines of work undertaken are describ

ed in the following chapter. 

B3 Other methods: dead ends 

This section is concerned mainly with methods which were investigated 

which turned out turned out to be unsatisfactory. One of the main diffi

culties was the fact that most tests applicable are conditional but in 

this situation no data is available, since we require to know the sample 

size to be assessed before the search strategies are applied. 

The first approach was a rather lengthy literature survey to see if 

this problem(or an analogous one) had been considered elsewhere. This proved 

to be virtually fruitless. In particular the type of paper which was looked 

at was that dealing with 2x2 contingency tables, since these were thought 

to be the most informative way of tabulating data. A typical example of 

such a table for the present retrieval context would be the following. 

retrieved 
by B 

not retrieved 
by B 

retrieved 
by A 

not retrieved 
by A 

a. 
1 

b . 
1 

a . + b . 
l l ! 

L - . i 

1 
c . 

l 

d. 

» ^ i — - — _ - _ — , — i ", i i i "i 

c . + d . 
l l 

a. + c . 
l l 

b . + d . 
l l 

n. 
! 1 

(1) 

where a. is the number of relevant documents (for the i request) re

trieved by strategies A and B, b. is the number of relevant documents 

retrieved by strategy B but not by strategy A, etc. An analogous table 
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could be constructed for non-relevant documents. 

B3.1 Logistic model 

One way of approaching the problem using this technique is to con

struct such-a table for each request and to be left with a series of 2x2 

contingency tables. Cox (1970) analyses a series of 2x2 tables resulting 

from two independent samples. However, as was pointed out earlier, here 

the samples are not independent (since both strategies search the same 

document set), and so Cox's method could not be applied directly. To over

come this we made use of the logistic model which is outlined below. 

Suppose there are k requests, and let n. denote the number of docu

ments relevant to the i request. 

Define 

13 

( 1 if the j document relevant to the i request 
is retrieved by strategy A 

( 0 otherwise 

and 

y i j 

I — l,..,k, j — 1,..,n., 

( 1 if the j document relevant to the i request 
t is retrieved by strategy B 

( 0 otherwise 

i = 1,..,k, j = 1,..,n 

Then assume the following model 
P(x. . = 1) 

log ̂ -i -—-
P(x. . = 0) ID 

JL,..,n., 1 _L , • • , K 

log p ( ~J
 = Q ) = -6 + A j = l,..,n±, i = l,..,k, 

ij 

which assumes that the difference between A and B is constant (on the logis

tic scale) across requests. Note that the parameter 6 can be thought of as 

the 'strategy1 effect and A. . can be thought of as the 'document' effect. 

So, it follows that 

P(xi.,y.j) = 
(6 + X. .)x. . (-6 + A. .)y. . 

e 13 13 

6 + X. ,x /n -6 + X. ., 
(1 + e ij) (1 4 e 13) 

(assuming x.., y.. are independent) 

So 
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P(x,y 6,A..) = ±2l JlJ P(xij,y.j / 6,A..) 

6(x.. - y..) SEA..(x.. + y. .) 
e e 13 13 13 

^i /-, S + X . . v ,„ -6 + A . ., 
.n. .n. (1 + e 13) (1 + e 13) 
1=1 3=1 

where x.. = .E .x . ., y.. = . E .y. .. 
i,D ID 1/3 ID 

Therefore the distribution of (x.. - y..)/(x.. + y.., i = 1,..,k, 3 = 1,..,n.) 
13 13 1 

depends only on 6. So we should consider the distribution of 
x.. (x.. + y.., i = 1,..,k, j = 1,..,n.). So we seek the distribution of the 

13 13 1 
sum of independent variables. 

If x. . + y. . = 0 the x. . = 0, and if x. . + y. . = 2 then x. . = 1, so it 
ID ID ID ID ID ID 

is sufficient to consider the distribution of 

i5j: Xij 7 ^ij + YiJ' 1 = 1 " - k ' j = 1 ' - ' n i ) * 
x. ,+y. .=1 
iD ID ' 

This is equivalent to considering the distribution of 

k 
Eb. / (b. + c., i = l,..,k) (see (1)). 
1 x x X 

It is easily seen that 
6 

P(x. . = 1 / x.. + y.. = 1) = —r-^ -r 
13 13 13 6 -6 
J J J e + e 

and so, on the null hypothesis that there is no difference in perfor

mance between the strategies ( 6 = 0 ) we obtain that 
b. / (b. + c.) % Bi(b. + c.,h) 
1 1 1 1 1 

Given (b, 4- c., i = l,..,k), bf..b_ are independent; thus 
1 1 I k 

k k 
Eb. / (b. + c , i = l,..,k) % Bi(E(b. + c.),h) 
± 1 1 1 1 1 1 

So, with this model, for a uniformly most powerful unbiassed size a test, 

we should reject 6 = 0 in favour of 6 > 0 (that is, A better than B) 

if and only if 

k k 
Eb. > C(E(b. + c.) ,a) 
x 1 x 1 1 

k 

where C is found from Bi(E(b. + c.),^) tables (probably a normal approxi

mation will do ) . 

Note that if 

( 1 for b. > c. 
A = X X 

i \ 0 otherwise 
i = l,..,k 
k 

and we do a sign test, treating EA. as Bi(k,^) on the null hypothesis, we 
1 X 
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presumably get a less powerful test than the one above, since the para-
k 

meters of the binomial distribution are respectively k and £(b, + c.) 
k 1 1 1 

and by definition k < E(b. + c.). So the sign test will be conservative. 
1 1 

k 
However, in practice the value of £(b. + c.) is not known before the 

1 1 1 

experiment. There are two main ways of trying to overcome this. 

Firstly, choosing a small sample and thus obtaining a confidence 
k k 

interval for E(b. + c.). Alternatively, the expected value of E(b. + c.) 
1 i i x a. i 

can be used. Now with x. .,y. , and b. defined as before, i = l,..,k, j = l,..,n. 
ID ID i J 

it is easily seen that 
n. 

b. = E V . (1 - y. ,) 1 • T 1D !D j=l 
so • 

6 4- A. . 2A. . 
E(b.) = •£ e . ^ £ . M ,

e 1J ^ — r . 
Dl + e 13 D ( 1 + e ID) (1 + e ID) 

Similarly, 

and so 

n . 
c. = Z1(l - x. .)y. . 
1 j»l ^ ^ 

-6 + X . . 2X . . 
E(c ) = I— ^ S e 13 

i \ -6 + X. , * 6 + A. ,x /n -6 + A. ., 
1 + e IJ (1 + e lj) (1 + e lj) 

Hence 

6 + X. . -6 + X., „ 2X. . 
E(b + c ) - E — 3J + «e ID 2e_ij 

i Ci .. 6 + A.. -6 + A.. M 5 + A . . w 1 -6 + A... 
Dl + e 13 1 + e ID (1 + e 13) (1 + e ID) 

and so E(E(b. + c.)) follows easily, and clearly depends on A,,, i = l,..,k, 
i ^ 

j = l,..,n.. These parameters are also unknown, and so this is as far as 
the analysis of this method reached. One remaining possibility was to assign 

A 
e 

a prior distribution to the A. .fs (for example r- uniform on (0,1)), and 
J 1 + e 

then perform a Bayes preposterior analysis. However, the integrations in

volved would have to be done numerically and would be multidimensional. 

Also, because of the number of parameters involved, it is hard to see what 

is being said, implicitly, about the data when a particular prior distribu

tion is assigned to the parameters; so it is doubtful whether or not the 

time spent performing the integrations would have been worthwhile. This 

method was therefore abandoned so that alternatives could be examined. 
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B3.2 Wilcoxon's signed ranks test 

The next method to be attempted was replacing the sign test of the 

design study report by Wilcoxon's matched-pairs signed-ranks test. So 

the situation is that the two strategies, A and B, are compared, as before, 

over the request set. 

Now let d. denote the difference in recall (precision) between the 

strategies for the i request. It now has to be decided whether or not it 

is meaningful to rank these differences: if so, let r. denote the rank of 

d.. Suppose there are k requests in total; then define 

k 
T = Er.s. 
w i i 

where s. = +1 if strategy A is better than strategy B for the i request 

and -1 otherwise. Assuming hypothesis H to be true, i t is seen that s. = +1 

with probability h and -1 with probability h. Thus E(s.) = 0 and so 
2 

E(T ) = 0, and i t follows that var(T ) = E(T ). 
w w w 

Now 

E(T 2) = E(£r . s . ) 2 = E{Er.2s.2 + 2 E r . s . r . s . ) 
x i i i i i 3 f i j i i 3 3 

I t can easily be shown that 
2 

E(s. ) = 1 and E(s.s.) = 0 (i * j ) , i , j = l , . . , k . 
i i D 

2 k 2 1 
v a r ( T ) = E(T ) = Z r . = 7 k ( k + 1 ) ( 2 k + 1) 

w w 1 6 

Now denote P(A > B) (again assumed constant over the requests) by p. 

Then 

Therefore 

E(s.) = 2p - 1, i = 1,. . ,k 

and so 

E(T ) = Er. (2p - 1) = ̂ k(k 4- 1) (2p - 1) 
w 1 1 

2 k 2 2 
E(T ) = Er. E(s. ) + 2 E r.r.E(s.s.) 

w . 1 1 . . . 1 3 i j 
1 l*j 

2 
E(s ) = 1 as before. Assuming independence between requests it follows 

1 

that 

E(S.S.) = E(s.)E(s.) = (2p - l) 2 

I D I D 
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Thus 

Therefore 

E(T
 2) = ̂ k(k + 1) (2k + 1) + 2(2p - l) 2 I r.r, 
w 6 . . l j 

2 Z r.r. = (Zr.)2 - Zr.2 = ^k2 (k + l) 2 - 7k (k + 1) (2k + 1) 
. 1 1 1 1 D 

1*J 

var(T ) = E(T 2) = |k(k + 1) (2k + l)p(l - p) 
w w 3 

For k large enough (greater than 25) we can assume that T is normal

ly distributed, and since (given p) its mean and variance are known, the 

exact form of the distribution is known. 

Table 6 is analogous to Table 1. Column four lists the smallest value 

c, say, such that 

p(IT I > H ) < 0.05 
w o 

and was obtained by using the fact that under H 

T ^ N(0,^k(k + 1)(2k + 1)) 
w 6 

and by using tables of the normal distribution. This results in 

c = (̂ k(k + 1) (2k + 1))J5(1.96) (5% significance) 
6 

Column five lists the smallest p > 0.5 such that 

P( T > c / p) > 0.95 
w 

and this is calculated in the same manner as in paragraph B2.2.1. Similar

ly column six is arrived at by the same means as before. 

It should be noted that the number of documents of known relevance 

status required to be assessed is higher than when the sign test was used, 

and so the sign test is better. This is surprising since Wilcoxon's 

matched-pairs test would appear to be making fuller use of the data as it 

assigns more weight to a request which shows a large difference between the 

two conditions than to a request which shows a small difference (that is, 

it pays attention to the magnitude of the difference as well as the direction) 

The fact that the sign test is better in this situation can be proved 

algebraically as follows. 

The power of the sign test and of Wilcoxon's test are 
* 

P(z > 
/kp(l - p) 

and 
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p ( z > c - ^ ( 2 p - l ) k ( k + 1) } 

- ^ ( k + 1) (2k + l ) p ( l - p) 

r e s p e c t i v e l y , where z ^ N ( 0 , 1 ) , c = AjLwk + -,) / 2 v + D ^ 1 * 9 6 ^ a n d 

* ( 1 . 9 6 ) / k + k + 1 6 

c = . 

So the sign test is more powerful than the Wilcoxon matched-pairs 

signed-ranks test if 

c - M 2 p - l)k(k + 1) > c - kp 

/(|k(k + l)(2k + 1)P(1 -p>
 A P ( 1 " P ) 

After some simple algebraic manipulation this reduces to 

(2k/2k + 1 - k / 6 ( k + l ) ) p > (k + l ) / 2 k + 1 - k / 3 ( k + lY 
2 

The table below lists the minimum value of P(A > B) (that is, p) for the 

sign test to be more powerful, given the number of requests, k. 

300 0.513 
400 0.509 
500 0.507 
600 0.506 
700 0.505 
800 0.505 
900 0.504 
1000 0.504 

As, in general, the value of p required for the test to have 95% power 

is greater than 0.55, it follows that the sign test will be more powerful. 

This result is probably due to the fact that the underlying distribu

tion is binomial. Apart from the fact that more documents of known status 

are required to be assessed, other disadvantages of Wilcoxon1s matched-

pairs signed ranks test are the cost involved in ranking the differ

ences and also that the ranking may not be meaningful. So this method is 

not recommended. 

B3.3 Likelihood ratio test 

Next the likelihood ratio test was attempted. For this it was 

assumed that 
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PAqA + PB qB 
Yi = PA. " PB. * N(PA " V Z; > 

1 1 1 

where p - P are the observed recall values for the i request, and 
i i 

we test 

H '• P,v ~ P„ = 0 vs H_ : p^ * p . 
o ^A *̂ B 1 A *B 

Thus we have a random sample (y ,..y ) where k is the number of requests. 
1 JC 

The l i k e l i h o o d function 

P(y ; 6) = . S i - L - e x p ( ^ ( y . - <PA - P B » 
V 27Tm 

n . 
I 

where 0 = (P7v'Pn)'
 n- i-s the number of assessed documents relevant to the 

, A B l 

i request, and m = p q + p q (assuming independence of the requests 

and that p , p remain constant over the request set). 

We consider the ratio 

P(y / 6,H1) 

and reject H if it is too large. First P (y_ / 0,H ) has to be maximised with 

respect to p and p . Equivalently, maximise logP(y / 0,H ). This results in 
A B 1 

having to solve the following equation 

2kpA
3 - (3k + N)pA

2 + pA(2kpB(l - pB) - 2EniYi - 2pBN - k) + P g d " PR) 

+ Ir^y. + P B N - kpB(l - p B ) 

where N = En., and a similar equation with p and p interchanged. This 

method was not pursued. 

B4 The Squares method 

B4.1 Non-statistical summary 

This section is devoted to an alternative method which could be devel

oped in a satisfactory way. This method, which we have called the Squares 

method, is therefore the main competitor to the Pool method, and in chapter 

B5, following the technical presentation of the Squares method , the two 

are compared. 
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The Squares method is based on a retrieval contingency table giving, 

for two (indexing, searching) strategies A and B, the number of documents 

retrieved by both A and B, the number retrieved by A but not by B, by B 

but not A, and by neither A nor B: i.e. the table cells represent A A B, 

A A -B, -A A B, and -A A -B. Such a table may in principle refer to any 

documents retrieved, or more specifically to relevant documents only, or to 

non-relevant documents. In the present context the first of these is irrele

vant: our interest is in the ability of strategies to obtain relevant docu

ments, or avoid non-relevant ones. Further, as the object is to compare 

A and B, the cells of interest are those where the two strategies differ, 

i.e. those where A retrieves but B does not, or vice versa. It is moreover 

evident, as the tables are confined to either relevant or non-relevant docu

ments, that the method is suited to the use of recall as a performance 

measure, but not precision, for which tables would have to be combined, and 

fallout is therefore substituted for precision as a performance measure. 

The discussion which follows is carried out in terms of recall, the treatment 

of fallout being easily seen by analogy. 

Essentially the Pool method aims at determining, within the framework 

given by the use of the sign test, specified significance level, etc., whether 

the evaluation sample of documents of known relevance status justifies the 

assertion that strategies A and B differ in performance. The Squares method 

approaches the problem from a rather different angle by looking to see what 

differences in the specific contingency table cells are required to support 

the assertion; i.e. it is concerned to determine whether, for recall super

iority in strategy A say, the number of relevant documents retrieved by A 

alone, in relation to the number of relevant documents retrieved by either 

A or B alone, is larger than would be expected if A and B performed the 

same. In other words, we evaluate A A -B/((A A -B) V (-A A B)). Alterna

tively if the number of documents retrieved by A is sufficiently smaller 

than would be expected, the null hypothesis that A and B do not differ is 

rejected in favour of B's superiority to A. 

The method requires certain assumptions. In order to forecast the re

quired sample size, i.e. total number of known relevant documents, a value 

has to be assigned (a) to the probability that a relevant document is re

trieved by only one strategy and (b), more specifically (assuming that we 

are looking for A better than B), to the probability that a relevant 
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document is retrieved by A, given that it is retrieved by just one stra

tegy. We may deal with (b) by placing a lower bound on the probability, 

analogous to the assumption p - p > 5% for the Pool method. But for (a) 

a specific value is desirable, so if this is not forthcoming from previous 

experience, for example, the only course is to set a lower bound here too 

and take this as the value the probability has. 

The appropriate sample size is obtained as follows. If n. is the 

total of known relevant documents for request i, a. the relevant docu

ments retrieved by A and B, b, those retrieved by A alone, c. those re-
1 l 

trieved by B alone, and d. those retrieved by neither, we have a contin

gency table as follows: 

retr not retr 

retr 

not retr 

a. 
I 

c. 
I 

* • • . . . i 

b . 
l 

d. 
l 

n . 
i 

Summing over k requests we define n = En., a = la. , b. . 
i i 

similarly, to obtain Table I: 

B 
relevant 

and d. 

documents 

retr 

not retr 

retr not retr 

a 

c 

L 

b 

d 

n 

We first assume that the distribution of (a,b,c,d) , given the value of 

n, is multinomial with probabilities (p ,p_ ,p ,p_) , defined as 
a b e d 

Mn(n; p ,p, ,p , p n ) ; i . e . we assume t h a t the p r o b a b i l i t y of a r e l e v a n t docu-a b c a 
ment no t being r e t r i e v e d by e i t h e r s t r a t e g y i s p . of being r e t r i e v e d by B 

d 
alone is p , by A alone is p, , and by both is p . Thus Table I has a corres-

c b a 
ponding probability table: 
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relevant 
documents 

retr 

not retr 

retr not retr 
t ! ' ' — ••'' '•' " 

! a i b 

pc T pd 
II 

Given then some known relevant documents, the probability of obtaining 

some specific (observed) set of values for a,b,c,d in Table I, denoted by 

P(a,b,c,d/n), is 

P ( a , b , c , d / n ) 

( n ! a b e d 
a l v , n M 1 P a P K P , P . i f a + b + c + d = n ( a i b ! c i d ! a D C d 

( 0 otherwise 

The recall value for strategy A is determined by p + p, (in practice esti-
a b 

a + b 
mated by and for strategy B it is p + p , so to compare strategies 

A and B for recall it is sufficient to compare p and p . 

Now if the value of b + c is known the distribution of b is 

P^ 
Bi (b + c, 

P K
 + P„ b c 

), that is has a binomial distribution. There are b + c 

relevant documents which could land in the (1,2)th element of Table I, and 

PK 
for any such document the probability that it does land there is 

b c 

or A say. So, given the value of b + c, and using the normal approximation 

to the binomial distribution (as for the evaluation of the critical region 

for the Pool method), we can find K(a,b + c) such that the hypothesis 

P, = p is rejected in favour of p, > p just when b > K(a,b + c) . K is 
b e b e 
a constant depending on the significance level a of the test used (one 

assuming a multinomial distribution for the table), and on the value of 

b + c. If p. = p then A = h, so b has the distribution Bi(b + c ,h). Thus 
b c 

if a = 0.05, say, K must be such that P ( b > K / P = P ) < a . 

As for the Pool method, we require stable power of the test as well as 

a specified significance level; specifically, we want the power of the 

test to be at least 0.95. This imposes a lower bound on the value of A, 

which can be found by trial and error, like the lower bound imposed on 

P(A > B) for the Pool method. In practice this means that when the true 

value of A exceeds this lower bound we can be confident that we are correct

ly rejecting the hypothesis p = p , i.e. the power is greater than 0.95. 
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Unfortunately, the value of b + c is not known (in advance, that is, 

of actual experiments with any pair of strategies A, B). However it is 

known that b + c has the distribution Bi(n,II ), where II represents p + p 

(the probability a document is retrieved by one strategy only), so if some 

value of II is assumed, the exact form of its distribution will be known and 

we can then find r and s, say, such that P ( r < b + c < s ) =0.95. We can also 

find the expected value of s, say e. Then given any specific number of rele

vant documents, n in Table I, and assuming some specific value of II , sub-
K. 

stituting b + c by r, e and s respectively gives the value of K(a,b + c) , and 

the lower bound on the true value of A. If the nature of the strategies being 

compared is such that they may be expected to retrieve different relevant 

documents, the assumed value of II should be quite large, while if they are 
R 

expected to be the same, the assumed value should be low. 

The Pool method specifies requirements for the number of documents to 

be assessed for each request, to provide enough relevance information for 

that request. The Squares method is concerned only with sets of documents of 

known relevance status for a set of requests. This is an advantage for the 

latter,as will be discussed more fully in chapter B5f However it should be 

noted here that relevance assessments are necessarily assessments for indi

vidual requests and the only way of obtaining the total set n is by summing 

the assessments for the individual requests. Thus the Squares method neces

sarily relies on a pool and sample basis for assessment like that used for 

the Pool method. In other words the argument assumes that n is obtained as 

the sum of n.'s, where each n. is a random sample of a comprehensive pool. 

However, as will be emphasised in chapter B5, as there is no requirement 

that the individual n.fs satisfy specific requirements, and should not vary, 

the size of sample and of request set can be chosen pragmatically, and the 

latter in particular can be adjusted in relation to the observed rather than 

expected properties of the n.'s and accumulating n. 

To illustrate the kind of figure obtained from the argument (see Table 

7), for 5% significance and 95% power in the test, and a conservative 

II = 0.25, i.e. a value of II assuming a high overlap in output between stra-
R R 

tegies A and B and hence a small performance difference between them: if 

n = 3000, b + c has a lower confidence bound of 704 and b must exceed 378 

if A is to be accepted as better than B, where the minimum value of A 
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required for 95% power must be > 0.568. On the other hand, if IT =0.50, 
R 

assuming less overlap, n = 2000, b + c has lower bound 938, b must exceed 

499, and A must > 0.559. If we are concerned with recall, the more awkward 

case, we could perhaps expect to get a total of 2000 relevant documents 

from 80 requests averaging 25 relevant documents each, and 3000 from 120 

requests. We need a large n as this is associated with a low value of A: 

a low A represents a realistic expectation about the number of documents in 

cell b in the contingency table in relation to those in b + c, i.e. about 

the number of documents to be retrieved by strategy A alone, as opposed to 

by either A or B alone. Thus if n = 50, the expected value of b + c = 12.5, 

b is at least 11 and A = 0.935; and the chance in practice of finding such 

a relatively large b is very poor. 

The assumptions underlying the Squares method can be summarised, for 

comparison with those used for the Pool method, as follows 

1 for future experiments comparing strategies A and B 

1 we evaluate using recall and fallout; 
2 recall and fallout are probabilities estimated by proportions 

based on samples; 
3 the distribution of the retrieved document sets a,b,c,d in the 

contingency table comparing A and B, conditional on the total 
n, is Mn(n; p ,Pb,P ,p^); 

4 the distribution of set b (retrieved by A but not B), conditional 
on the set b + c retrieved by A alone or B alone, is 

P b 

Bi (b + c, •— (alias Bi (b + c,A)); 
Pb + Pc 

5 the distribution of b + c is Bi(n,p + p ) (alias Bi(n,n )); 
6 a normal approximation to the binomial distribution for the power 

of the significance test. 

2 for assessment data 

the same four assumptions as the Pool method. 

3 for request data in evaluation and assessment 

1 the requests are independent. 

The two methods thus chare assumptions 2.1 - 2.4, and 3.1. But as 

the technical argument of paragraph B2.2.2 above showed, assumptions 2.1 

and 2.2 are not necessary and can be abandoned in favour of simply knowing 

the pool size (though the argument was presented under the Pool method it 

is equally applicable to the Squares method). Assumptions 1.1 and 1.2 have 

the same general character for the two methods, with the specific difference 

that fallout replaces precision. Assumption 1.6 for the Squares method is 
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also like 1.6 for the Pool method. On the other hand an important feature 

of the Squares method is that the strong assumption 3.2 required for the 

Pool method, namely that the probability of finding strategy A better than 

strategy B is constant across requests, is not required. The distinctive 

asssumptions for the Squares method, 1.3, 1.4 and 1.5, replacing 1.3-5 

for the Pool method, follow from the structure imposed on the data, and 

lead to a rather different argument. However within the framework of this 

argument these assumptions are somewhat analogous to those used for the 

Pool method. 

B4.2 Statistical presentation 

We wish to compare the two strategies A and B. Let n. denote the 

total number of assessed documents relevant to the i request, a. denote 

the number of these retrieved by both strategies, b. the number retrieved 

by strategy A but not strategy B, c. denote the number retrieved by stra

tegy B but not by strategy A, and d. denote the number retrieved by neither 

strategy. This information can be summarised in the following table: 

B 
relevant 
documents retr not retr 

retr 

not retr 

r 
a. 

I 

I 

b. 
l 

d. 
l 

n. 
I | 

- i 

The Squares method presented below can only be used if retrieval data can 

be set out in this form. 

We now define, for k requests 

k k k k 
n = £ n. , a = £ a. , b = £ b. , c = £ c. and d 

. -. i - - i 1 - i 1 - - i 1 

i=l i=l i=l i=l 

and obtain Table I: 

B 
relevant 
documents retr not retr 

retr 

not retr 

a 

c 

b 

d 

n 
L __ 1 

T. d. 
i=l X 
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Clearlyf to compare the two strategies for the request set, a and d are 

not as important as b and c. This method bases its decision on the size of 

b relative to b + c: if b is relatively large (small) then the hypothesis 

of equality can be rejected in favour of strategy A being better than stra

tegy B (vice versa). 

Table I has an analogous table of probabilities, namely 

B 
relevant 
documents retr not retr 

retr 

not retr 

Pa | Pb 

Pc Pd 

II 

and tables analogous to Tables I and II exist for non-relevant documents, 

namely 

non-relevant 
documents 

retr 

not retr 

retr 

B 

not retr 

a' 

c' 

b' 

d' 

n' 

non-relevant 
documents 

retr 

not retr 

retr 

B 

not retr 

p ^ 

P c -

p b- 1 

*d . 1 
Let N denote the total number of documents assessed, and suppose that 

the distribution of (a,b,c,d/n) in Mn(n; p ,PK,P ,pj and that the distri-
a JD C Q 

b u t i o n of ( a 1 , b ' , c ' , d ' / N - n) i s Mn(N - n; p , , p , , p , , p , ) . Tha t i s , 

P ( a , b , c , d / n ) 

n ! a b c d . _ 
( —: —p p n p p n i f a + b + c + d = n 
£ a ! b ! c d r a *b ^c ^d 
( 0 otherwise 

Similarly P(a',b',c',d'/N - n). 

Now the recall value of strategy A is p + p and for strategy B it 
a J3 

is p + p . So strategy A is better for recall if p, > p . Similarly stra-
a c b e 

tegy A is better for fallout if p < p ,. (Note that strategy A is better 
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for precision if 

P + P, P + P 

P + Pi_ + P i + Pn , P + P + P . + P , a *b *a' ^b1 *a *c *a' ^c1 

however, as using precision for evaluation requires a combination of rele

vant and non-relevant document tables, and generally leads to complexity, 

it is much more convenient to use fallout to complement recall, as fallout 

only requires the one non-relevant document table. 

The conditional test of p, = p against p. > p has the rule, reject 
b c b e J 

p = p if and only if 
b > K(b + c,a) . (1) 

That is, reject p = p if b is larger than a constant K, which depends on 

b + c and a (the significance level). Also the distribution of b / (b + c) 

Pb 
is Bi(b + c , ) (providing b + c * 0) , so the conditional power of 

b c 

the test is 

Pb 
P(b > K(b + c,a) / b + c, -=—) (2) 

b c 

and the unconditional power of (1) is 

P h 

E. (P[b > K(b + c,a)] / b + c, -=—) 
b+c p + p 

b c 
It is known that b + c °o Bi(n,p, + p ) and so 

b c 
P(b + c=k) = 0(P b

 + P c )
k d - P b - P c )

n _ k • 

Therefore the power is 

where A = 

n 
£ P(b > K(b + c,a) / b + c,A)P(b + c) 

b+c=l 

Pb 

Pi_ + P ^b ^c 

So in order to find the power of the test P(b + c = k) must be evalu

ated for k = l,..,n and K(b + c,a) must be found, that is the smallest K 

such that 

P(b > K / b + c,A = h) < 0.05 

where b ^ Bi(b + c,^). 

Since n will usually be very large the normal approximation to the 

binomial distribution can be used to calculate P(b + c); also for b + c > 10 
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the normal approximation can be used to find K. 

Finally P(b > K(b + c,a) / A) has to be calculated for b + c = l,..,n. 

Again the normal approximation can be used for b + c > 10. 

Since n is likely to be very large these calculations should clearly 

be performed on a computer. However precisely because n is very large and 

P(b + c), K(b + c,a) and P(b > K(b + c,a) / A) must all be calculated for 

b + c = l,..,n, it would take an extremely large amount of computer time 

to find the power for any particular values of n and A. 

As part of the object of this report is to construct fairly compre

hensive tables, which in this case means varying the values of n and A, 

it was decided that it would not be feasible to calculate the exact power 

on a computer. 

A rather crude method of overcoming this problem was to calculate 

a 95% confidence interval for b + c and then to replace b + c in (2) by 

its upper and lower bounds in the confidence interval, and by its expected 

value. This results in three different values for the conditional power 

of the test,which should give us a reasonable indication of its uncondi

tional power. 

Now b + c ^ Bi(n,II ) where n = p + p , so E(b + c) = nil . Also we 
R r v . D C t\ 

wish to find r and s such that 

s 

lj'"R VJ" "R 
P(r : b + c < s) ( = Z (n)TI 3 (1 - II ) S D) = 0.95 

-,=r 

That is, to find the largest r and smallest s such that 

P(b + c < r) < 0.025 and P(b + c > s) < 0.025. 

Again we use the normal approximation, which leads us to choose the 

largest r and smallest s such that 

r - nnR s - nnR 

< -1.96 and ;— > 1.96. 
/ n nR ( 1 " ̂  ^V1 " V 

Rrv.DC
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So a value of II (the probability in relation to recall that a relevant 
R 

document is only retrieved by one strategy) must be assumed. Once a value 

for b + c is found (viz r, s or E(b + c)), the fact that 

b ^ Bi(b + c,^) (the distribution is conditional on b + c) 

if the strategies have no difference in performance, is used to evaluate 

K such that .H is rejected if b > K. 
o 

It is now necessary to ensure that the test has 95% power, and this 

forces a lower bound on A. This can be found by a trial and error method 

similar to the one used to find the lower bound of p in the Pool method. 

Table 7 lists the value of K for various values of n and II , and 

R 

Pb 

also gives the minimum value of for which one can be confident 
^b *c 

(in the sense of achieving 95% power) of correctly rejecting H . For each 

value of n and II the values of b + c tabulated are on the lower bound of 
R 

the 95% confidence interval, its expected value, and the upper bound of 

the confidence interval respectively. 

p b 
Predictably enough the minimum value of increases as n and/or 

Pb c 

II increases. Also as n increases there is little difference between the 

three values of the lower bound for fixed values of II . 

Before using Table 7 an estimate must be made of II . If the two stra-
R 

tegies are very different then II may be thought to be very high (> 0.75, 
R 

say) , while if the two strategies are very similar than II could be about 
R 

0.25 (or less) (II is expected to be small if b + c is expected to be 
R 

small relative to n, and is expected to be large if b + c is expected to be 

relatively large, since, if the experiment had been performed then II 
R 

would be estimated by ) 

Suppose that two strategies A and B are being compared for recall and 

that it is expected that approximately half the relevant documents will be 

retrieved by only one strategy (that is II ^ 0.50) (information concerning 
R 

II may be available from earlier studies) . If one has a total of 2000 rele-
R 

vant documents then reject H (at the 5% significance level) if b > 563 

(assuming the 'worst1 case for b + c). One then has 95% power of correctly 
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detecting that A is better than B if > 0.559. 
Pb + Pc 

Note that since b + c is expected to lie between 938 and 1062, one has 

to take the worst case both for the value of K and for the lower bound on 

A. 

Conversely, suppose that one wishes to be confident (in the sense of 

95% power and 5% significance) of deciding that A is better than B, when

ever A > 0.55; then approximately 3000 documents (relevant to any of the 

requests) are required to be assessed (assuming II = 0.50) . Note that there 
R 

may well be overlap in these documents,but providing the requests are assum

ed independent this does not matter. Further, this overlap in documents 

does not affect the number of assessments made. The hypergeometric program 

of Appendix 2 assumes that all the documents are distinct, but it is 

equally applicable when they are not, since the assessments are all distinct. 

Finally note that A is better than B for fallout if p < p ,. So we 

can use the same argument as for recall, only this time n is the total 

number of non-relevant documents. 

Summary 
before 

This test is a conditional test and so,/being able to apply it a 

value of II and a lower bound on A must be assumed. Independence between 
R 

requests is assumed but this time P (A > B) is not assumed to be constant 

across requests. The actual mechanics of choosing the sample size could 

prove a problem: this is discussed in more detail in the next chapter. 

B5 Comparison between the Pool and Squares methods 

This chapter compares the Pool and Squares methods, primarily from 

the point of view of their interpretation and implications. 

To make actual numerical comparisons is difficult since the number 

of documents to be assessed if the Squares method is used depends on II . 
R 

Comparisons when II is assumed are made later in the chapter. 
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One of the main differences between the methods is the amount of information 

which must be obtained. For the Pool method all that is needed is how many 

relevant documents the individual strategies retrieved. However for the 

Squares method a further classification is required, since as well as knowing 

the above, one must also know the number of documents retrieved by strategy 

A but not by strategy B, and vice versa. This is obviously a disadvantage 

since presumably the increase in information supplied can only be achieved 

by some increase in costs. 

Another difference is that the Pool method depends much more heavily 

on the number of requests than the Squares method. In the former the number 

of documents needing to be assessed descreases as the number of requests 

increases. However in the latter the dependence is not so explicit since 

here the power of the test increases as b + c increases. Clearly b + c 

depends on the number of requests, but it also depends on how general the 

requests are, since the more general the requests are presumably the larger 

b + c will be (since there will be more relevant or retrieved documents). 

Therefore it is conceivable that the same value of b + c could occur for a 

set of 200 requests and a set of 250 requests. In this situation there is 

an increase in power in the Pool method but the power remains unchanged in 

the Squares method. So, for the Squares method, the value of b + c is more 

important than the number of requests. 

Whichever method is used there is a problem connected with the sampling 

aspect. 

In the Pool method we are interested in the number of documents of 

known relevance status each request has. If we have k requests the method 

supplies us with the number of documents (n.) which must be assessed, for 

the i request, in order to make the comparison 'meaningful' (as defined 

earlier), for i = l,..,k. The problem is that the number of documents 

varies considerably from request to request (see chapter A2). However we 

can only make one assessment of the pool and this must result in a sufficient 

number of documents of known status for each request (some of which may not 

even have n. documents, especially relevant ones, in the pool). 

It would be unduly pessimistic to choose the size of the sample to be 

assessed on the basis of the requests with the fewest relevant documents. 
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A more practical method would be to take the average number of documents 

of known status per request, as if all requests have that number, and sample 

accordingly. 

For example, to take the recall case, suppose there are 3 requests with 

25, 50 and 75 relevant documents respectively, and the Pool method requires 

20 relevant documents per request. Then if we want the probability of 

achieving this number to be at least 0.95 in each request then over 80% of 

the pool must be sampled because of the small number of documents relevant 

to the first request. However, this would presumably result in assessing 

over 60 documents relevant to the third request and so the actual power of 

the test is greater than 0.95, and a lot more resources than necessary have 

been used. So, as a compromise suppose that each request has 50 relevant 

documents and then assess a significantly smaller percentage of the pool 

(< 60%) . 

A question which is raised in this connection is whether requests with 

a small number of relevant documents should be discarded, but this intro

duces some bias into the request set (see Section C for further discussion 

on this point). 

The situation is much simpler for the Squares method since we are no 

longer interested in n. but in n (= En.), that is, in the total number of 
1 1 

relevant documents. This therefore removes all problems of variation be

tween requests and makes the sampling problem much simpler. The only draw

back here, as mentioned in the last chapter, is the fact that though the 

n documents are unlikely to be distinct they have to be treated as distinct 

as they have to be specifically assessed in relation to their various re

quests. In other words, n refers to the total of relevant document postings, 

and there can be no economising on assessment if the total of different 

documents retrieved is smaller. 

However, even if there is this slight defect, overall there is no 

doubt that the Squares method does not create as many sampling problems as 

the Pool method and, in this way, has a big advantage. 

Both methods also require some assumptions to be made about the size 

of the difference in performance one wishes to be confident about detecting. 
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In the Pool method this amounts to assuming that p - p > 0.05, and this 

assumption was made when the sampling theorem was used (see chapter B2 

(PA = P^ + PK* PD = P + P # in Table II. A a b B a c 

In the Squares method this assumption took the form of choosing a 

P b 

lower bound for • (i.e. A). Thus if, for example, it is assumed that 
b c 

A > 0.55, then in order to achieve 95% power and 5% significance one needs 

(to the nearest 100) a total of 5200 documents to be assessed, and specifi

cally 5200 relevant documents to be identified for recall evaluation. 

The assumption made by the Pool method has the advantage of being 

easily interpreted since p - p is the difference in recall while 

p b 
Pb + Pc 

is the probability of a document of known relevance status being 

retrieved by strategy A given that it is only retrieved by one strategy. 

Suppose now that strategies A and B are being compared for recall, and 

that there are 300 requests, 1000 documents in the pool, and an average of 

25 relevant documents per request; and that we require 5% significance and 

95% power. Then there are 7500 relevant documents altogether. 

Then, using the Pool method and applying Table 1 in conjunction with 

Table 3 we obtain that 729 documents should be assessed. Before using the 

Squares method, a value of p, + p (i.e. II ) must be assumed (given that we 
b c R 

are interested in A > 0.55, say). If II = 0.25 then we require 5200 relevant 
R 

documents to be assessed. The hypergeometric distribution tells us that, in 

order to have, with 95% probability, assessed 5200 relevant documents, more 

than 729 documents must be assessed. However if II = 0.50 then we only need 

to have assessed 3000 relevant documents, and so the number of assessments 

required is certainly less than 729. Clearly things become even better if 

nR = 0.75. 

So whether or not the number of assessments required is less for the 

Squares method than for the Pool method depends on the value of II . If II 
R R 

is quite low then the Pool method will probably be better, while if II is 
R 

large the Squares method becomes more efficient. That is, if the total num

ber of documents retrieved or rejected by both strategies, i.e. the overlap 
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in their outputs, is likely to be relatively large then the Pool method 

will require less assessments than the Squares method. 

So the Squares method has the advantages of a simpler sampling problem 

and of requiring less assessments than the Pool method when the strategies are 

not too similar, as in general could not be expected, while the Pool method 

does not require as much information from the data as the Squares method, has 

a more meaningful constraint, and is the better method when the strategies 

are very similar. On the other hand the Squares method does not have to 

assume the constancy of P(A > B) across requests, which the Pool method does. 

B6 Multi-strategy comparisons 

Up till now we have only considered considered comparisons between 

pairs of strategies. What happens if one wishes to compare t strategies, 

A , A , . . ,A taken together say, which is a reasonable requirement for 

retrieval experiments? 

There are three obvious ways of approaching this problem. The first 

two, Cochran's Q-test and Friedman's test, are standard non-parametric tests, 

while the third is based on David (1963) . The first two are quite independent 

of the previous methods; David's method is somewhat similar to the use of 

the sign test. 

Cochran's O-test 

Cochran (1950) has shown that if there is no difference in, say, recall 

under each strategy, then if k (the number of requests) is not too small 

k - 2 
k(k - 1) .Z. (G. - G) 

Q = 3rl_3 
* N N 

kEL. - EL. 
I 1 I 1 

is distributed approximately as chi-square with k - 1 degrees of freedom 

where G. denotes the number of relevant documents retrieved by strategy A. 
^ th " D 

and L. denotes the total number of strategies which retrieve the I relevant 
l 

document. 

So, the null hypothesis that the strategies have the same level of 
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performance is rejected at the 5% significance level if Q is in the upper 

or lower 2.5% tail of the chi-square distribution with k - 1 degrees of 

freedom. 

Note however that the power of Cochranfs test is not known exactly, 

and so no forecasts can be made about the size of the sample taken for 

assessment. Another disadvantage is the fact that rejecting H does not re-
o 

suit in an ordering of the strategies. Also, Cochran's test would be rather 

expensive to put into practice since one would have to note, for each rele

vant document, howe many strategies retrieved it. 

Friedman's two-way analysis of variance 

First of all the data must be expressed in a two-way table having k 

requests and t strategies. If there is no difference between the performance 

of the strategies then, providing the number of requests and/or strategies is 
2 

not too small (k > 9, t > 4) it can be shown (Friedman (1937)) that x is 

distributed approximately as chi-square with k - 1 degrees of freedom when 

* ' = k t " + D . V R j ) 2 - 3 1 t < t + 1 ) 

where R. denotes the sum of the ranks in the j column. 
3 

Again the power of the test is unknown. Siegel (1956) points out that 

the test compares favourably with the F-test and so should be used in pre

ference to Cochran's Q-test. 

Method derived from David (1963): pair subset comparison 

Cochran's and Friedman's methods are unsatisfactory in that they do not 

supply enough quantitative information about the power of the test, and hence 

what their future use would imply for the asessment data cannot be determined., 

The method for pair subset comparison described below can be applied to fu

ture strategy comparisons, if multiple comparisons are wanted, and does not 

impose any requirements on the assessment data. It is simply applied to 

judgements of the relative merits of pairs of strategies. 

This method was first considered as a possible alternative to the Pool 

method (in the case where t = 2). It considers the case when there are t ob

jects to be compared in pairs by k different judges. So this can be applied to 
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our problem with the strategies replacing "objects" and requests replacing 

"judges". Each judgement is assumed to consist of saying merely which object 

is best and ties are not permitted. 

Suppose t = 2, and denote the number of preferences scored by A. (i = 1,2) 

by a.. Since under the hypothesis H of equality strategy A. has probability 

h. of being preferred in each of its k comparisons with the other strategy, 

the score a. is a binomial Bi(n,^) variate. So the method is equivalent to 

the use of the sign test in the Pool method. 

For the case when t > 2 this method would appear to be a viable alter

native to Cochran's and Friedman's tests. For more details see David (1963). 

If it is decided to impose an ordering on the strategies by the appli

cation of David's method, one must beware of circular triads occurring. That 

is, A > A , A > A , A > A . These could result from the fact that there 

may be no valid ordering of the three strategies since their performance may 

depend on more than one characteristic. Also if there is not a significant 

difference between the strategies then the comparisons (if no ties are allow

ed) cannot reasonably be expected to be consistent. If the sign test (Pool 

method) is being used then one can decrease the chances of this by combining 

the multinomial model and the sign test as follows. 

Consider the table for the r request: 

Relevant 
documents 

strategy B 

retrieved not retrieved 

strategy A 

retrieved 

not 
retrieved 

1 nllr 

n 2 i r 

! 1 
n i 2 r 

12 1 
1 

n r 
22 J 

nr 
i ft 

and consider the test 

V P12 r = P2i r V S P12 r * P21 r' 

Under the null Hypothesis we have that 

8li r = n H r ' 612 r = 

ni 2 r + n21 r 

•' S21 r = 

n ! 2 r + n2I r 

th 
and e r = nr,where e..r are the expected values in the (i,j) cell. 

Under the null hypothesis we have 2 degrees of freedom, and 3 degrees 

of freedom under the alternative. 
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Therefore, using Wilks1 likelihood ratio test we obtain that, if H 

is true, then 

(n. .r - e..r) 
Z -3J U * x2 
. . e. .r Ai 
i/D ID 

That is 

( n ! 2 r - n 2 i r ) 2
 x 2 

nl2 r + n2i r ^ 

So now if P(A > B) * P(n r > n r) but 

(n r - n r) 
P(A > B) = P( — — > 3.84) 

n r + n r 
12 21 

(rejecting equality at the 5% level). 

n r + n r n r + n r 
11 12 11 21 

Now r e c a l l of A = 6 = and r e c a l l of B = . So 
A nr nr 

nx2(PA-PB)2 

P(A B) = P(— 2— > 3.84) > P(nr (p n - PJ > 3.84) 
n 1 2 r + n 2 1 r A B 

Since we are i n t e r e s t e d in the case A > B, t h i s i s equ iva len t to 

Putting z = > • ^ N(0,1) 
^ / p q + p q 

*AHA ^B^B 
nr 

and assuming p - p =0.05, one obtains that the probability is equal to 
A B 

P(z > (7.68)^ - (0.05)/2in?') 

So, although this argument is a better one for deciding if A is better 

than B for a particular request, and reduces to the chances of circular 

triads by allowing ties, the cost of this improvement is that the number 

of relevant documents required to be assessed increases. Also this method 

runs into problems if an attempt is made to apply it to precision, and so 

fallout should be used. 

A final warning is that since the significance level is 5% (or 1%), 

if there are a lot of pairs to be compared the wrong conclusions can be 

drawn occasionally. The method of overcoming this is known as multiple 

comparison (see Duncan (1955)). 



B45 

Overall/there is no very good way of providing for direct multi-

strategy comparisons. However Davidfs method can be used for indirect com

parisons, via paired subsets, if more extended strategy evaluation is re

quired. Since it is simply concerned with results of comparisons between 

pairs of strategies, these comparisons themselves may depend on either the 

Pool or Squares approaches. 


