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XIII. Experiments with a Fast Algorithm 
for Automatic Classification 

R. T. Dattola 

Abstract 

An algorithm for automatically classifying Items in a collection 

is described, where the time necessary is proportional to N*p«log p , where 

N is the number of items in the collection, m is the final number of clus­

ters desired, and p is the number of clusters produced at each level of 

the algorithm. Clusters are produced for two different document collections, 

and the results are evaluated by performing centroid searches on the clus­

tered collection. Finally, a new evaluation measure is defined, and compari­

sons are made with clusters produced by other automatic methods. 

1. Introduction 

In order to use real-time automatic document retrieval systems on 

a very large data base, it Is necessary to classify the documents so as to 

avoid searching the entire collection. However, the classification of a 

document collection containing more than a few thousand items is not feasi­

ble with most procedures for automatic classification. A method Is needed 

which can classify hundreds of thousands of items into useful clusters in 

a reasonable amount of time. 

The method presented in this study is an outgrowth of earlier 

attempts at fast procedures for automatic classification. [1,2] The algo­

rithm is first presented in a general form, and a proof is given which 

describes how the time needed to classify a given collection Is related to 
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the number of documents in the collection. Then the algorithm as implemented 

is described in detail and experiments in classification and evaluation are 

discussed. 

2. General Description 

Consider a document collection consisting of N documents with an 

average of r concepts per document. Assume that the document collection 

is partitioned into p equal sized clusters, where S. is the set of docu­

ments in cluster j . Associated with each set S, is a corresponding pro­

file vector P., consisting of the rank values of all the concepts from 

the documents in S. . The rank value is equal to a constant (base value) 

minus the rank of the concept, where concepts are ranked in decreasing order 

of the number of documents in the cluster in which they occur. 

A cycle of the algorithm is defined as follows: 

a) each document d. in the collection is scored against 

each of the p profiles by a scoring function g(d-,P.); 

b) let H. = max. CgCd.,P.>), (.i.e., H. is the highest 
l<3<p 

score of d. over all the profiles), and let 

(H.-a«(H.-K), if H.>K 
I l l i 

K = / 
i | K otherwise 

where 0 < a < 1 and K is a specified cut-off score; then 

define new clusters SI = {d . /g(d ,9P • ) > K. } ; 
] i i ] — I 

c) all documents d. such that H.<K are assigned to a set 
I. i. ° 

LT of loose documents; 

d) test for convergence; i.e., test if S* = S*T and if 

L! = L , where Sv = {d./d.eS. and g(d.,P.) is the highest 

score of d.} . 
I 

If the convergence test fails, the cycle is repeated with the new clusters 
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S! and the new profiles P! . If the test succeeds, then an iteration of 

the algorithm has been completed. Since the algorithm is not guaranteed to 

terminate, an arbitrary upper bound B is placed on the maximum number of 

cycles allowed per iteration. [1] 

Additional iterations of the algorithm can be performed by lowering 

the cut-off value K , thereby reducing the number of loose documents. One 

level of the algorithm is completed when the number of loose documents is 

less than a specified constant. Additional levels of the algorithm are 

executed by treating each of the p clusters as a separate collection and 

classifying each of these into p additional clusters. Thus, at the end 

of the first level the document collection has been classified into p 

2 
clusters, at the end of the second level into p clusters, etc. 

In order to compute the time required for the algorithm, assume 

that m final clusters are desired, where m = p for some positive inte­

ger x . An assumption is made that the time needed to compute the scoring 

function g(d.,P.) is independent of the length of P. , and depends only 

on the number of concepts in d. (this assumption Is valid for the scoring 

function that has been implemented). Since a document contains on the aver­

age r concepts, the time required for the computation of gCd.,P.) is 

proportional to r . 

In the following computation, it is assumed that the parameter a 

in step b of the cycle description is 0. As will be shown later, this speci­

fies the overlap to be 0; i.e., documents cannot occur in more than one 

cluster. If the overlap is not 0, the computation time is increased since 

the average number of documents/cluster is greater. However, the increase 

in time depends only on the overlap and not on the number of documents in 



XI.IL-4 

in the collection. For example, if a document occurs on the average in two 

clusters instead of just one, then the computation time is doubled indepen­

dent of N . Also, it is assumed that the average document size r is inde­

pendent of N . For these reasons, overlap and document size will be inclu­

ded in k , the constant of proportionality. 

On the first level of the algorithm, each of the N documents is 

compared against p profiles. The number of iterations and cycles required 

depend on the parameters B and K and again are independent of N . Thus, 

for the first level, 

T = k-N.p . 

On the second level, each of the p clusters now contain on the average 

N/p documents. These are compared against p new profiles, and this is 

repeated for each of the p clusters. Thus, 

T = k*(N/p).p.p = k-N-p . 

Similarly for all the other levels, T = k*N*p . At the end of the xfth 

x 
level, there are p clusters. Thus, x levels must be executed to obtain 
v 

p = m clusters. Therefore, the total time required is T = k*N*p*x , where 

x 
p = m 

log p = log m 

x*log p = log m 

x = log m/log p 

Taking logarithms to base p yields 

T = k-N* p»log m 
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Given a collection of N documents, if m final clusters are to be pro­

duced, what is the value of p which minimizes T ? This is solved by 

setting dT/dp = 0 . Since k*N is a constant with respect to p , 

dT!/dp can be used, where T! = p*log m * 

dTf/dp = p#Cdlog m/dp)+log m , where log m = log m/log p 

= 1/log p (change of base formula). 

dT'/dp = p-dCl/log p)/dp + V l o ^ p 

= -p-d(logmp)/dp +
 1/loSraP 

U o g m p )
2 

2 
= -p-log e/p*Clog p) + 1/log p 

2 2 
= -logme/Clogmp) + log^/Clog^p) 

2 
= Cloginp-logme)/(logmp) 

2 
= logmCp/

e)/Clogmp) 

Thus, dTVdp = 0 when log (p/e) = 0 = > p/e = 1 . Therefore, T is 

minimized for p = e . Rounding off to the nearest integer gives p = 3 • 

Although the computation time is minimized for p = 3 , in practice 

it mighT: not be useful to form only three clusters at every level. However, 

since T has only one minimum point, the time increases monotonically as 

p increases. 

The algorithm as described can be used to generate multi-level clus­

ters. However, it is generally more effective not to equate one level of the 

algorithm with one level of a multi-level classification scheme. For exam-

pie, suppose a set of 10 documents is to be classified into two levels, with 

100 centroids on the first level and 10,000 centroids on the second level. 
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This can be done directly with two levels of the algorithm where p = 100. 

In this case 

CO J i CO Q 

T = k-10 -10 -log 10 = k-10 -10 -2 = 2k-10 . 

However, the specifications can also be satisfied by using four levels of 

the algorithm instead of only two, where the results of the second and 

fourth levels are used as the two levels of clusters. In this case, p = 10 and 

c. ii n n 

T = k-10 -lQ-log Q10 = k-10 -4 - 4k-10 . 

3. Implementation 

in this section the algorithm is described in detail exactly as pro­

grammed. The major change from the general description Is that only one 

level of the algorithm has been implemented. Thus, in all the experiments, 

p = m and 

T = k-N-m-log m = k-N-m 

In addition, this section describes several alternate methods for generating 

the initial clusters that are necessary to start the algorithm, and a formal 

definition of overlap is given. 

The algorithm is designed to control three basic parameters: number 

of clusters, amount of overlap, and size of clusters. The number of clus­

ters and amount of overlap are input parameters, while the size of clusters 

is internally fixed to vary no more than one-half to twice the average clus­

ter size. In addition to these, several other parameters are controlled as 

explained throughout this section. 
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A) Initial Clusters 

In order to execute the classification algorithm, it is necessary to 

designate initial clusters. Four different methods of initial cluster gener­

ation are implemented, and they are referred to as the correlation, similarity 

correlation, frequency, and random methods. All of the methods involve 

choosing only one document per cluster that is used as a seed to start the 

algorithm. 

The correlation method uses the cosine correlation to locate docu­

ments that are highly correlated with many other documents. 

1) Randomly select / N documents from the collection, but 

exclude those documents that have already been defined as 

cluster seeds. 

2) Compute the global average cosine correlation (GAVG) and 

standard deviation CSTD 1 for the sample: 

al start with the first document In the sample and compute 

the cosine correlation between this document and all 

other documents in the sample; 

b) calculate the mean value CMEAN) of the correlations 

computed in step a; 

c) repeat steps a and b for all documents in the sample; 

d) define GAVG as the mean value of all the values computed 

in step b; 

el calculate STD for step d. 

3) Use the chosen documents as cluster seeds if MEAN >_ GAVG + STD. 

Assuming a normal distribution, approximately 16% of the docu­

ments in the sample are used as seeds. 

M-) Repeat steps 1-3 until the number of seeds = m. Use each seed 

as an initial cluster. 

The similarity correlation is identical to the previous method except 
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that step 3 is changed as follows: 

3) Use the chosen documents as cluster seeds if MEAN ^ GAVG + STD 

and if the document correlates below a specified cutoff with 

each of the documents already defined as seeds. 

This additional condition prevents two very similar documents from being 

used as seeds for different clusters. 

The frequency method does not use random samples or correlation coef­

ficients, but directly locates documents which have many concepts in common 

with other documents. 

1) Calculate the frequency score (FS) for every document in the 

collection: 

a) for every concept in the document calculate its frequency 

f , where f = the number of documents in the collection 

in which the concept occurs; 

b) FS - the sum of the frequencies of all the concepts 

divided by the number of concepts in the documents. 

2) Rank the documents in order of decreasing frequency scores, 

and pick the top m documents as cluster seeds. 

Finally, the random method simply picks out m random documents from 

the collection to be used as cluster seeds. 

B) Overlap 

The coefficient used to measure the overlap between clusters is an 

m dimensional extension of Tanimotofs two dimensional correlation coeffi­

cient. The most obvious way to measure overlap is to simply compute the aver­

age number of clusters/document. When this number is 1, there is no overlap 

between clusters. However, the main problem with this measure is that the 
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upper bound depends on the number of clusters; e.g., for ten clusters the 

upper bound is 10, for one hundred clusters the upper bound is 100. Of course, 

the upper bound is reached when every document occurs in every cluster; i.e., 

each cluster is equivalent to the entire collection. 

The generalized form of Tanimotofs coefficient has a lower bound of 

0 and an upper bound of 1 independent of the number of clusters. Let S. = 

a binary vector of length N specifying the documents in cluster i ; i.e., 

J 1 i: c- ( - \ x if document j is in cluster i 
i 

0 otherwise 

i _̂-i S.CkX ; i.e., the number of documents in cluster i . 

Let I. . = S. r\ S. . Then #1. . = the number of documents occurring in 

both cluster i and cluster j . TanimotoTs two dimensional coefficient is: 

T = #1. ./C#S. + #S. - #1. .) 

Extending this to m dimensions yields: 

m-1 m m m-1 m 

i=l j=i+l >J i = l i=l j=i+l 5 j 

From now on, the numerator of (j) will be referred to by NUM . 

Theorem (() has a minimum value of 0 and a maximum value of 1. 

Furthermore, it attains these bounds if and only if there is no 

overlap, or if all clusters are identical respectively. 

Proof 

a) Clearly |) is 0 when S, p, S. = (j) for all i and j, s i j, 
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since #1. . is always 0* On the other hand, (J) can only be 

negative or undefined if 

Cm-li } #S. < NUM . 
i=l 

However, this is impossible since 

m-1 m m-1 m 

Cm-U I 4S. = I I #S. > I I #S. and #S. > #1 . . 
1=1 ]=1 1=1 ]=1 1=3+1 

b) L e t S, = Sn = . . . = S . Then #S. = #S1 , and I . . = I_ . = 
1 2 m I 1 ' i ] 1 ,1 

S => # 1 . . = #S. f o r a l l i . T h e r e f o r e , 
1 i , 3 1 

m m-1 m 
<|> = NUM/[Cm-l) £ #S_ - NUM] , b u t NUM = I I #S. => 

1 = 1 1=1 3 = 1 + 1 

<|> = [Cm-D+Cm-2X+. . .+ l J* .#S 1 / rCm-l ) -m#S - CCm-l)+. . . + l ) -#S ] 

= [ m C m ^ l ^ S 1 / 2 ] / { m C m - l ) i S 1 - m ( m - l ) # S / 2 ] 

= [ m ( m - l ) # S 1 ] / [ 2 m C m - l ) # S 1 - mCm-l)#S ] 

= [m(m-l)#S ] / [ m ( m - l ) # S ] = 1 . 

(J) can o n l y be g r e a t e r t h a n 1 i f NUM i s g r e a t e r t h a n t h e 

d e n o m i n a t o r . I f s o , t h e n 

m 

l 

m 

NUM>Cm-ll I # S . - NUM 
i = l 

2-NUM > Cm-1) y #S . 
i = l 

[C#s0+...+#s )+#s ] + [ ( # S V K . . + # S )+C#s +#s0)] 
2 m l 3 m 1 2 
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+ ... + [#s +(#s +...+#s ,)] 
m l m-1 

m-1 m 

= I I #S.+(m-li#S1+(m-2)#S0+...+#S n 

. n . 7 , n 1 z m-1 

m-1 m-1 m-1 m 

= I #s1+...+ I #s m_ 1 + I I #s 
j=l j=m-l i=l j=l+l 

m m m-1 m 

3=2 ]=m i = l ]=i+l J 

m-1 m m-1 m 

- I I #s + I I #s 
1=1 j=i+l J 1=1 j = i+l J 

m-1 m 

= 2 I I ^ 
1=1 j=itl J ' 

But this is impossible since S. > I. . 

C) Algorithm 

After the initial clusters are generated, there exist m clusters 

with one document in each cluster. The cutoff point for loose documents 

(K) is now set so that at the end of the first cycle each cluster will 

average five documents. At the end of each iteration, K is reset so that 

x percent of the loose documents will be clustered at the end of the next 

cycle, where x is an input parameter. The iterations continue until less 

than y percent of the documents remain loose, where y is also an input 

parameter. Finally, an option is provided to allow the loose documents to 

be assigned to the cluster against which they score highest Cblending), or 

to simply group them all together into an additional cluster. 

So far nothing has been said about the choice of the base value that 

is used in calculating the rank values of concepts in profiles. As discussed 
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elsewhere (l), the base value should be set a little above the average clus­

ter size at the beginning of each iteration. The purpose of this is two­

fold: first, to prevent the rank values from dropping below 1, and to allow 

documents to move freely between clusters. If the base value is too low, 

many rank values drop below 1 and all are reset to 1 even though the concepts 

have different frequencies. Fig. 1 illustrates a case where the base value 

is too low. For present experiments the base value is set to twice the 

average cluster size at the beginning of each iteration, but experiments 

have shown that this is probably too high. Even in the largest clusters, 

the lowest rank values do not come close to 1. 

Another parameter which is controlled is the size of the clusters. 

This is accomplished by deleting those clusters whose size falls below one-

half the average, and by breaking up those clusters whose size exceeds twice 

the average. These checks are made at the end of every cycle of the algo­

rithm. Clusters which get too large are broken up into two non-overlapping 

clusters by the following algorithm: 

1) Select a random sample from among the documents in the 

cluster and generate seeds as in steps 1-3 of the corre­

lation method for initial cluster generation. 

2) Pick those two documents from the seeds that correlate 

lowest with one another, and use these two documents as 

cluster centers for the two new clusters. 

3) Assign the documents in the original cluster to the cluster 

center to which they correlate highest. 

Consider step b in the general description of the algorithm in 

section 2. The parameter a is used to control the overlap, where 

0 < a < 1 . However, a does not correspond to the actual overlap between 
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clusters as computed by (j) . After every cycle of the algorithm, the over­

lap is computed and compared with the input parameter OVER , which is the 

requested amount of overlap. The parameter a is then adjusted so that ~:he 

value of (j) approaches OVER . However, when loose documents are blended 

into the nearest cluster at the end of the algorithm, the amount of overlap 

between clusters decreases' since each loose document is assigned to only one 

cluster. But as the percent of loose documents at the end of the algorithm 

is an input parameter, the effect of blending on the overlap can be predicted 

beforehand. Instead of adjusting a so that (J) approaches OVER , (() 

should approach XOVER so that (j) equals OVER after blending. 

The change in 0 after blending occurs only in the term 

m 
Cm-1) I #S. 

i=l i 

since some clusters increase in size. The change is 

m 
Cm-lX • C I #S. + y-N) 

i=l 

where y is the percent of documents loose at the end of the algorithm. 

After blending (j) should equal OVER, where 

m 
OVER = NUM/[Cm-1> • C } #S. - y-N) - NUM] . 

i=l X 

Before blending, 

in 

XOVER = NUM/{Cm-1)• V §S. - NUM] . 
i=l X 

XOVER must be expressed in terms of OVER . Rewriting OVER, 

m m 
OVER = XOVER -Km-1) • £ #S. - NUM]/ICm-1) • £ #S. - NUM+Cm-1) -y-N] 

i=l X i=l X 
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Solving for XOVER, 

m m 
XOVER = OVER -[(m-1) I #S. -NUM+Cm-l)-y*N]/[(m-1) I #S. -NUM] 

i=l 1 i=l 1 

m 
XOVER = OVER • [1 t Cm-l)-y-N/CCm-l) I #S. -NUM)] . 

1=1 1 

After every cycle, XOVER is reset by the above formula and a is adjusted 

as follows: 

1) Lf (j) <XOVER , set a = a + Cl-a) (X0VER-(()) . 

2) If (|) >XOVER , set a = a + a -CXOVER-tj)) . 

The quantity (XOVER-(()) is the difference between the required overlap and 

the actual overlap, and Cl-a) or a represents the maximum amount that 

a can be changed in the proper direction. 

One final input parameter controls the centroid definition. Cluster 

centroids are defined as the profile of concepts and their corresponding 

rank values as weights. An input parameter z is provided which determines 

what percent of the concepts in the profile will be used to define the cen­

troid. The concepts in each profile are sorted in decreasing order by rank 

values, and the top z percent of the concepts are used to define the cen­

troid. Normally more than z percent are actually used, since the last 

concept in the top z percent may have several ties, and all ties are also 

taken. 

4. Evaluation 

The final evaluation of the clusters can only be made by performing 

centroid searches on the classified collection. Two separate types of evalu-
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at ion are possible: internal and external. The internal evaluation 

attempts to determine how variations in the parameters of the classification 

algorithm affect the search results. The external evaluation compares the. 

retrieval results from clusters produced by this algorithm with other algo­

rithms and with a full search. 

Al Evaluation Measures 

Standard recall-precision curves that are used to evaluate full 

searches are not satisfactory for centroid search evaluation. The problem 

is that recall-precision curves do not take into consideration the amount 

of work which must be done by the retrieval system. Since the main advan­

tage in centroid searching is a reduction in the number of query-document 

correlations, it is important to include the amount of work performed in 

any evaluation. 

The total number of correlations in a centroid search is equal to 

the number of query-centroid correlations plus the number of query-documen'i 

correlations. Dividing this number by the total number of correlations 

necessary for a full search (N) , yields a fraction which compares the 

amount of work in a centroid search to a full search. This fraction is re­

ferred to as the correlation percentage (C.P.). [3] One way of represen­

ting the results is to include the correlation percentage along with the 

standard recall-precision measures. However, experiments have shown that 

the standard recall-precision measures improve as the C.P. increases, even 

when comparing the results from different sets of clusters. It is diffi­

cult to decide whether a cluster set that produces a normalized recall of 

.75 and a normalized precision of .60 with a C.P. of .20 is better or worse 

than another set of clusters producing a normalized recall of .70 and a no:?-
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malized precision of .55 with a C.P. of .15. The C.P. can be controlled to 

some extent during the centroid search, but quite often it varies by ten 

percent or more from the desired value. This is due to the difference in 

sizes of the clusters, and cannot be avoided as long as all the documents 

in the selected clusters are correlated against the query. 

A method is proposed which modifies the recall-precision curve by 

taking into account the value of the correlation percentage. Consider a 

query Q which has two relevant documents, R and R . Assume, for 

example, that the total number of documents in the collection is 20. 

Fig. 2a shows the results of a possible centroid search where one cluster 

containing five documents is selected. Fig. 2b shows similar results for a 

different set of clusters where one cluster containing ten documents is 

searched. In both cases the two relevant documents are retrieved at the 

same ranks, so the recall-precision figures are identical." However, if 

there are four clusters in both cases, then C.P. = 9/20 for case (a), while 

C.P. = 14/20 for case Cb). Thus, the evaluation measure should rate case 

Ca) better than case Cb), since the same retrieval results are obtained 

with less work. 

Consider now a method in which the precision is not held constant 

after a recall of 1, but instead is allowed to drop until the rank is equal 

to the total number of query-centroid plus query-document correlations that 

have been made. Fig. 3 illustrates the recall-precision results for the 

previous example using this new method of evaluation. 

-In the present. SMART evaluation system, the precision is held constant after 
all the relevant documents are retrieved. 
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Another problem occurs when some of the relevant documents are not 

retrieved. Suppose as in the previous example, that there are two relevant 

documents but only one of them is retrieved. Fig. 4 illustrates these re­

sults where both set of clusters retrieve the relevant document at the same 

rank.- Once again the recall-precision results are identical, even though 

case Ca) proved as effective as (h) at less cost. 

Instead of assigning all the unrecovered relevant documents to the 

lowest ranks, they are distributed uniformly thoughout the ranks greater 

than the total number of correlations performed. The first unrecovered 

relevant is always assigned the middle rank, and the others are spaced 

uniformly above and below it. Fig. 5 illustrates this assignment for the 

sample case. Since case Cal did less work, the unrecovered relevant is 

assigned a higher rank than in case Cbl. A graph which plots recall vs. 

precision at every rank Cdocument level) using the modified results reflects, 

the superiority of case (a) as illustrated in Fig. 6. A graph which plots 

recall vs. precision at selected recall points Crecall level) is not used 

in the evaluation, because only the highest precision for a given recall 

is used in the graph. Notice that in cases where all the relevant have not 

been retrieved, the precision is held constant after the assigned rank of 

the last relevant, since the C.P. is already taken into account during the 

assignment of the unretrieved relevant documents. 

In order to illustrate the effects of the new evaluation process 

on an actual collection, a set of ADI clusters called BASE is considered 

using both evaluation measures. Four centroid searches are performed on 

-Relevant documents not retrieved are assigned to the lowest possible ranks 
in SMART. 
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the base set of clusters; BASE2, BASE3, BASE4, and BASE5. BASE2 searches 

the top two centroids, BASE3 searches the top three centroids, etc. Fig. 7 

shows the search results using the standard recall-precision measure, and 

Fig. 8 shows the results using the new evaluation measure. Also included 

in each graph are the results of a full search. 

For the highest ranked documents, both curves are almost identical, 

since the new adjustments usually do not affect the high ranks. However, 

at the lower ranks the new adjustments favor the searches with the lower 

correlation percentage. The high recall end of Fig. 7 clearly illustrates 

the superiority of those searches with a high C.P. This is to be expected 

since more relevant documents are retrieved with higher C.P. searches. 

In Fig. 8 the searches with the highest correlation percentages are 

still better at the high recall end, but the difference is much smaller 

than in Fig. 7. In fact, there is very little difference between BASE4, 

BASE5, and FULL, and between BASE2 and BASE3. Also, the difference between 

the BASE2 curve and the FULL curve are much less. 

When comparing the search results obtained from different sets of 

clusters, an attempt is made to keep the C.P.'s as equal as possible, even 

though the new evaluation measure adjusts for differences. However, when 

the C.P.'s differ by as much as .15 (BASE4 compared to BASE3), the graph of 

the higher C.P. search can be expected to be higher. 

B) Internal Evaluation 

The purpose of the internal evaluation is to investigate how changes 

in the input parameters affect the multi-level search results. All the 

experiments are conducted on the 82 document ADI collection, and the 200 

document Cranfield thesaurus collection. The following parameters are in-
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vestigated: 

1) initial cluster generation 

a) correlation 

b) similarity correlation 

c) frequency 

d) random 

e) results from a one-pass algorithm; [5] 

2) number of clusters; 

3) overlap; 

4) cutoff; i.e., percent of documents allowed to be loose 

at the end of the classification; 

5) percent loose clustered on the next iteration. 

in addition to evaluating the retrieval results, the internal evalua­

tion should determine how close the classification comes to satisfying the 

input parameters. However, it is probably better not to "force" a classifi­

cation algorithm exactly to satisfy input parameters such as the number of 

clusters and amount of overlap. The algorithm should allow some variation 

in these parameters depending on the collection used. For example, suppose 

a collection consists of repetitions of three distinct documents. Then clearly 

three clusters should be produced, no matter how many are requested. On the 

other hand, it is difficult to obtain experimental conclusions if the para­

meters are not controlled. Therefore, the algorithm is designed to keep the 

parameters within fairly small boundaries. in practice it might be better 

to relax some of these restrictions somewhat. 

Experiments are performed by varying one of the five parameters and 

comparing the results with those obtained with a base classification. [4] 
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The parameters for the base classification usually fall somewhere near the 

middle of the two extremes* Table 1 lists the classification parameters 

for the ADI collection, and Table 2 illustrates the same parameters for the 

Cranfield collection. The first two columns specify the number of clusters 

requested (In) and the number actually produced (Out); the next two 

columns show the percent overlap requested and the percent produced, and the 

next two columns specify the percent of documents loose at the end of the 

algorithm. "Percent loose taken" specifies the percent of loose documents 

clustered at the end of each iteration. The results of the experiments 

are shown as document level recall-precision graphs using the new evalua­

tion measure, and the C.P. figures are included when available. 

C) Initial Clusters 

The initial cluster evalution includes several sets of cluster 

generations and centroid searches. For the ADI collection, the following 

experiments are performed: 

1) 25% loose, <_ .5% overlap (Fig. 9); 

a) FREQ Cfrequency), 

b) C0RR2 (correlation), 

c) FASTD Cinput from one-pass algorithm, 0% overlap); 

2) 25% loose, 1-3% overlap (Tig, 10); 

a) CORRI (.correlation), 

b) RANDOM (random), 

c) FASTO Cinput from one-pass algorithm, overlapping clusters); 

3) 40% loose, 0% overlap CFig. 11); 

a) OVRO Ccorrelation), 

b) OVEROSIM (similarity correlation) 

c) OVEROFREQ (frequency). 
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With the exception of 1(c) C0% overlap requested), within each of 

the three experiments, all of the input parameters are identical. The onl^ 

difference is the method used to generate the initial clusters. All evalu­

ations are mady by visual inspection of the document level recall-precisior. 

curves. The following notation is used to indicate the results: 

a) = two methods give approximately similar results, or it 

is impossible to determine from the graphs which method 

is better; 

b) > the first method is better than the second; 

c) >> the first method is much better than the second. 

The results of the three ADI experiments with initial clusters are 

as follows: 

1) CFREQ = FASTDl > C0RR2 

2) C0RR1 > CRAND0M=FAST0) 

3) OVRO = OVROSIM = OVROFREQ. 

Unfortunately, the results do not show that any method is consistently 

Detter than any other. The only conclusion is that the frequency, the 

similarity correlation, and the use of disjoint clusters from a one-pass 

algorithm never perform worse than any other method, while the random 

method and overlapping clusters place last in their only test. 

The following initial cluster experiments are performed with the 

Cranfield collection: 

1) 40% loose, 4-7% overlap (Fig. 12); 

a). BASE (correlation), 

b) BASESIM Csimilarity correlation), 
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c) BASEFREQ (frequency), 

d) RANDOM (random). 

2) 40% l o o s e , 0% overlap Grig. 13) ; 

a ) OVRO ( c o r r e l a t i o n ) , 

b) OVROSIM ( s i m i l a r i t y c o r r e l a t i o n ) , 

c) OVROFREQ (f requency! . 

The results of these two initial cluster experiments are: 

1) (RANDOM = BASEFREQ) > (BASE = BASESIM) 

2) OVRO » OVROFREQ > OVROSIM 

Once again the results are inconclusive. The correlation method perforins 

better than the other two methods in the nonoverlapping case, but does not 

do as well as the random or frequency methods in the first experiment. Sur­

prisingly, the random method actually performs better than the correlation 

or similarity correlation methods. This indicates that the algorithm is 

insensitive to the type of initial clusters used, or that none of the 

methods used so far is very good. Additional experiments must be carried 

out using different methods of initial cluster generation. One method which 

can be tried involves running the algorithm twice. The first time the ini­

tial clusters are generated using the random method. The clusters produced 

by this run are then used as the intial clusters for the second run. 

D1 Number of Clusters 

In the remainder of the experiments, the correlation method of ini­

tial cluster generation is used, and unless otherwise specified, all other 

parameters are identical to the BASE run. For any given collection, the 
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number of clusters can be chosen to minimize the search time, assuming 

that all clusters contain the same number of documents. This assumption 

is not too invalid since the cluster sizes are maintained between one-half 

and twice the average cluster size. 

Consider a collection of N documents classified into m clusters, 

where each cluster contains on the average n documents. For a centroid 

search which looks at the documents in the top q clusters, the search 

time is ST = m + q*n . Assuming (J) = 0 , n = N/m and ST = m+q*N/m . 

The search time is minimized for dST/dm = 0 . 

dST/dm = 1 - q*N/m2 . dST/dm = 0 => m = / q-N 

For the ADI collection, ST is minimized with / 82 = 9 clusters 

if one centroid is searched, and / 164 = 13 clusters if two centroids 

are searched. Of course, there is no guarantee that optimizing the search 

time yields the best results. The following experiments are performed with 

the ADI collection: CFig. 14). 

ll BASF C9 clusters!, 

2) CLUST5 C4 clusters!, 

3) CLUST15 Cl5 clusters). 

The parameters for the centroid search allow the number of centroics 

searched per query to vary for different queries. A specified minimum is 

always searched for each query, but additional centroids may also be searched 

if the query-centroid correlation is close enough to the correlations of the 

centroids already chosen. Thus, the average number of centroids searched 

is usually higher than the minimum. In experiment 1 a minimum of two cen­

troids is searched, while in experiment 2 one centroid is searched, and in 



A i i i 

1.0 

.9 

.8 

.7 

.61 
c 
o 

CD 

0_ 
.4 

•3r 

• 2r-

0 

• BASE 
A CLUST5 
o CLUSTI5 

z$~5=&=-<* 
_L _L 

0 .4 .5 
Recal 

.8 1.0 

ADI Number of Clusters 

• . - i . 



XI1I-40 

experiment 3 three centroids are searched. The minimum number of centroids 

searched is chosen to keep the search times approximately equal. The approx­

imate search times for each experiment are: 

1) ST = 9 + 2-82/9 = 9 + 164/9 = 9 + 18 = 27; 

2). ST = 4 + 1*82/4 = 4 + 21 = 25; 

3) ST = 15 + 3*82/15 = 15 + 246/15 = 15 + 16 = 31. 

The results of the experiment show that BASE > CLUST15 > CLUST5 . 

For the Cranfield collection, the following experiments are made: 

(Fig. 15) 

1) BASE (12 clusters X, 

2) CLUST10 C9 clusters), 

3) CLUST20 C20 clusters). 

All of these searches are made using a minimum of one centroid, so the approx­

imate search times may be quite different. Fortunately, the actual C.P.'s 

are available, and they can be compared with the ST figures: 

1) ST = 12 + 1-200/12 t 17 = 29., 

C.P. = .26 => STT (actual search time) = .26-200 = 52; 

2) ST = 9 + 1*200/9 = 9- + 22 = 31, 

C.P. = .34 => STf = .34*200 = 68; 

3) ST = 20 + 1-200/20 = 20 + 10 = 30, 

C.P. = .25 => STf = .25-200 = 50. 

All the ST values are lower than the actual search time, but this 

is mainly due to the fact that more than one centroid is often used, and the 

overlap is not 0. Fig. 15 shows that (BASE = CLUST10) > CLUST20 . Unlike 
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the ADI results, the search with the smallest number of clusters does better 

than the search with the largest number. This is probably due to the larger 

number of clusters used with the ADI CLUST15. At any rate, both the ADI and 

Cranfield results indicate that the middle number of clusters does best. 

Notice that both sets of BASE clusters contain very close to / N clusters. 

(V 82 = 9, / 200 = 14). 

E) Overlap 

An inspection of Tables 1 and 2 shows that the amount of overlap pro­

duced is very often much different from the amount requested. The requested 

overlap is varied from 0% to 15% in steps of 5%, but in both collections 

several of the requests were not satisfied. However, the following compari­

sons can be made for the ADI experiments: CEig. 16) 

1) BASE C.3%X, 

2) OVRO C0%>, 

3 1 0VR15 (13. 5% X. 

The results indicate that BASE > C0VR0=0VR15l . Thus, for the ADI collec­

tion a small amount of overlap performs better than a large amount of over­

lap and better than 0 overlap. 

The following experiments are performed for the Cranfield collection: 

(Fig. 17) 

1) BASE (5.4%), 

2) OVRO (0%), 

3) 0VR15 (15.3%). 

These results indicate that OVRO >> BASE > 0VR15 . Once again the clusters; 
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with a very large amount of overlap perform poorly, even though the C.P. for 

0VR15 is about twice as great as the C.P. for BASE and for OVRO. However, 

a surprising result is the better performance of the clusters with 0% over­

lap compared to those with 5% overlap. Since the best ADI results are ob­

tained with only .3% overlap, the conclusion is that a very small amount of 

overlap is helpful, but more than 5% is too much. More experiments need to 

be run using an overlap between 0—5%. It appears that the best results 

should be obtained in this range. 

F) Cutoff 

The value of the cutoff determines how many documents are left loose at 

the end of the algorithm. In all cases, the loose documents are blended into 

the nearest cluster. The following experiments are compared for the ADI 

collection: CFig. 18) 

1) BASE (12% loose), 

2) CUTO (2.5% loose), 

3) CUT20 (23% loose). 

The main advantage of a high cutoff is that it allows the algorithm 

to terminate faster. The cutoff should be chosen as high as possible to shor­

ten the cluster time, without seriously affecting the search results. The 

ADI results show that (BASE = CUT20) > CUTO . This is surprising since it 

is expected that the lower cutoff would produce better results. 

The following experiments are run on the Cranfield collection: (Pig. 19) 

1) BASE (13% loose), 

2) CUTO (3.0% loose), 

3) CUT20 (16% loose), 
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4) CUT30 (27% loose). 

Notice that the overlap for CUT30 is only 1.1%, while for the other runs it 

is 5-6%. The experiments on overlap indicate that 1% is probably better than 

5-6%. Thus, CUT30 might do well because of its overlap. The results show 

that CEASE = C U T O ) > CUT30 > CUT20 . 

The Cranfield results favor the lower cutoff values, and it is possi­

ble that CUT20 would have done better than CUT30 if their overlaps were 

equal. However, the experiment with 3% loose does not do better than the 

run with 13% loose. Since the lower cutoffs do not perform as well in the 

ADI experiments, the best cutoff appears to be 12-13%. 

G) Percent Loose Clustered 

This parameter controls the percent of the loose documents that are 

clustered at the beginning of the next iteration. Thus, 40% means that 40% 

of the remaining loose documents are assigned to clusters after the first 

cycle of the next iteration. For both the ADI and Cranfield collections the 

following experiments are performed: 

1) BASE OQ%), 

2) LSE20 (.20%), 

3) LSE60 C60%), 

4) LSE80 (80%). 

The ADI results appear in Fig. 20 and the Cranfield results in Fig. 21. 

For the ADI, (BASE = LSE60 = LSE80) > LSE20, and for the Cranfield, LSE60 >> 

BASE > (LSE80) . 

In both cases LSE20 is poorest, but LSE60 is much better than the 
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others for the Cranfield results; therefore, 60% loose gives the best results 

over both collections, 

H) External Evaluation 

On the basis of the internal evaluation results, the following conclu­

sions are made regarding the "best" input parameters for the classification 

algorithm: 

1) initial clusters — no conclusion (correlation used); 

2) number of clusters —approximately / N clusters; e.g., the 

best results are obtained with 9 clusters for the ADI collec­

tion and 13 for the Cranfield collection; 

3) overlap — probably somewhere between 1-3% (2% used); 

4) cutoff - 10%; 

5) percent loose clustered — 60%. 

An additional run called BEST is made using these parameters as input. Un­

fortunately, all of the output parameters did not satisfy their input requests; 

e.g., the overlap is 0% for the ADI and .5% for the Cranfield. However, LSE60 

from the Cranfield clusters matches the parameters almost exactly — 13 clusters, 

1.5% overlap. 

Eig. 22 shows the recall-precision curves for the ADI BEST, OVRO, 

and EULL. Fig. 23 shows BEST, LSE60, and FULL for the Cranfield collection. 

Also included in Fig. 23 are the results of a random clustering of the collec­

tion. Both ADI BEST and OVRO have 0% overlap, and the results show that FULL > 

BEST > OVRO . In the Cranfield results, the surprising fact is the poor showing 

of BEST. However, the run which actually contains the desired output parame­

ters, LSE60, performs better than the full search up to 50% recall. Thus, 

(FULL = LSE60) >> BEST >> RANCLUST . 
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Comparisons can also be made with cluster results from Rocchio's 

classification algorithm. {6J Several sets of clusters are available as out­

put from Rocchio's algorithm, and those which yield the best retrieval 

results are chosen for comparison. These clusters are called ROCCHIO in 

Table 1 and Table 2. The Rocchio clusters are compared against those runs 

which most closely match the number of clusters and overlap of ROCCHIO. 

Thus, SIM is used for the ADI results, and RANDOM is used from the Cran-

field results. The search parameters are adjusted so that exactly_ two cen-

troids are chosen for every query. Fig. 24 and Fig. 25 show that SIM >> 

ROCCHIO and RAND0M2 >> ROCCHIO . However, another run called NEWROC is 

made by using RocchioTs clusters with the same centroid definition that is 

used for SIM and RAND0M2 . 

The centroids for Rocchio?s clusters are defined by using all the 

concepts and taking the sum of the weights; I.e., if concept i occurs in 

two documents within the cluster with weights of x and x , then its 

weight in the centroid is x. + x . The centroids for the clusters in this 

study are defined as the top y percent of the profile vector; i.e., the 

weights of the concepts are equal to their rank values. For the ADI experi­

ments a minimum of 50% of the concepts are used. The rank value differs 

from Rocchio's weights in two important respects: 

1) the weight of a concept within a particular document is 

ignored in computing the rank value; i.e., all concepts in 

a document are assigned the same weight; 

2) the magnitude of the difference in the number of documents 

within the cluster in which a concept occurs is ignored; i.e., 

if concept i is ranked first and occurs in 10 documents, 

and concept j is ranked second, then it doesn't matter if 
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concept j occurs in 9 documents or only 2 documents, 

its rank value is still one less than the rank value of 

concept i . 

Fig. 24 shows that NEWROC > SIM >> ROCCHIO , while Fig. 25 shows 

RAND0M2 > NEWROC >> ROCCHIO . Thus, in both cases the results improve 

greatly over the Rocchio clusters simply by changing the centroid defini­

tion. However, the present classification algorithm still performs better 

than NEWROC for the Cranfield results, although NEWROC does better for the 

ADI results. 

The final external evalution is made by comparison with the results 

from a one-pass clustering algorithm. A description of the algorithm and the 

results are presented elsewhere; [5] unfortunately the results are misleading. 

The best set of one-pass clusters is chosen CMDJ - 0% overlap) and plotted 

against OVRO using the new evaluation measure. Fig. 26 shows that OVRO = 

MDJ . However, C.P. = 0.50 for OVRO and C.P. = 0.71 for MDJ. Both searches 

are made using a minimum of two clusters per query. The reason for the very 

high correlation percentage for the one-pass clusters is due to the size of 

the clusters. MDJ contains 14 clusters, but the three largest clusters, 

which are usually chosen in the search, contain 72% of the documents; seven 

of the clusters contain only one document. Another run is made called MDJ1 

where exactly one cluster is chosen per query. Even in this case C.P. is 

quite high — =.46, but now OVRO > MDJ1. It Is clear that the one-pass algo­

rithm needs to be modified so that the size of the clusters does not vary so 

much. Perhaps an additional pass should be made to break up large clusters 

and to merge smaller clusters. 
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5. Conclusion 

The multi-level classification algorithm presented in this study 

runs in time T = k-N-p-log m , where k is a constant, N is the number 

of documents in the collection, m is the final number of clusters desired, 

and p is the number of clusters produced at each level of the algorithm. 

It Is shown that the closer p is to e , the faster will the algorithm 

operate. The complete multi-level algorithm Is not yet implemented, so 

that all the experiments are run with p = m = > T = k•N*m . With m = / N , 

3/2 
T = k*N ' , This Is, of course, much better than classification methods 

2 
that run m time proportional to N , but it is still not satisfactory for 

very large collections. For these collections it is necessary to implement 

the entire algorithm, and to run with small values of p . With N = 10 , 

it is theoretically possible for T to equal k*-10 *3*log m , where p = 3 . 

if once again m = / N , then T = k*10 *31og 10 = k*105*3*6.3 = k-106-18.9 = 

7 
2k*10 . This Is much better than using only one level, where p = m and 

R 3 Q 
T = k*10 -10 = k-10 . 

Fortunately, many of the input parameters which yield the best search 

results also help to lower the constant of proportionality k . Table 2 

shows that LSE60, the best cluster run, took approximately 2.3 minutes for 

the 200 document Cranfield collection, while LSE20 took over 9 minutes! The 

high percent of loose clustered, and the low amount of overlap both reduce 

the clustering time. 

One of the major problems with the algorithm Is the failure to satisfy 

the requested amount of overlap. This is due to the fact that the parameter 

a is not changed enough after each cycle. Recall that a is reset to 

a + (l-a)-CXOVER-(t)) if (t <X0VER , and reset to a + a • (X0VER-(j)) if ())>X0VER . 
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One method of improving this is to introduce a parameter b such that, 

J a + b-(l-a)-(XOVER-(|)) if (J) < XOVER 

a + b*a-CXOVER-(j)) if (J) > XOVER 

The parameter b is set to 1.0 at the beginning of each iteration. After 

every cycle, b is reset as follows: 

b = b- [1 + J XOVER-Cj) | ] 

Thus, b ranges between 1.0 and 2.0. 

A comparison with Rocchio's algorithm shows that the method used 

to define centroids is very important. Certainly the rank values prove 

to be better than the sum of the weights. However, it is not clear whether 

the rank values are better because they ignore weights within documents, 

or because they ignore the magnitude of differences in the number of docu­

ments in which each concept occurs. This can be decided by summing the 

weights as Rocchio does, but instead of using this number as the weight, 

by ranking the concepts according to their sum and then calculating the rank 

values to be used in the centroid definition. 

All the evaluations performed in this study are done by visual 

inspection of the document level recall-precision graphs. This rather 

inexact method can be improved by using statistical tests such as the sign 

test and the t-test to compare two curves. Routines are being programmed 

to perform such tests, and they will be used in the future. 

Finally, all of the conclusions and evaluations are based on results 

from an 82 document and a 200 document collection, containing 35 and 42 

queries respectively. These results should be supplemented by experiments 
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run on the 424 document Cranfield collection containing 155 queries, and 

eventually on the 1400 document Cranfield collection. 
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