
ISR-9 XIV-1
August, 1965

XIVo Concept-Concept and Document-Document Correlations

M* Cane and G« Shapiro

1o Introduction

This section describes the algorithm employed to perform concept-

concept and document-document correlations. The algorithm uses a tape con­

taining a number of vectors and correlates each vector with all of the

others; all correlations exceeding a user specified cutoff value are written

outo The user also specifies the correlation mode (either cosine or overlap)

to be employed in performing the correlations. The general method is to

first fill a buffer with as many vectors as possible, correlating each of

them with the others in the buffer* After the buffer is filled^ the remain­

ing vectors on the input tape are passed through and correlated with all the

vectors already in the buffer. As the vectors are correlated they are

written out onto a new tape. After all vectors on the first tape have been

processed in this manner, the vector tape just created is used as the input

tape for the next correlation pass* The vectors on this new tape are again

read into a buffer and correlated with each other. When the buffer is

filled,, the remaining vectors are again passed through core and written onto

a new tape,. This process continues until all vectors have been correlated

with all others,,

Part 2 of this section describes the operation of this algorithm in

greater detail. Part 3> which follows, describes how the algorithm is used

for concept-concept correlations. The final part discusses its application

XIV-2

to document-document correlations,

2. Correlation Algorithm

The general outline of the correlation algorithm is shown within the

dotted lines in Flowchart 1. Each call to SPASSI or CCPASS corresponds to a

correlation pass — i.e., the correlation of a single buffer load of vectors

with all the vectors that remain.

Subroutine GPASSI executes the first correlation pass. It uses six

arguments: NIT, NOUT, N2T, IDCCUT, IFIN, and ITERCT. NIT is the logical

number of the input tape; NOUT is the number of the tape which is to receive

the correlations which are written out; N2T is number of the taoe which re­

ceives the vectors that didn't fit into the buffer space; IFIN is set to non­

zero by CPASSI only if all vectors have been correlated with all others.

IDCCUT and ITERCT control the format of the input tape for the concent-concept

correlations; these are explained in the next part.

Subroutine CPASSI is described in Flowchart 2. The operations of

CPASS 1 may be understood more easily if the subroutines called by this rou­

tine are examined first:

(1) CFETCH and LFETCH. CFETCH is an initialization entry for

LFETCH. It has five arguments—NIT, IWH, ICON, ITERCT and

IDCCUT. NIT, ITERCT and IDCCUT are identical with the argu­

ments to CPASSI. LFETCH will return a code to IWH and an

identifier to the two word FORTRAN array ICON. When LFETCH

is called it returns the next vector entry to the accumula­

tor. (Each vector entry has a concept number in the decrement

SET INITIAL
VALUES OF

LINK PARAMETERS
ITERC

5
CALCULATE NUMBER

OF FILES OF
DOCUMENT TAFE
TO BE SORTED

12
CALL SPECTR TO

SORT THE TAPE INTO
CONCEPT ORDER

NRT I S THE SORTED
TAPE

YES

A
I S

EXPANSION^
.ON REQUESTS

ONLY?.

NO

TAPE TO BE
SAVED-NTBS

= B l

TAPE TO BE
SAVED-NTBS

= NRT

CALL TCH003 TO
FIND TAPES FOR

SORT, OUTPUT,
SWITCHING

SUPER9 - SUPERVISOR FOR LINK 9

FLOWCHART 1

r
CALL CPASS1 (NRT, NOUT,

N2T, IDCCUT, IFIN, ITERCT)
FOR FIRST CORRELATING PASS

21

RESET TAPES
SWITCH NIT

AND N2T

CALL CCPASS (NIT, NOUT, N2T, IFIN)
FOR NEXT CORRELATION

PASS

30

CALL CNDFIN
TO FINISH

OUT PUTTING
CORRELATIONS

I

FLOWCHART 1 (CONTINUED)

XIV-5

CALL SPECTR TO
SORT OUTPUT INTO

CONCEPT-CONCEPT
ORDER

ITERCT - ITERCT + 1

35
SET CORRELATION
MORE AND CUTOFF
FOR ITERATED

CASE

YES

REWIND TAPES
CALL ENDEND

TO TRANSFER TO
LINK 10

FLOWCHART 1 (CONTINUED)

XIV-6

and a weight in the address.) LWH is set to 2 if the present

entry is the last entry of the vector, and to 3 if it is the

last entry on the tape. It is set to 1 otherwise. When IWH

is 2, ICON will contain the identifier for the next vector.

(2) The other subroutines act on an array of five word items

called IDOCWD. The first two words of each item contain the

identifier for the vector. The decrement of the third word

is the index in the buffer IVEC of the first word of the

vector; the address points to the word following the last

word of the vector. These items are put into the array by

the program that fills the IVEC buffer (CPASS1 in this case).

The fourth word of the item is the denominator for the vec­

tor. It is entered in the Ith item of IDOCWD by calling

DENOM (I). If IENOM is called with a negative argument, a

partial denominator is formed since the vector given is not

complete, so that a full denominator cannot as yet be cal­

culated. The fifth word of each item is entered into the

array by subroutine CORREL. Calling CORREL (I) causes the

correlation of vector I with vector J to be entered in the

last word of the Jth item of IDOCWD, for J £ NREQ. NREQ

identifies a location which is 99 words down from the top of

common. When CORREL is called with a negative argument a

partial correlation is performed.

(3) CNOUT searches IDOCWD and writes out all correlations above

the cutoff value. Two arguments are used: The first is the

logical number of the output tape; the second is I, the in­

dex of the item in IDOCWD which is being correlated with the

NREQ vectors.

The section of CPASS1 from box 10 of Flowchart 2 up to box hO fills a

buffer named IVEC and correlates these vectors with each other. Three

INITIALIZE CALL CFETCH

10
PICK UP IDENTIFIER AND STORE IN IDOCWD

11
MOVE NEXT ITEM TO IVEC BUFFER WITH LFETCH

- 1 - - 3

2E3.

NO

2k I

15
CALL DENOM TO CALCULATE
DENOMINATOR, CORREL TO

CORRELATE, CNOUT TO OUTPUT

CALL MOVOUT
TO HANDLE RECORD

LENGTH PIECES OF VECTOR
CALL DENOM L - 1 0

tel

.65-
IFIN - 6

RETURN

YES

MOVE REST
OF VECTCR
TO IBUN

BUFFER

PICK UP IDENTIFIER
AND STORE IN IDOCWD

i d

JtL
MOVE NEXT ITEM

TO IBUN BUFFER WITH LFETCH

CALL DENOM(-ID)
AND SET

IBUN (U98) = 0 • 1 LWH

- 2

_ki
CALL DENOM AND STORE

ANSWER IN IBUN (COUNT+l)
ICOUNT = ICOUNT • 1

w SUBROUTINE CPASS1

JiL
-H SET EOF

FLAG

i4_
SET EOF

FLAG

FLOWCHART 2

END LAST OUTPUT TO N2T !
STORE IDENTIFIER INTO
IBUN FROM IDOCWD

START NEW OUTPUT TO N2T
CALL CORREL

NO

NO

IFIN - 0

YES

51
CALL CNOUT

V 60,
END OUTPUT'
TO N2T

IFIN - 6

RETURN

FLOWCHART 2 (CONTINUED)

XIV-9

conditions cause control to be transferred out of this sections

(1) The input tape is exhausted. In this case all vectors

have been correlated so IFIN is set greater than zero,

(2) The IDOCWD buffer is filled. Control then passes to

box UO.

(3) The IVEC buffer is filled. Control is eventually trans­

ferred to the section beginning at box UO, which creates

the vector tape for the next pass. First, however, it

may be necessary to start this tape by writing out initial

pieces of the vector that were put into IVEC. Subroutine

MOVOUT accomplishes this.

The section of code beginning at box I4O is essentially the same as the

code that preceded it, with the important difference that it also writes out

the vectors. Each vector is written out in records not larger than 500 words.

The first two words of each record contain the identifier for the vector; the

third word contains the denominator if this is the last record of the vector;

it is zero otherwise. The remaining words contain the vector entries.

Subroutine CCPASS has four arguments — NIT, NOUT, and IFIN, correspond­

ing to the arguments of CPASS1. CCPASS is very similar to CPASS1 as can be

seen from Flowchart 3; the difference is that CCPASS has to deal only with

the vectors in the form created by CPASS1. All entries are already set up,

the denominators are all calculated, and so on.

All 1-0 is double buffered, and it makes use of the INOT trap con­

trolled input-output routine.

XIV-10

INITIALIZE
START READ OF N2TI

J£_
END ROAD

OF N2T

YES'
IFIN-6
RETURN

START NEXT
READ OF N2T

YES

NO

17
SET IDENTIFIERS

IN IDOCWD

YESr

WILL
THIS RECORD
FIT IN THE

JUFFER^

NO

MOVE IT
INTO BUFFER

NO
YES

21
SET POINTERS

AND DENOMINATOR
IN IDOCWD

CALL MOVOUT
TO WRITE LAST
PIECE OF DOC.

ONTO N2T

2$_

NO

CALL CORRBL TO CORRELATE
CNOUT TO OUTPUT

IS IDOCWD FILLED? YES J21.
SET FREE SPACE POINTER SO
NO MORE VECTORS WILL FIT

SUBROUTINE CCPASS

FLOWCHART 3

XIV-11

_kl
CALL CORRELL(-IO)

FOR PARTIAL
CORRELATION

NO

i ko_
END OUTPUT
OF DOCUMENT
VECTOR TO N2T

U2
END INPUT OF
DOCUMENT VECTOR

FROM N2T AND BEGIN
NEW INPUT

J±6_
START OUTPUT

OF VECTOR TO N2T

SET UP JDENT.,
AND POINTERS

IN IDOCWB

IF EOF IFIN=0

IFIN-6

RETURN

YES-

CALL CORREL (1 0)
FOR CORRELATION

AND CNOUT TO OUTPUT
IC0UNT=IC0UNT+1

FLOWCHART 3 (CONTINUED)

XIV-12

3. Concept-Concept Correlation

The input to the concept-concept correlation link is a tape (Bl) filled

with two word items: the first word contains a concept number and a weight,

packed in decrement and address; the second word contains the document number

in the decrement. There document numbers are created by link 8. The tape

also contains entries for which the last bit of the address field of this

word is "on." In this case, the first word contains the actual BCD name of

the document.

This tape is sorted into concept order:

The document-concept matrix that was on the tape is then effectively trans­

posed into a concept-document matrix. For each concept number LFETCH will

return vector entries which contain the document number in the decrement and

the weight in the address. Then vectors are then vectors of documents all

identified by a given common concept. LFETCH ignores all items whose docu­

ment numbers are less than IDCCUT. Since IDCCUT is set to the highest

numbered request; the effect is to ignore all occurrences in requests.

The output routine CNOUT sets up two word items. The first contains

the numbers of the two concepts whose correlated was higher than the cutoff

value; these are packed two to a word. The second word contains the correla­

tion coefficient. CNOUT double-buffers its output, only outputting when a

buffer has been filled. CNOFIN is a final entry which writes out all items

that are waiting in the buffer when correlations are completed.

After the concept-document tape has been completely correlated, the

output tape is sorted into order according to the first word of each item

XIV-13

(that is5 on the concept-concept word).

At this point it is possible to iterate the concept-concept correla­

tions o The sorted output tape may be viewed as concept vectors over the

space of concepts. When CFETCH is called with ITERCT greater than one, it

expects the input tape to be a concept-concept tape. It takes the first half

word (the first concept number) as the vector identifier, and the second half-

word as the decrement of the vector entry. Each entry is assigned a weight

of 1 (in the address field); thus the concept-concept matrix becomes a binary

matrixo The results of each correlation are iterated in this manner until

ITERCT equals CONCON, Control is then transferred to link 10.

U. Document-Document Correlation

The document-document correlation program attempts to find out which

documents in the input collection are closely related by correlating their

concept vectors. In practice, either overlap or cosine correlations are per­

mitted. The main use of the document-document correlation is to expand re­

quest answers by including along with each document in the answer all docu­

ments which correlated with it above some fixed cutoff.

The basic algorithm used for document-document correlation is the

same as that described in Part 3 of this section. The document-document

programs are simpler in certain respects, the basic simplification being

that the document-vector tape, as produced by the lookup, is already in

sorted order so that no tape sort need be used initially„ Also, no provision

is made for iterating concept-concept correlations.

XIV-lU

The document-document programs use the same routines CCPASS, CPASS1,

and MOVOUT that are also used by the concept-concept programs. The programs

CFETCH, LFBTCH and CNOUT which they call must, however, be different since

the formats involved are different.

The document-vector input tape contains 200 word records. Each word is

of the form

CON NO. WEIGHT|

where CON NO. is a concept number and WEIGHT a weight. The individual docu­

ment vectors are sorted on the concept number. The last word of a document

vector is a word of zeroes, used as a flag. The last record of a document

may be short. Bach document is preceded by a 12-word record containing BCD

identification. The versions of LFETCH and CFETCH used by the document-

document programs accept this new format but otherwise they act in the same

way as the versions earlier described. When a new document is started, LFETCH

returns the second and third words of the BCD identifier as identification to

the calling program. These two words are later written out by CNOUT with the

correlation.

The output tape for the document-document correlations is written in

records containing 100 five-word items. Each item looks like

wd 2

m i

3

Correl

5

DOCtNM 2

where correl is the two's complement of the correlation between documents

xiv-15

with identifiers DOCNML and DOCNM2. This output task is performed by a modi­

fied version of CNOUT. This program writes out only those items with a corre­

lation above a user supplied cutoff*

After the correlation has been completed, the output tape is sorted

by SFBCTK into document order. The correlations are complemented so that

the sort will order the documents correlating with a particular document in

decreasing order of correlation. This sorted tape is then used to expand

the request-document correlation tape. This correlation tape has the same

five-word item format as that mentioned above. It is sorted into document

order, a simple double-buffered merge is performed to combine it with the

document-document tape, and the output tape is then sorted back into request

ordero The section of Flowchart 1 enclosed in dotted lines represents the

supervisor program also for the document-document correlation. The merge

mentioned above is completely straightforward. All sorts are done using the

tape sort SPECTRc

