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XIV. THE DETERMINATION OF CLUSTERS BY MATRIX ANALYSIS 

A. Richard LeSchack 

ABSTRACT 

The use of clustering techniques related to factor analysis is 

discussed in this section. The application of matrix spectral analysis to 

the detection of clusters is based on a matrix model for strong clusteringo 

The methods used and the programs developed to implement them on the IBM 7090 

computer are described; detailed test results are given; and attempts at 

mechanizing the decision procedure are treated. 

1. Introduction 

Taxonomy, the science of classification, is an activity fundamental 

not only to descriptive biology but to many other areas of scientific and 

intellectual endeavor as well. Categorizing individuals - assigning them to 

one of a tractably small number of subpopulations, the members of which are 

sufficiently alike to justify ignoring individual, differences - suppresses 

the inessential detail which obscures underlying relationships * The result 

is a more economical description of those features of the population which 

are truly significant. 

A particular case of the classification problem is considered here. 

The basic raw data are estimates of the pairwise similarity between members 

of the population. It is desired to identify subsets in which the members are 

so similar to one another, and so dissimilar to nonmembers, that it is most 
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useful to consider them all as a unit. This process has been termed 

"clumping11 or "clustering." It is clear that an exact formulation of the 

clustering problem must be in terms of optimization; for the goal is the 

best balance between loss of precision, which is the inevitable consequence 

of representing each individual by the typical or average characteristics 

of his cluster, and gain in economy, which is the result of replacing many 

individuals by a few clusters<> This general formulation is not pursued 

further; we limit our1 selves to those situations of strong clustering in 

which the adherence of individuals to subsets is relatively unambiguous • 

It is shown that under certain assumptions regarding the nature of the 

strong clustering, techniques of matrix spectral analysis will identify 

the members of the various clusters. These techniques are extended - with 

empirical success, although without rigorous justification - to the general 

case in which the assumption of strong clustering is not so clearly tenable. 

A number of techniques for determining clusters have been disussed 

in the literature (see Bonner for a review of many of them): these include 

11 "-} 
clump theory (Parker-Rhodes and Needham)^ factor analysis (Bonner; Borko 

and Bernick) and latent class analysis (Baker). The present algorithm 

bears a close resemblance to factor analysis, but differs from this well-

known statistical technique in that it does not require that the similarity 

data be given in terms of the classical product-moment correlation coefficient. 

It is based on a different mathematical model (the theory of reducible matrices 

of nonnegative elements) and is directed toward a different goal. 
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A few of the useful shorthand notations of the Iverson programming 

language are used in formulas and flowcharts throughout th i s sect ion. The 

reader i s referred to Brooks and Iverson for the general features of the 
o 

notation, and to Iverson for a detailed presentation. 

2. A Model for Strong Clustering 

The intuitive notion of perfect clustering is best explained by 

considering a population of elements which can be partitioned into non-

overlapping subsets, such that within each subset there is a nonzero linkage 

between each pair of elements, but no linkage between a member of the subset 

and an element which is not a member. To generalize to the idea of strong 

clustering, assume that we are able to distinguish between strong and weak 

links; the definition is then modified to read: 

... within each subset there is a strong linkage 

between each pair of elements, but at most a weak linkage 

between a member of the subset and an element which is not 

a member. 

This part presents the theory of reducible matrices as a model for 

the case of perfect clustering, and generalizes the results to the case of 

strong clustering. The properties of the eigenvectors of such matrices justify 

the use of spectral analysis to determine strong clusters. The exact boundaries 

between "strong" and "weak," and the rigorous justification of these techni

ques in the case of clustering which is not strong, remain open questions. 



XIV-U 

A square n x n matrix A is reducible (decomposable, uncoupled) 

if its rows and columns can be permuted to yield a form partitionable as 

follows: 

X 

0 

; 
i 

- _ T — 
i 

Y 

Z 

where 0 is a matrix of all zeros, and X and Z. are square matrices. 

More formally, we may state the definition in any of these equivalent 

forms: 

(l) A is reducible <£=^> there exists a permutation matrix P 

such that 

T 
PAP -

(2) A is reducible 4 -ft there exists a pair of integers (i,j) 

such that there exists no chain 

a • a « • o ci , 
1P-L PXP2 PrJ 

with all terms nonzero. 

(i,j,Pk<L n) 

(3) A is reducible <t—> the set {_l,2,...,n} can be partitioned 

into mutually exclusive, collectively exhaustive subsets 

S and T, such that whenever ifi S and j ̂  T, then a. . = 0e 
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The usual correspondence between a matrix and a directed graph/ 

leads to the conclusion that A is reducible if and only if the corresponding 

directed graph is not strongly connected, that is, if there are two nodes 

p and q for which no path leads from p to q. 

If the matrix A is symmetric, then the definitions take on this 

stronger form: The symmetric matrix A is reducible if and only if there 

exists a permutation matrix P such that 

r n-r 

r 

n-r 

where X and Y are square. Such a matrix is block-diagonal. It is obvious 

that the eigenvectors of B fall into two classes: those with the last (n-r) 

components equal to 0, and those with the first r components equal to 0, 

The Jordan canonical form 

T 
B - SAS 

with 

(where each £ is a normalized eigenvector) reflects the property of 

reducibility by taking on the special form 

'a.. / 0 in the matrix if and only if an arc connects nodes i and j 

in the graph. 

B = PAP -
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s = 

r 

- ( 1 ) 

0 

n-r 

0 1 

-(2)J n- r 

The e igenvec to r s of A may be expressed a s fo l lows : 

A = PTBP = PTSASTP = QAQT where Q = PTS 

By w r i t i n g -Aj = P -A.P we ob ta in 

A = (P TSP)A !(P TSP) T 

which involves only a reordering of the eigenvalues. It follows that 

the eigenvectors of A fall into two classes: one with zero in r 

positions, the other with zero in the remaining (n-r) positions. 

Let us new make the further assumption that all elements of A 

are nonnegative, and that each of the matrices X and Y is irreducible. 

Even more generally, assume that A has been completely reduced to the 

form 

B = PAP1 = 

fx 
—" 
0 

| 0 

0 
— 
Y 

0 

0 
— 
0 

z 
• 

where each of the diagonal blocks is irreducible. 

The eigenvalues of A are clearly those of B; B, however, has 

as its set of roots 

i.\(x)}U[x(Y)ju [x(z)}u. 
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The classical theorem of Perron and Frobenius, applied to the matrices 

X,Y, etc., yields the result that each of the irreducible matrices along 

the main diagonal has a positive maximum eigenvalue to which corresponds 

an eigenvector, all of whose components are nonnegative. The other eigen

values are all strictly smaller, and the other eigenvectors do not, in general, 

possess the property of nonnegativity. This fact implies that if the eigen

values of the entire matrix are obtained, one at a time, in descending order 

according to magnitude, the largest eigenvalue will be the maximum eigenvalue 

of one of the submatrices. The corresponding eigenvector has positive 

elements in the positions corresponding to the members of the index set 

identifying the submatrix. Adopting the terminology of the Iverson programming 

language (see Iverson or Brooks and Iverson for details), we regard the 

logical vector (£ > 0) as a selection vector- for membership in one of the 

clusters. 

The next largest eigenvalue may belong to the same submatrix (in 

which case the corresponding eigenvector either has negative elements, or 

else selects the same cluster again), but it is much more likely that this 

second eigenvalue is the maximum root for one of the other submatrices; in 

this case, its eigenvector selects the elements of a second cluster in the 

same manner as the first. In this way the eigenvectors corresponding to the 

_. 

A logical vector u such that u. = 1 if and only if a* ̂  0. 

'In the sense that u selects those elements of the vector (1,2,3*•«•,n) 
corresponding to its nonzero elements. 
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eigenvalues obtained in descending order of magnitude identify systemati

cally the clusters originally present. 

For the binary case, where each a. . = 0 or 1, the submatrix 

11...1 
1 

1... 1 

has an eigenvalue r, and an (r-l)-fold root of 0. If there are p clusters, 

each with n. members: 
l 

n., + n0 + .. . + n = n 
1 2 p 

then there are exactly p nonzero eigenvalues: 

Vn 2,...,n p 

to which correspond eigenvectors selecting the p clusters. 

The fully-reducible matrices just discussed provide a model of 

perfect or ideal clustering, where each member of a cluster is linked to 

other members of the same cluster but to no nonmember of the cluster. To 

bridge the gap between this ideal model and those actual cases of strong 

clustering in which there are large links and small, but not zero, links, 

consider a matrix in which the zero elements of the fully reducible case 

are replaced by small quantities £-. The result will be called an 

G-reducible matrix. Its properties are deducible from those of the reduci

ble matrix by an application of matrix perturbation theory, for a systematic 

2 
development of which the reader is referred to Bellman, pp. 60 ff. 
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Let the original reducible matrix be R. The matrix P describes 

the pattern of perturbations. Thus 

is the perturbed, or £ -reducible, matrix. Let X. be the eigenvalues of 

R; the corresponding normalized eigenvectors (which form a complete 

orthonormal set as a consequence of the earlier assumption that R be 

symmetric) are x^ 'j finally, let U. be the eigenvalues of P. Two cases 

are considered: the special case in which R and P commute, and then the 

general case. 

If R and P commute, then they have a common basis; that is, any 

eigenvector of one is an eigenvector of the other. From this it follows 

immediately that the eigenvectors of the perturbed matrix R/e\ are the same 

as those of the original matrix R; to each eigenvalue X. of R corresponds 

an eigenvalue 

V n 
of 5(e)-

The general case is treated by expressing the eigenvalues and 

eigenvectors of the perturbed matrix as power series in the quantity e* 

Retaining only first-order terms, we obtain these results: 

eigenvalues of R: X.+e(x^iy> Rx ') 

n 

a) eigenvectors of R: X ^ J C X 
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where 

(3)^(1) 
C 

Mote that these reduce to the results of the special case if the x^1' 

are also eigenvectors of P. 

We conclude that, to first order in 6, the elements of any 

eigenvector are changed (if at all) by a term of order e, thus preserving 

the structure of the eigenvectors noted above. 

3. Spectral Analysis and Factor Analysis 

The key procedure in the computer program for determining clusters 

is the extraction of the characteristic roots of a matrix R in decreasing 

order of magnitude. The most appropriate algorithm in this case is the 

so-called power method, using the Rayleigh quotient at each iteration to 

estimate the root. (See Fadeeva^ Chapter 3-) 

To describe the process briefly, let us assume that the first p 

eigenvalues have been determined. We desire to evaluate X _ . An initial 
p+1 

vector y is constructed, orthogonal to each of the first p eigenvectors. 

This is done in practice by subtracting the vector 

£(e,x ( i ))x ( i ) 

i-1 



from an initial vector a, each component of which is unity. Here x 

is the normalized eigenvector corresponding to \.. The resulting y 

is clearly orthogonal to all of the x . One now forms the sequences: 

(0) 

Z 
(i+1) v (i) 

y = Ry 

XIV-ll 

(i) 

and 

8 ^ - * *> 

s 
(1*1) . ( z ( i + 1 ) , y

( i ) 

(y(i),y(i)) 

) 

where the usual notation (x,y) for dot product is used. When the sequence 

s has converged to the desired degree of accuracy, we take the final value 

of s as X +1, and the final vector jr
1+ , suitably normalized, as the 

eigenvector corresponding to X , • In actual computations, numerical rounding 

errors reintroduce into y ' components along one or more of the vectors 

x ,•*•*£ 5 this may cause the process to converge back to an earlier 

eigenvalue (usually X^) instead of X +]_. Such parasitic behavior is inhi

bited by occasional reorthogonalization of y to remove any such components. 

At the same time, it is desirable to renormalize the y from time to time, 

to prevent possible computer overflow in case X (for example) is quite large. 

The basic process, for the case where a fixed number M of roots is to 

be extracted, is outlined in Flowcharts 1 and 2. 
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INPUT 
INITIALIZATION 

LOGICAL CHECKS 

Logical Checks 

Fail <J H PRINT OUT. STOP 0 
, LOOP FOR \ 
/ THE VARIOUS h 
\ EIGENVALUES/ 

( DONE?) 

I FAILURE \ 
( TO 
'< CON VERGE/ 

/ MAIN \ 
^ ITERATION/ 

LOOP 

SPECIAL FAILURE 
PROCEDURE 

1 

© 
c 

RECORD DETAILS 
STOP. ) 

RE-DEFINE Y BY 
ORTHOGONALIZING WITH 
RESPECT TO FIRST ( i - l ) 

COLUMNS OF X 

NORMALIZE THE 
RESULTING Y 

MAIN 
CALCULATION 

(NEXT FIGURE) 

Not 
Converged •0 
Converged H/8 

Determination of Dominant Eigenvalues 
and Corresponding Eigenvectors 

(Program Organization) 

Flowchart 1 



XIV-13 

Legend to Flowchart 1 

Parameters 

M 

L 

MM 

number of eigenvalues to be determined 

maximum number of iterations 

how often to reorthogonalize and normalize 

Variables 

i : control index; the i t h eigenvalue i s being determined 

k: i t e r a t i o n counter 

s: previous value of the Rayleigh quotient 

3. Arrays 

Y: current vector iterate 

X: the ith normalized eigenvector, as soon as it has been 

determined, is stored as the ith column of the matrix X, 

The close relation between this algorithm and the principal factor 

solution, or method of principal axes, in factor analysis will be discussed 

briefly. In essence, the present algorithm, if applied to a matrix of 

product-moment correlations, will yield the principal factor solutions to 

the factor analysis problem. 

Factor analysis, developed originally as a mathematical model for 

certain psychological theories of human abilities and behavior, has become 

a standard tool of multivariate statistical analysis. Although no attempt 

can be made here to discuss the development of methods or their applications f 

'For this, refer to Harmon.' 



NORMALIZE YN. 
STORE RESULT AS 
COLUMN i OF 
THE ARRAY X 

RECORD 
RESULTS 

®~ 

Determination of Dominant Eigenvalues 
and Corresponding Eigenvalues 

(Main Calculation) 

Flowchart 2 
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Legend to Flowchart 2 

1. Parameters 

TOL: convergence criterion for successive iterates 

2. Variables 

s: previous value of the Rayleigh quotient 

r: current value of the Rayleigh quotient 

3• Arrays 

A 

Y 

YN 

X 

the matrix to be analyzed 

the previous vector iterate 

the current vector iterate 

the eigenvector just determined, after normalization, 

is stored as the ith column of the matrix X. 

a brief outline of the fundamental factor analysis problem may make clear 

the relation between factor analysis and spectral analysis. 

Consider the following: given the symmetric, nonnegative definite 

matrix E(nx n), find an (n x m) matrix A , with m as small as possible, 

for which 

T 
R« = AA 

is sufficiently close to R. If we express R in Jordan canonical form as 

R - SAS T 
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where S is orthogonal and A. is a diagonal matrix displaying the eigenvalues 

of R, ordering the elements of A and the corresponding columns of S (which are 

the normalized eigenvectors of R) so that 

\ ^ ^2 ̂  •' * — \i ̂  ° 

then we may write 

R = TTT 

where 

T = SA 1/ 2 

and 

Each matrix AAm' is formed, clearly, by taking the first m columns of T. 

If the matrix R is of rank p (less than n), then at m = p the product 

reproduces R exactly, and the process terminates. In the usual applications 

of factor analysis, the given matrix R differs slightly, because of sampling 

errors, from an ideal matrix R of rank p, less than n (in fact, usually 

p^^.n). Both p and R are initially unknown. When successive factors cease 
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to improve the representation, it may be assumed that p has been reached, 

and the current Rf is taken as the best estimate of R. 

Finally, it will be seen that the method of spectral analysis 

described here may be considered as "using factor analysis to determine 

clusters" if, and only if, two conditions are satisfied: 

(1) the pairwise similarities are expressed by the product-

moment correlation, and 

(2) the factors turn out to have the properties assumed for 

the eigenvectors of ^almost separable'1 matrices. 

k* Organization of Programs for Finding Eigenvalues and Eigenvectors 

The fundamental matrix and vector manipulations which form the 

innermost loops of the program were coded (for the IBM 7090 computer) in 

the FAP language, to ensure greater speed and accuracy. The remaining 

subprograms are coded in FORTRAN.- NORM, 0RTH0G, RAQUO, and SMPY are the 

entries to the FAP-coded vector-matrix package (DOT), based on a double 

precision accumulation of dot products. 

Subprograms 

NORM: normalizes the input vector to length one. 

0RTH0G: orthogonalizes the input vector with respect to any 

desired number of stored normalized vectors. 

RAQUO: computes the Rayleigh quotient of two input vectors,, 

SMPY: does matrix-vector multiplication. 



Main: 

BOSS: 

CALC 

PARAM 

CHECK 

LOOP: 

FAIL: 

MATRIX: 

the calling program which uses this routine to extract 

factors, determine clusters, etc. 

controls the basic logic of the successive determination 

of eigenvalues and vectors. 

performs one iteration of the "main calculation'1 

inputs control parameters for the run 

makes logical and consistency checks on parameters and 

input values 

controls the iterations to find one eigenvalue 

attempts corrective action in case iterations fail to 

converge 

computes or stores the matrix to be analyzed 

Main 

Obtain re
quired no. 
of e.values 
and vectors 

to Main 

BOSS 

^ PARAM Input various parameters 

3 CHECK Logical checks, etc. 

Input matrix to be factored 

Find next eigenvalue 
and vector 

If first failure, re-adjust 
tolerances and try again 

Logical Organization Eigenvalue-vector Program 

Flowchart 3 
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j LOOP | 

Orthogon-
alize? 

Yes 
^ ORTHOG 

No 

Another 
*| iteration? 

Yes 

Converged 
yet? 

Yes 

-> 
CALC 

Orthogonalize with respect 
to previously found e.vectors 

One iteration of the power 
method 

No 

J Return to BOSS 

No 

Logical Organiza t ion 
Eigenvalue-Vector Program ( inner Loop) 

Flowchart k 

5. Program Test 

The program was tested by using it to determine, to six-figure 

accuracy, the first several eigenvalues and eigenvectors of three matrices 

which have been used as examples in the literature of factor analysis. Each 

of the matrices was factored once with unities on the main diagonal, once 

with estimates (or exact values) of the communalities, giving six tests in 

all. Results agreed in every case with published values. The following 

summarizes the tests* 
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Test Matr ix Size Number of Fac tors 

Harmon, Table 8*5, p . 1^2, & 

c l a s s i c a l example involv ing i n t e r -

r e l a t i o n s h i p s among r e s u l t s of a 

b a t t e r y of psycho log ica l t e s t s fo r 

c h i l d r e n 

Haimon, Table £ . 6 , p . 9 1 , a con t r ived 

"textbook example" 

Harmon, Table 9 . 1 , p . l 6 i | , an a c t u a l 

example invo lv ing c o r r e l a t i o n s among 

va r ious p h y s i c a l measurements 

5 f a c t o r s ( u n i t i e s ) 

13 X 13 

6 X 6 

8 X 8 

5 f a c t o r s (communali t ies) 

3 f a c t o r s ( u n i t i e s ) 

2 f a c t o r s (communali t ies) 

3 f a c t o r s ( u n i t i e s ) 

3 factors (communalities) 

The following statistics, for the first of the cases listed above, are 

typical of the performance of the program. 

Eigenvalue 

1 

2 

3 

h 
5 

Number Eigenvalue 

5.066688 

1.801387 

0.857069 

0.71991U 

Number < Df I t e r ; 

7 

27 

12 

2k 
66 

i t ions 

6. Spectral Analysis to Determine Clusters 

Two examples were chosen to test the process of determining 

clusters by eigenvalue-eigenvector analysis. The first is based on a 

The references are to Harmon. 
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classical example in the literature of factor analysis, involving an 

analysis of results of psychological testing. This is the 1 3 ^ 13 matrix 

used in the first two tests described in the previous part. A number of 

authors, studying this matrix and the underlying data by a variety of 

methods, have determined, on the basis of certain patterns of strong corre

lations, that the 13 tests may be divided into three groups, with the 

members of each group strongly interrelated. It was expected that an 

examination of the eigenvectors belonging to the dominant eigenvalues would 

reveal this known "clustering" directly. 

The second test, not contrived, but actual, involved a matrix of 

word-word correlations generated by the document analysis program under 

development by the Information Retrieval Group at the Computation Laboratory 

of Harvard University. Certain tendencies - fairly weak, to be sure -

toward clustering of the words had been identified using the simple methods 

Q 
of the type described by Lesk in a previous report from this Laboratory <, 

It was hoped that the present techniques would be capable of detecting 

clusters, if any, in this case. 

A. The 13-variable Case (Psychological Tests) 

Two runs were made, one using unities, the other using known 

estimates of the communalities, on the main diagonal of the matrix. As 

expected from theory, the eigenvectors in the two cases were not signi

ficantly different. The values quoted here are for unities on the main 

diagonal, since this is felt to be a more realistic teste 
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Fir s t e igenva lue : 5.067 

Corresponding e igenvec to r : 1 

2 

3 

h 
5 
6 

7 

8 

9 

10 

11 

12 

13 

0.271 

0.172 

0.201 

0.232 

0.3UU 

0.337 

0.3UO 

0.333 

0.331 

0.205 

0.2U8 

0.209 

0.295 

Examination r e v e a l s f ive elements of approximately the same magnitude 

(0 .33 or 0•3U) which are l a r g e r than any other e lements . The l o g i c a l 

vec to r u ' = (x^ ' > 0 .33) e x t r a c t s t h i s c l u s t e r : 

u ( l ) / ( l , 2 , 3 , . . . , 1 3 ) = ( 5 , 6 , 7 , 8 , 9 ) . 

We now e x t r a c t the second r o o t . 

Second e igenva lue : 1.801 

Corresponding e igenvec to r : 1 

2 

3 

k 
5 
6 

7 

0.075 

-O.Oll; 

-0.070 

-0.083 

-0.176 

-0.271 

-0.25k 
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8 

9 

10 

11 

12 

13 

-0.110 

-0.300 

0.1*1*9 

O.363 

0.517 

0.331* 

(2) It will be noted, first of all, that all the elements of x corresponding 

to the cluster (5,6,7,8,9) are negative and relatively large in magnitude; 

this fact further sequesters these five elements and confirms their grouping 

as a cluster. There are four relatively large and positive components of 

(2) (2) 
x . The logical vector (x > 0.33) selects this second cluster: 

(10,11,12,13). 

A third root is now extracted: 

Third eigenvalue: 1 Mh5 

Corresponding eigenvector: 1 

2 

3 

1* 

5 

6 

7 

8 

9 

10 

11 

12 

13 

0.1*12 

0.387 

0.1*91 

0.357 

-0.211* 

-0.161* 

-0.211* 

-0.052 

-0.213 

-0.311 

-0.169 

-0.025 

0.136 
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The criterion uV) = (x'3) ̂  0.33) selects the third cluster: 

u(3)/(l,2,3,...A3) - (1*2,3,h) 

The fourth eigenvalue (\, =0.857) is somewhat smaller in 

magnitude; the corresponding eigenvector has only one relatively large 

component, the second. This tends to set off element "2" in a class 

by itself, agreeing with the observation that "2" is more weakly bound 

in cluster (1,2,3,1;) than the other elements. The further eigenvalues 

of the matrix, and their corresponding eigenvectors, provide no useful 

indications. 

The clustering as summarized in Fig. 1 agrees exactly with that 

determined previously and reported in the literature. 

Links Among the 13 Elements, Showing Clustering 

Figure 1 
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B. The 25 -va r i ab l e Case (Word C o r r e l a t i o n s ) 

An o r i g i n a l uned i ted t e x t , a s e c t i o n of a j ou rna l a r t i c l e on the 

sub jec t "extens ions of ALGOL," c o n s i s t e d of 37 sen t ences , the t o t a l l eng th 

being somewhat under 1000 words. Process ing of the t e x t i d e n t i f i e d 

occurrences of 51 d i s t i n c t te rms , each p o t e n t i a l l y " c o n t e n t - r i c h , " which 

a re found i n the automat ic thesaurus of computer-science t e c h n i c a l terms 

b u i l t i n t o the process ing system. A word-sentence inc idence ma t r i x : 

\ Sentence No. 
WordNo\ 1 2 3 . . . 37 

i r "T~ 
2 I 
3 j 

where R. is the number of occurrences of word i in sentence j, describes 

the distribution of these words among the sentences in the text. From this 

list of 5>1 terms all were deleted which occurred only once in the text; 

after this, any surviving term was deleted if it did not have at least two 

co-occurrences with other undeleted terms. At the conclusion of this 

selection process, 25 terms remained. These are listed according to their 

thesaurus numbers in Table 1, but the actual terms are not listed to avoid 

prejudicing the evaluation of the results. 
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•••—"———•——————— 
Index 
Number 

1 

2 

3 

u 
5 
6 

7 

8 

9 

10 

11 

12 

13 

Thesaurus 
Number 

16 

26 

27 

29 

35 

U9 

53 

57 

60 

68 

77 

80 

102 

Index 
Number 

1 IE ' 
15 

16 

17 

18 

19 

20 

21 

22 

23 

2U 

25 

Thesaurus 
Number 

103 

117 

121 

13U 

137 

1U3 

1U7 
156 

178 

181 

191 

208 

Terms Included in Clustering Study 

TABLE 1 

The next step is the preparation of a (2£x 2$) term-term 

association matrix by row-wise correlation, using the cosine measure 

described by Salton. Thus the matrix element 

S^ = cos(R1,R;5) 

measures the putat ive s imi la r i ty between term i and term j , based on the i r 

tendency to co-occur within sentences of the t ex t . There were only 116 

nonzero terms in this symmetric (2$ X 25) matrix as shown in Fig. 2. 
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Index 
Numbers 

1 6 

1 13 
1 20 
1 22 
2 6 
2 12 

2 13 
2 1U 
2 20 
2 23 
3 7 
3 18 
3 2ii 
1* 5 
1* 8 
1* 9 
h 18 
U 21 
1* 22 
5 8 
5 10 

5 li 
5 18 
5 20 
5 21 
5 22 
6 12 
6 23 
7 13 

Similarity 
Coefficient 

.5000 

.2^00 

.2673 

.5000 

.5000 

.S9kk 

.5000 

.2887 

.531*5 

.7071 

.7071 

.5000 

.5000 

.2860 

.17U1 

.2132 

.2132 

.2|26U 

.2132 

.1826 

.1826 

.2236 

.1*1*72 

.1195 

.1*1*72 

.2236 

.6708 

.7071 

.1768 

7 

7 
8 
8 
8 
10 
10 
10 
10 
10 
11 
12 
12 
12 
12 

13 
13 
13 
13 
lli 
lli 
1)4 
15 
16 
16 
18 
18 

19 
20 

Index 
Numbers 

18 

2J4 
11 
19 
21 

13 
1U 
17 
19 
20 

19 
13 
lU 
20 

23 
lli 
19 
20 
22 

17 
19 
20 
16 

2k 
2$ 
21 

2k 
20 
22 

Similarity-
Coefficient 

.3536 "I 

.3536 

.8165 

.1+082 
J4O82 
.201*1 
.7071 
.5771; 
.1*082 
.2182 
.5000 
.2236 
.1291 
.2390 

.91*87 

.1*330 

.2500 

.8018 

.2500 

.8165 

.2887 

.1*629 

.7559 

.2673 

.2673 

.5000 

.5000 

.2673 

.2673 

Nonzero Elements of the (25 X 25) Similarity Matrix S 

TABLE 2 
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The nonzero s imi l a r i t i e s range in magnitude from 0.1195 to 0.91*87, 

with ten entr ies equal to or greater thanVo" ( that is , -£(R ,|N) ± h5°) • 

The matrix S i s now used as input to the eigenvalue-eigenvector 

analysis program. The dominant eigenvalue is X_ = 3.659 and the corresponding 

eigenvector: 

(1) 0.139151 (9 
(2) 0.1^2920 (10 
(3) 0.011*859 (11 
(1*) 0.022021 (12 
(5) 0.051981 (13 
(6) 0.313962 (H* 
(7) 0.029859 (15 
(8) 0.01*2727 (16 

0.00178)4 
O.176368 
0.01*2998 
O.U27966 
0.315^35 
O.2780I4.6 
0.000390 
0.001321; 

(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(2U) 
(25) 

0.12 381*7 
0.021*163 
0.13U669 
0.327092 
0.023593 
0.09U985 
0.3561*21 
0.011611 
O.OOOI38 

Although i t would be d i f f icu l t to jus t i fy a c lear-cut d i s t inc t ion between 

"large terms" and "small terms," i t was f e l t tha t a reasonable threshold 

would be 

t± = 0.278 

since there is, after this point, a relatively large gap in the magnitudes 

of the elements. Then the selection vector 

u(l) = U ( l )> t l€) 

selects the cluster 

CI = (2,6,12,13,11*,20,23). 
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The second eigenvalue is X- = 2.8U3> with corresponding vector: 

(1) 
(2) 
(3) 
(U) 
(5) 
(6) 
(7) 
(8) 

O.OOU183 
-0.1696U9 
0.172282 
0.152761 
0.2iiOl|29 

-0.251M3 
0.160U53 
0.239106 

(9) 
(10) 
(11) 
(12) 
(13) 
(HO 
(15) 
(16) 

0.017721 
0.308153 
0.20893U 

-0.261*186 
0.165931 
0.298267 
0.01121*6 
0.02725k 

(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(210 
(25) 

0.228352 
0.25U108 
0.27l67ii 
0.1697)47 
0.2161UU 
0.095270 

-0.297750 
0.151109 
0.003977 

It will be noted first that elements 2,6,12 and 23 are negative, 

confirming the adherence of these four items to cluster CI and expressing 

their remoteness or disjointness from cluster C2. The setting of a threshold 

for membership in C2 is, once again, somewhat arbitrary. If we take 

t2 = 0.2 

then 

H(2)-(£(2)^t2S) 

selects the cluster 

C2 = (5,8,10,11,11;,17,18,19,21). 

I t i s of i n t e r e s t that c lus te r s CI and C2 are not d i s jo in t ; element lU i s 

a member of both subsets . 

Had we wished to impose s t r i c t e r c r i t e r i a , in order to obtain smaller 

and more t i g h t l y bound c lus t e r s , we would have chosen 

\ = 0.325 and t 2 = 0.250 
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to obtain, respect ively, 

CI = (2,12,20,23) and £2 = (lO,lU,l8,19) 

which are now disjoint. 

The analysis was halted at this point; a third root was not 

extracted. 

These results have been compared with those obtained by the 

clustering routines currently incorporated in the document analysis 

system. The first three clusters of interest (these are actually No. 1, 

No. 3> and No. 5 of the computer output) include the following items (in 

addition to a few others, not listed, which had not been retained in our 

set of 25). 

Kl = (8,10,11,Ik,17,19) 

K2 = (1,2,6,12,13,20,22,23) 

K3 - (3,7,18,210 

There can be no doubt of the identification of CI with K2; in fact, the 

similarity between the selection vector u for cluster CI and the corre

sponding vector v^ ' associated with K2, is 

s - cos(u^,v(2)) = 0.802 

using the cosine measure of similarity. To answer the question of whether 

this agreement is to be regarded as significant, we compute (from the truncated 

hypergeometric distribution) the probability of a chance agreement this high 

or higher: 
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p = 0.001 

Now C2 may be identified with Kl. In this case the similarity measure is 

s = 0.816$ 

with an even higher significance level (p = 0.0008). 

The set K3 has only a single item (number 18) in common with the 

union of CI and C2; this points to a third cluster lying in the complement 

of CI U C2. 

One final test was undertaken to examine the validity of the 

clusters selected by the eigenvector analysis. This was a hand simulation 

of a simple clustering technique based on methods discussed by Needham 

and by Parker-Rhodes and Needham. The first step is sorting the nonzero 

elements of the matrix J3, as shown in Table 3 • 

Only the final results will be quoted here. Incorporating links 

of strength 0,5 and greater, we build the following clusters: 

(2,6,12,23) 

(13,20) 

(10,1U,17) 

The correspondence with clusters CI and C2 is seen immediately. 

It may now be concluded that the clusters identified by eigenvector 

analysis correspond closely to those detected by the other approaches. 

The attempt to seek a final confirmation by determining whether the actual 

terms associated with the thesaurus entry numbers are conceptually related 



Index 
Numbers 

5 
12 

h 
7 
5 
5 
10 

U 
h 
1* 
10 
5 
5 

12 
12 
1 
13 
13 
1 
16 
16 
19 
20 

h 
2 
111 
7 
7 
8 

20 
H( 
8 
13 
8 
10 
13 
9 
18 
22 
20 
11 
22 
13 
20 
13 
19 
22 
20 
2l* 
25 
20 
22 
5 
Hi 
19 
18 
2l* 
19 

Similarity 
Coefficient 

•1195 
.1291 
.171*1 
.1768 
.1826 
.1826 

.2010. 

.2132 

.2132 

.2132 

.2182 

.2236 

.2236 

.2236 

.2390 

.2500 

.2500 

.2500 

.2673 

.2673 

.2673 

.2673 

.2673 

.2860 

.2887 

.2887 

.3536 

.3536 

.1*082 

Index 
Numbers 

8 
10 
1* 
13 
5 
5 

lli 
1 
1 
2 
2 
3 
3 
11 
18 
18 
2 

10 
6 
2 
3 
6 

10 
15 
13 
8 
111 
2 
12 

21 
19 
21 
111 
18 
21 
20 
6 
22 
6 
13 
18 
2)4 
19 
21 
2l| 
20 
17 
12 
23 
7 

23 
111 
16 
20 
11 
17 
12 
23 

Similarity 
Coefficient 

,1|082 
.1*082 
.ll261l 
.1*330 
.Iili72 

.10*72 

.1*629 

.5000 

.5000 

.5000 

.5000 

.5000 

.5000 

.5000 

.5000 

.5000 

.53hS 

.577a 

.6708 

.7071 

.7071 

.7071 

.7071 

.7559 

.8018 

.8165 

.8165 

.891*1* 

.91*87 

Nonzero Elements of S in Ascending Order 

TABLE 3 
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reveals no particular relation among the items in any of the clusters. 

This is, however, no criticism of the methods used to infer the presence 

of clusters from the correlation matrix, but merely an indication that 

the raw correlation data themselves (the matrix R from which S was derived) 

probably express little more than chance co-occurrence of words in 

sentences. 

The results of the clustering attempts are displayed in Figs. 

2 and 3> each of which may be regarded as a portion of a labeled symmetric 

graph showing the pairwise correlations among the 25 items. The graph 

is drawn to represent the strength of a link by the relative nearness of 

the vertices and/or the thickness of the line joining them, according 

to these conventions: 

s > 0.7071 = 

O . ^ s ^ 0.7071 = 

s^.0.5 

An examination of these graphs suggests a few more remarks. 

Cluster CI may seem somewhat unsatisfactory because it includes item 1)4, 

but breaks the strong links which join "ll|!l with ".10" and "17". Had the 

threshold t, been lowered only slightly (to t- = 0.176), then item 10 

would have been included along with "II4.". On the other hand, had t been 

raised slightly to 0.3, then item Ik would have dropped out, leaving a 

more compact cluster 

(2,6,12,13,20,23) 

which would have been even better correlated with cluster K2. 
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Similar considerations apply to cluster C2. A slight lowering of 

threshold t~ would have picked up items 3, 7, and 2k (which are strongly 

linked with "18"). 

7. Evaluation and Conclusions 

An evaluation of the clustering technique presented here must 

depend on these three questions: 

(1) Are clusters found which are intuitively reasonable, 

and which match clusters found by other methods? 

(2) Is the algorithm rapid enough to be of any practical 

significance? 

(3) Can the decision procedure implicit in the selection 

of the ,flarge elements" of the normalized eigenvectors 

be mechanized fully? 

The first question is answered affirmatively, it is felt, by the 

theoretical analysis of Part 2 and the results presented in Parts 5 and 60 

The tests have not been extensive enough to permit a direct evaluation 

of the running time of the clustering programs. The actual running times 

were so short, in fact, that timing was not feasible„ A theoretical estimate 

of the efficiency of the algorithm is presented here. 

It is reasonable to assume that the bulk of the time will be 

expended in the actual determination of eigenvalues and eigenvectorsc The 

computing time for this process depends critically on the rate of convergence 

of the basic iterative method. This, in turn, is a function of the distri

bution of the eigenvalues — in other words, of the structure of the data 
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matrix under analysis. Assume that the average number of iterations is 

M. In the course of each iteration, (n+2) dot products are computed, each 

of which involves n multiplications and additions. For the first eigen

value we expect, then, an operation count proportional to 

Mn(n +2); 

for succeeding eigenvalues, a somewhat greater count (because of orthog-

onalization)• Assuming this to be absorbed in an adjusted factor Mf, we 

require an operation count proportional to 

kM'n(n + 2) 

to extract k eigenvalues and eigenvectors. Both k and M! depend strongly 

on the structure of the matrix: k, the number of eigenvectors required to 

approximate the structure adequately, being equal to the approximate rank 

of the matrix; M1, on the other hand, being related to the separation 

between eigenvalues, but not necessarily to its size* Therefore, all things 

being equal, the computing time should increase as 

n(n + 2) 

p 
or approximately as n , with increase in n. 

This estimate compares favorably with running times for procedures 

involving complete factor analysis^- or latent class analysis, which are 

3 expected to grow at least as fast as n.. For the processing of large matrices, 

however, it appears that if truly practical methods are ever found, their 

computing time should increase no faster than n. 
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Using the eigenvectors of the similarity matrix to determine 

membership in clusters reduces what is basically a two-dimensional problem 

to a one-dimensional one. Each of the components of a normalized eigen

vector may be regarded as a measure of the adherence of the corresponding 

element to the cluster associated with that vector. Thus a scan over the 

two dimensions of the original matrix (to find the large elements which 

indicate that certain members of the index set belong together) is replaced 

by a one-dimensional scan to determine cluster membership. This does not, 

however, eliminate the element of human intervention or personal choice in 

the process of deciding which elements are large enough to warrant inclusion 

in the cluster; in other words, in deciding what the cut-off point should 

be between the r,largeM elements and the nsmall" elements of the eigenvector. 

An automatic decision procedure which has been proposed is described 

in the following paragraphs, and the results of a few tests, by no means 

extensive or definitive, are now presented. 

The two steps in the procedure are the following: 

(1) permute the normalized eigenvector x into a vector ̂ , where 

Zl > l2 > 13 - • • • - *n 

by a sorting process, and 

(2) find that value of k which maximizes 

k 

I A 
F(k) = i £ 0 < p < 1 

where only nonnegative y_. are e l ig ib le for inc lus ion. 
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Since F(k) first increases, then decreases, with increasing k, 

the maximum is determined sequentially by evaluating F(l), F(2), etc. 

until F no longer increases. The parameter p, which may be considered 

a shaping factor, influences the cut-off between "large*1 and "small" 

elements. At the extremes, p = 0 will cause inclusion of all elements; 

p = 1 will include only the first (or the first q, if £ = y_ = ... = y ). 

The method works well, as expected, for contrived cases in which 

the distinction between large and small elements is clear-cut and 

unambiguous. Here, however, much simpler procedures could be programmed. 

A more critical test has been based on attempts to reproduce the results 

of the 13 x 13 case described in Part 6. 

The maximum attained by F(k), for each of the five values of p 

used in the test, is -underlined in Table U. The corresponding cluster 

would contain all elements above the horizontal line. Thus, for 

p = 0.8 

the same cluster is selected as before: 

(5,6,7,8,9). 

When the procedure was applied to the second normalized eigenvector 

of the 13 X 13 test matrix, it was found that the value p = 0.8 did not 

select precisely the same cluster as our previous methods, although a 

slightly larger value of p did. It is not known whether one value of the 

parameter p can be found which will make the correct selection for all three 

eigenvectors of this matrix. Further tests will be necessary to settle 
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1 

1 

2 

3 

1* 

5 
6 

7 

8 

9 

10 

11 

12 

13 

1 

2 
I 

5 
7 
6 

8 

9 

13 

1 

11 

1* 

12 

10 

3 

2 

Leger 

Colurr 

3 1* 5 

O.3W1 

0.31*0 

0.337 

0.333 

0.331 

0.295 

0.271 

0.21*8 

0.232 

0.209 

0.205 

0.201 

0.172 

0.1183 

0.2339 

0.3U75 

0.1*581* 

0.5680 

0.6550 

0.728U 

0.7900 

0.81*37 

0.887k 

0.9295 

0.9699 

0.9999 j 

0.1183 

0.1651* 

0.2006 

0.2292 

0.251*0 

O.267I1 

0.2753 

0.2793 

0.2812 

0.2806 

0.2802 

0.2800 

0.2772 

id 

in 1 : cu r r en t index i 

2 : o r i g i n a l index 

3 : o r i g i n a l component of norms 

1*: F ( k ) , w i th p = 0 

5": P = 0.5 

6 : p = 0.67 

7: p = 0.8 

8: p = 1.0 

Normalized and Sorted Vecto: 

TABLE h 

6. 

O.1183 

0.11*73 

0.1671 

0.1819 

0.191*3 

0.1981* 

0.1991 

0.1975 

0.191*6 

0.1912 

0.1875 

0.1850 

0.1808 

7 

0.1183 

0.131*3 

0.11*1*3 

0.1512 

0.1567 

0.1562 

0.1536 

0.11*91* 

0.11*55 
0.11*06 

0.1365 

0.1328 

0.1281; 

i l i z ed e igenvec tor 

ITS 

8 

O.II83 1 
0.1170 

0.1158 

0.111*6 

0.1136 

0.1092 

0.101*1 

0.0988 

0.0937 

0.0887 

0.081*5 

0.0808 

0.0769 
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this question, and to explore the more general problems of the proper 

choice of p and the efficacy of the algorithm in general. 

The difficulty here in identifying the "large11 components of a 

vector is felt to be, in large part, a reflection of the more basic 

difficulty in deciding cluster membership in those cases where the 

clustering cannot be regarded as strong. This is a problem inherent 

in the data and in the criteria adopted for cluster selection. 
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