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Retrieval Refinements

0 PREVIEW

A number of advanced analysis and search techniques have been mentioned in 
some of the previous Chapters, including in particular the use of term weighting 
methods for indexing and query formulation, the introduction of clustered file 
arrangements, the dynamic improvement of query formulations using rele­
vance feedback techniques, and the use of bibliographic citations for content 
identification and retrieval purposes. In the present chapter, these techniques 
are examined in more detail, and methods are given for implementing the vari­
ous techniques in retrieval. Wherever possible evaluation results are included 
showing the usefulness of the various methodologies in retrieval.

Some of the procedures examined in this chapter should prove immedi­
ately useful in conventional and experimental retrieval situations. This is the 
case notably of some term weighting systems that are easy to generate and ex­
ceptionally effective, and of the automatic query adjustment systems based on 
user-system interaction during the course of the search process. Certain other 
techniques, such as the dynamic document space modification and the autoT 
matic thesaurus construction process using pseudoclassification, may prove 
important in the long run. All the retrieval refinements described in this chapter 
are conceptually simple and some of them have already been applied in infor­
mation retrieval under operational conditions.

199



200 CHAPTER 6

1 INTRODUCTION

Conventional retrieval operations use Boolean search requests and inverted file 
systems. A search then produces two distinct document sets: those retrieved in 
answer to a given query and those not retrieved. Relationships or similarities 
between individual documents are not utilized and neither are relationships be­
tween keywords or query terms. The experimental retrieval systems described 
in Chapter 4 are more advanced largely because some structure is imposed on 
the retrieval environment. Thus, by recognizing relationships among the docu­
ments of a collection, items which appear to be related can be grouped into af­
finity classes, to permit browsing and to simplify searches dealing with particu­
lar subject areas. By making distinctions among the terms assigned to the 
documents, some documents— normally those identified by highly weighted 
terms— can be retrieved ahead of certain others identified by terms of lesser 
importance. By using the occurrence characteristics of the terms assigned to a 
collection, it is possible to identify very broad terms assigned to a large propor­
tion of the documents as well as narrow terms assigned to few documents. The 
former can be rendered less general by combining them into term phrases, and 
the latter can be broadened by grouping them into thesaurus classes of wider 
scope.

The foregoing processes produce a greater measure of discrimination 
among the documents of a collection and among the terms characterizing docu­
ment content than is customary in conventional retrieval situations. When the 
documents are clearly distinguished from each other, maximum recall and pre­
cision may be obtained for a search, because each particular relevant item may 
then be retrievable without also retrieving neighboring items that may not be 
relevant. Furthermore, documents that are. distinguished from each other can 
be ranked for output purposes in decreasing order of the similarity between 
query and documents. This brings the most important items to the users’ atten­
tion early in a search when they are most easily used for the generation of im­
proved search formulations in an interactive search mode.

The discrimination operations all depend on the assignment of importance 
factors, or weights, to the content identifiers used for a document collection, 
and on the computation of similarity measures between documents, between 
terms, or between queries and documents. In this chapter, the properties of 
vector similarity functions are first outlined and some of the applications of 
term weighting and vector similarity computations previously mentioned for 
the experimental systems of Chapter 4 are covered in greater detail. This in­
cludes the generation of optimum term weights, the construction of document 
clusters, and the generation of improved query formulations and better docu­
ment identifications. Normally, the affinities between document vectors are 
measured by comparing the terms attached to the respective items. In some 
circumstances, the terms may be replaced by bibliographic citations. In partic­
ular, the structure of a document collection might be determined by the cita­
tions and bibliographic references relating the items. This possibility is further 
examined at the end of this chapter.
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*2 VECTOR SIMILARITY FUNCTIONS

Consider a collection of objects in which each object is characterized by one or 
more properties associated with the objects. In information retrieval, the ob­
jects might be documents and the properties could be the index terms assigned 
to the documents. Alternatively, the objects could be index terms, and the 
properties could be the document identifiers to which the terms are assigned. 
Each property attached to a given object could be weighted to reflect its impor­
tance in the representation of the given object. Alternatively, a property 
characterizing an item may be considered to carry a weight of 1 when it is ac­
tually assigned to an item, or a weight of 0 when the property is not assigned. In 
the former case one speaks of weighted indexing; in the latter case the indexing 
is binary.

The similarity between two objects is normally computed as a function of 
the number of properties that are assigned to both objects; in addition the num­
ber of properties that are jointly absent from both objects may be taken into 
account. Furthermore, when weighted indexing is used, the weight of the prop­
erties appearing in the two vectors may be used instead of only the number of 
properties.

Consider as an example, two particular objects, say DOC, and DOC,, and 
let TERMik represent the weight of property (term) k assigned to document i. In 
binary systems the value of TERMlk is restricted to either 0 or 1. Otherwise, one 
may assume that the weights vary from some lower limit such as 0 to some pre­
determined maximum weight for a given collection environment. If t properties 
are used to characterize the objects, the following property vectors may be de­
fined for two sample objects:

DOQ = (TERM,,, TERMi2, . . . , TERM,,)
DOC, = (TERM,,, TERMj2, . . . , TERM,,)

To compute the similarity between two given vectors, the following vector 
functions are of principal importance:

t
1 ^  TERM,k, that is, the sum of the weights of all properties included in

k = l
a given vector (in this case, the vector for DOC,).

t
2 ^  TERM,k • TERMjk, that is, the component-by-component vector

k = l
product, consisting of the sum of the products of corresponding term weights 
for two vectors. For binary vectors this reduces to the number of matching 
properties for two vectors (the number of properties with weight equal to 1 in 
the two vectors).

t
3 ^  min (TERM,k, TERM,k), that is, the sum of the minimum component

k - 1

weights of the components of the two vectors.
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4 V S  (TERMik)2, that is, the length of the property vector (in this case,
’  k = l

the one for DOQ) when the property vectors are consider as ordinary vectors.

Consider the following two vectors defined for a system using eight properties:

DOC, = (3,2,1,0,0,0,1,1)
DOQ = (1,1,1,0,0,1,0,0)

The four vector functions introduced earlier are then equal, respectively, to

1

2

3

4

^  TERM* = (3  + 2 +  l + 0 + 0 + 0 +  l + l) = 8
k = l

2  TERMik • TERM* = [(3 • 1) + (2 • 1) + (1 • 1) + (0 • 0) + (0 • 0) 
k=1 + (0 • 1) + (1 • 0) + (1 • 0)] = 6

^  min (TERM*,TERM*) = (min(3,l) + min(2,l) + m in(l,l) 
k=1 + min(0,0) + min(0,0) + min(0,l)

+ min(l,0) + min(l,0)
= (1 + 1 + 1 + 0

^ __________  + 0  + 0 + 0 + 0 )  = 3

V i  (TERM*)2
’ k=1

= V(3 • 3) + (2 • 2) + (1 • 1) + (0 • 0) + (0 • 0) + (0 • 0) + (1 • 1) + (1 • 1) 
= V 9 + 4 + 1  + 0 + 0 + 0 + 1  + 1 = 4

The expressions under 2 and 3 are based on the manipulation of a particu­
lar vector pair; expressions 1 and 4 are single vector functions only. Hence the 
ordinary vector product (expression 2) and the sum of the minimum compo­
nents (expression 3) could be used directly to measure the similarity between 
the vectors. In practice, it is customary to include normalizing factors when 
computing vector similarities. These factors ensure that the similarity coeffi­
cients remain within certain bounds, say between 0 and 1 or between -  1 and 
+ 1. The following similarity measures are all relatively easy to generate and 
have been used in operational or experimental situations to compute term or 
document similarities [1,2]:

SIM ^DOQ ,DOQ)
2  (TERM* • TERM*)

L k = l

2  TERM* + £  TERM*
k = l  k = l

( i )
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SIMjCDOC^DOCj)

tI
k = i
t  CTERMik • TERMjk)

t

2
k = l

t1
k = l

2  TERM* + 2  TERM* -  2  (TERM* • TERM*)
(2)

ts
k = l

SIM3(DOCi ,DOCj) =

SIl^CDOC^DOCj) =■

X  (TERMik * TERMjk)
k = l _____________________________________

X  (TERMik)2 • X  (TERMjk)2
k = l  k = l

X (TERMik • TERMjk)
k - l

v k = l
m in ( x  TERMik, X  TERM

k = l

X min(TERMik ,TERMjk)
SIMsOJOCl DOGj) k = l

t

2
k = l
2  TERMi>

(3)

(4)

(5)

For the two sample vectors previously used as an illustration, the simi­
larity functions SEV^ to SIM5 produce the following results:

SIM1(DOC1,DOC1) = | - ^ =  1 

SIM2(DOQ ,DOQ) = 8 + ^ _ 6 = 1 

SIM3(DOC1,DOCj) = - j L =  = ^  = |  = 0.75 

SIM4(DOCj ,DOCj) = |  = 1.5 

SIM5(DOCi ,DOCj) = |  = 0.375

The first two coefficients, SIMj and SIM2, are known respectively as the 
Dice and Jaccard coefficients. They are widely used in the literature to mea­
sure vector similarities. The third coefficient, SIM3, is the cosine coefficient 
that was introduced earlier in this volume. The cosine is a measure of the angle 
between two t-dimensional object vectors when the vectors are considered as 
ordinary vectors in a space of t dimensions. Since the numerator in the cosine 
expression must be divided by the product of the lengths of the two vectors, 
long vectors with many terms and hence great length normally produce small 
cosine similarities. The overlap measure, SIM4, does not have this property be­
cause its denominator consists of the lower-weighted terms from the two vec-
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tors. In a retrieval environment, the query usually contains low-weighted 
terms; hence the query-document correlations using the overlap measure SIM4 
will be larger in magnitude than those of the cosine SIM3.

The last coefficient, SIM5, is an asymmetric measure; that is the similarity 
between DOQ and DOQ is not in general equal to the similarity between DOC, 
and DOQ. Indeed SIM5(DOQ,DOQ) = >/s whereas SIM5(DOQ,DOQ) = 
3/4. Asymmetric measures are useful to capture the inclusion relations between 
vectors (vector B is included in vector A if all properties assigned to B are also 
present in A). The inclusion properties between vectors can be used for the 
generation of hierarchical arrangements of objects (for example, hierarchical 
term displays) and for the comparison of queries with documents in retrieval 
[1].

A great many different similarity measures are discussed in the literature 
designed to represent the associations between different property vectors. 
Some of the functions reflect statistical theories, being designed to measure the 
agreement between two vectors over and above the coincidences that would be 
expected if the properties were randomly assigned to the vectors [3,4]. In some 
similarity functions the absence of properties from a vector may be taken into 
account as well as the presence. For instance the joint absence of a property in 
two vectors may be weighted differently from the joint presence of a property 
[5].

All similarity measures exhibit one common property, namely that their 
value increases when the number of common properties (or the weight of the 
common properties) in two vectors increases. Measures of vector dissimilarity 
which are sometimes used instead of similarity measures have the opposite ef­
fect. Various evaluation studies exist in which the effect of different similarity 
measures has been compared in a retrieval environment [1]. The Jaccard [ex­
pression (2)] and the cosine measures [expression (3)] have similar characteris­
tics, ranging from a minimum of 0 to a maximum of 1 for nonnegative vector 
elements. These measures are easy to compute and they appear to be as effec­
tive in retrieval as other more complicated functions. Both these measures 
have been widely used for the evaluation of retrieval functions.

3 TERM WEIGHTING SYSTEMS 

A Principal Weighting Strategies

In principle, the retrieval environment is simplest when the information items 
are characterized by unweighted properties and the indexing operation is bi­
nary. In this case, the degree to which a given property (term) may be useful to 
represent the content of an item is not a consideration. Any property that ap­
pears relevant is assigned to the information item and rejected when it appears 
extraneous. While the indexing is simplified, the task of evaluating the output 
of a search operation may be complicated because distinctions among the re­
trieved items, or for that matter among the items that are not retrieved, are 
more difficult to make for binary than for weighted vectors. When weighted
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properties are used, a similarity computation between the query and document 
vectors makes it possible to retrieve the items in strictly ranked order accord­
ing to the magnitude of the query-document similarity coefficients. This should 
improve the retrieval effectiveness and lighten the user effort required to gen­
erate a useful query.

When users, indexers, or search intermediaries manually assign term 
weights to document and query vectors, the weighting operation is difficult to 
control. A satisfactory assignment of weights requires a great deal of know­
how about the collection and the operation of the retrieval system. For this rea­
son, an effective term weighting operation is probably best conducted by using 
objective term characteristics automatically to generate term weights.

Several automatic term weighting systems were introduced in Chapter 3 in 
the discussion on automatic indexing. They are summarized here for conve­
nience:

1 The term frequency (TF) weighting system is based on the notion that 
constructs (words, phrases, word groups) that frequently occur in the text of 
documents have some bearing on the content of the texts. Hence the weight of 
term k in document i, WEIGHTik might be set equal to the frequency of occur­
rence of word construct k in document i:

WEIGHTik = FREQik (6)

2 The term frequency system makes no distinction between terms that 
occur in every document of a collection and those that occur in only a few 
items. Experience indicates that the usefulness of a term for content represen­
tation increases with the frequency of the term in the document but decreases 
with the number of documents DOCFREQk to which the term is assigned. This 
produces the inverse document frequency (IDF) weighting system:

WEIGHTik
FREQlk

DOCFREQk a y

3 The term discrimination theory depends on the degree to which the as­
signment of a term to the documents of a collection is capable of decreasing the 
density of the document space (the average distance between documents). The 
discrimination value of term k, DISCVALUEk is obtained as the difference be­
tween two measurements of document space density, corresponding to the 
densities before and after assignment of term k. A typical weighting function 
for term k in document i is then obtained as

WEIGHTik = FREQik • DISCVALUEk (8)

4 The probabilistic indexing theory states that the best index terms are 
those that tend to occur in the relevant documents with respect to some query. 
When the terms are assigned to the documents independently of each other, a 
measure of term value is obtained from the term relevance TERMRELk. This
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is the ratio of the proportion of relevant items in which term k occurs to the 
proportion of nonrelevant items in which the term occurs [expression (23) of 
Chapter 3]. A weighting system based on the term relevance is thus

WEIGHT* = FREQ* • TERMRELk (9)

The term frequency, document frequency, and term discrimination 
theories were previously examined in the discussion dealing with automatic in­
dexing. The term relevance weighting system is theoretically optimal given cer­
tain well-specified conditions. However the term relevance factor

TERMRELk = ^  ~ ^  sk/(I -  sk)

cannot be computed unless relevance assessments are available of the docu­
ments with respect to certain queries. In particular, the number of relevant doc­
uments (rk) containing term k, the number of nonrelevant documents (sk) con­
taining term k, as well as the total number of relevant documents (R) and 
nonrelevant documents (I) in the collection for some particular query sets must 
be known in advance.

A similar situation arises for a weighting function based on the utility value 
introduced in the discussion on system evaluation [expression (19) of Chapter 
5]. The utility of a search is defined simply as the sum of the values achieved by 
retrieving relevant items and rejecting nonrelevant ones plus the sum of the 
costs incurred by retrieving nonrelevant and rejecting relevant items. One may 
assume that each relevant item that is correctly retrieved increases the useful­
ness of retrieval by a specified value equal to Vj; similarly each nonrelevant 
item that is properly rejected increases the system usefulness by a constant 
value of v2. Analogously, a constant cost of cx is incurred for each nonrelevant 
item that is retrieved, and a cost of c2 arises for each relevant item missed by 
the retrieval system. In these circumstances, appropriate transformations of 
the utility value introduced in Chapter 5 produce a weighting function, known 
as the utility weight for a given term k, or UTILITYk, defined as

UTILITY, = (Vl + c2)rk -  (v2 + Cl)sk (10)

where rk and sk, respectively represent the number of relevant and nonrelevant 
items containing term k [6]. A corresponding term weighting function for term k 
in document i is then given by

WEIGHT* = FREQ* • UTILITY, (11)

The utility and term relevance weighting systems of expressions (9) and 
(11) may be expected to be more powerful than the alternative weighting 
schemes based on simple term frequency characteristics [expressions (6) and
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(7)]. In the utility and term relevance systems, a distinction is made between 
term occurrences in the relevant and nonrelevant documents, respectively, 
whereas in the frequency-based systems the term occurrences are used globally 
over the whole collection irrespective of occurrences in the relevant and non­
relevant documents. On the other hand, it remains to be seen whether for the 
relevance-based weighting systems the term weights computed by using rele­
vance data for certain queries and documents will prove robust enough to be 
applied to new documents and queries for which no prior relevance data are 
available. Procedures for so doing are suggested in the next section.

*B Evaluation of Weighting Systems

Two collections of documents may serve as examples for the evaluation of the 
weighting systems introduced earlier. These are the Cranfield collection of 424 
documents in aerodynamics, and the MEDLARS collection of 450 documents 
in biomedicine. Each collection is used with 24 search requests. Table 6-1 con­
tains evaluation output for term frequency weightings (6), inverse document

Table 6-1 Term Utility Weight and Relevance Weight Evaluation
(Average Precision Values for Fixed Levels of Recall from 0.1 to 1.0)

Inverse Utility weight Relevance weights
Term document w =  20r -  s w = [r/(R -  r)] + [s/(l -  s)]

Recall frequency frequency (actual values) (actual values)

a Cranfield aerodynamics collection (424 documents, 24 queries)

0.1 0.455 0.566 +24% 0.568 +25% 0.571 +25%
0.2 0.410 0.530 +29% 0.540 +32% 0.558 +36%
0.3 0.391 0.476 +22% 0.503 +29% 0.479 +23%
0.4 0.301 0.421 +40% 0.474 +57% 0.479 +59%
0.5 0.280 0.364 +30% 0.416 +49% 0.434 +55%
0.6 0.233 0.301 +29% 0.328 +41% 0.352 +51%
0.7 0.189 0.254 +34% 0.272 +44% 0.324 +71%
0.8 0.155 0.195 +26% 0.211 +36% 0.220 +42%
0.9 0.121 0.150 +24% 0.162 +34% 0.199 + 64%
1.0 0.112 0.132 + 18% 0.143 +29% 0.164 +46%

+27.6% +37.6% +47.2%

b MEDLARS biomedical collection (450 documents, 24 queries)

0.1 0.543 0.611 + 13% 0.676 +24% 0.707 +30%
0.2 0.528 0.601 + 14% 0.676 +28% 0.707 +34%
0.3 0.467 0.541 + 16% 0.639 +37% 0.705 +51%
0.4 0.421 0.467 + 11% 0.609 +45% 0.672 +60%
0.5 0.384 0.438 + 14% 0.558 +45% 0.633 +65%
0.6 0.346 0.396 + 14% 0.510 +47% 0.616 +78%
0.7 0.316 0.347 + 10% 0.459 +45% 0.573 +81%
0.8 0.211 0.245 + 16% 0.374 +77% 0.462 + 119%
0.9 0.171 0.193 + 13% 0.277 + 62% 0.354 + 107%
1.0 0.120 0.154 +28% 0.204 +70% 0.259 + 116%

+ 14.9% +48% +74.1%
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frequency weights (7), utility weights (11), and term relevance weights (9). In 
each case precision values are shown in Table 6-1 for 10 recall levels varying 
from 0.1 to 1.0. These are averaged for the 24 search requests. The inverse doc­
ument frequency weights that are based on frequency characteristics over all 
documents regardless of relevance produce average precision improvements of 
about 28 percent for the aerodynamics collections and 15 percent for the bio­
medical collection over the standard term frequency weights. When the utility 
weights based on document relevance are used the average advantage in pre­
cision increases to 38 and 48 percent, respectively, while an even greater ad­
vantage of 46 and 74 percent is obtained for the term relevance weights.

To generate the term relevance and term utility weights TERMRELk and 
UTILITYk, respectively, it is necessary to identify the number of relevant and 
nonrelevant documents rk and sk in which the term occurs. Furthermore, for 
the utility weights, values must be chosen for the value and cost parameters of 
equation (10). The output of Table 6-1 is based on the assumption that the cost 
and value parameters associated with the relevant documents (vt and c2) are 
given a weight equal to 20 times the value and cost parameters associated with 
the nonrelevant (v2 and Cj) .  The utility function of expression (10) is thus com­
puted as 20rk -  sk.

The problem of generating the rk and sk values was bypassed in the experi­
ments of Table 6-1 by using the actual values found in the two sample collec­
tions for these parameters. That is, the unrealistic assumption was made that 
the characteristics of all terms in the relevant and nonrelevant documents were 
known in advance for all queries. This, of course, accounts for the excellent 
performance of the term utility and term relevance weighting systems in the 
output of Table 6-1.

In practice, the occurrence characteristics of the terms in the relevant and 
nonrelevant documents are not available before a search is actually conducted. 
However, the total number of documents DOCFREQk to which a given term is 
assigned is given, and that in turn can be used to estimate the number of rele­
vant documents (rk) having term k. Note that the document frequency of a term 
varies from 0 for a term not assigned to any document in the collection to a 
maximum of N for a term assigned to all N items in a collection. The parameter 
rk, on the other hand, varies from 0 for a term not assigned to any relevant 
items to a maximum of R, the total number of relevant items which exists with 
respect to a given query. Alternatively R can be interpreted in some circum­
stances as the number of documents which a user wishes to retrieve in response 
to a given query.

Normally, the following relationships exist between the total document 
frequency DOCFREQk of a term, and the frequency rk in the relevant docu­
ments:

1 As DOCFREQk increases, so will rk; thus given two terms TERMj and 
TERMk, DOCFREQj >  DOCFREQk generally implies rj >  rk.

2 For normal query terms, the number of relevant documents in which a
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term occurs is relatively larger for lower-frequency terms than for higher-fre­
quency terms; mathematically, one can say that when DOCFREQ, >  DOC- 
FREQk, one finds that rk/DOCFREQk >  r/DOCFREQ,. (For example, the one 
document in which a frequency-one term occurs is more likely to be relevant 
than the two documents for a term of frequency two.)

Several simple functions can be suggested that conform to these condi­
tions. One possible functional relationship between rk and DOCFREQk for a 
given term k is shown in the graph of Fig. 6-1. Here for document frequencies 
between 0 and R, one assumes that a straight-line relation exists between DOC- 
FREQ and r given as r = (a • DOCFREQ) for some constant a <  1, and repre­
sented by line segment 0A. For frequencies DOCFREQ between R and N, an­
other straight-line relation is assumed expressed as r = d + (e • DOCFREQ) 
and represented by segment AB. It may be noted that in accordance with as­
sumption 2, the slope of line AB (represented by parameter e) is smaller 
than the slope of line 0A (parameter a). As a result the proportion rk/DOC- 
FREQk is relatively larger for terms of smaller frequency DOCFREQk than for 
terms of larger frequency. An alternative functional relationship between r and 
DOCFREQ which also obeys assumptions 1 and 2 is r = a + b(log DOC­
FREQ). It can be shown that if the relationship between DOCFREQk and rk is 
the one represented in Fig. 6-1, the best term weighting function has the shape 
represented in Fig. 6-2 [7].

In particular, the optimum weight of a term starts with some constant 
value a for terms of frequency 1. The weight then increases as the document 
frequency increases to R, the number of relevant documents which a user 
wishes to retrieve in response to a query. As the document frequency increases 
still further, the terms become less important and the term weight decreases. 
Eventually, for terms of document frequency near the number of documents in 
the data base (N), the weight decays to 0. The frequency spectrum of Fig. 6-2

Total number of documents 
(DOCFREQk) containing term k

Figure 6-1 Variation of number of relevant documents containing term k with total number 
of documents containing term k.
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Figure 6-2 Optimum term weighting system assuming relationships of Fig. 6-1.

once again shows that the medium-frequency terms in a collection are the most 
important for purposes of document indexing.

Consider now the evaluation results obtained for the utility and term rele­
vance weighting schemes where the parameter values for rk and sk are no longer 
assumed to be available, but rk (and hence sk = DOCFREQk -  rk) is obtained 
by using one of the functional relationships between DOCFREQ and r (for 
example the one presented earlier in Fig. 6-1). Evaluation results for the 
term utility and term relevance weighting systems based on estimated rk 
values are included in Table 6-2 for the two document collections previously 
used in Table 6-1. For the utility weights a logarithmic relationship was 
assumed between r and DOCFREQ [that is, r = a + b log (DOCFREQ) 
for suitably chosen parameter values a and b]. A hybrid function modeled

Table 6-2 Estimated Term Utility and Relevance Weight Evaluation
(A verage P re c is io n  V a lues  fo r  24 Q ueries  at R ecall Leve ls fro m  0.1 to  1.0)

Cranfield aerodynamics 
(424 documents, 24 queries)

Utility weight Rejevance weight
(estimated values) (estimated values)

0.531 + 17% 0.552 +21%
0.501 +22% 0.520 +27%
0.450 + 15% 0.461 + 18%
0.388 +29% 0.421 +40%
0.332 + 19% 0.369 +32%
0.288 +24% 0.303 +30%
0.234 +24% 0.259 +37%
0.184 + 19% 0.192 +24%
0.138 + 14% 0.159 +31%
0.128 + 14% 0.131 + 17%

MEDLARS biomedical 
(450 documents, 24 queries)

Utility weight Relevance weight
(estimated values) (estimated values)

0.592 +9% - 0.629 + 16%
0.579 + 10% 0.629 + 19%
0.511 + 9% 0.601 +29%
0.440 + 5% 0.536 +27%
0.396 +3% 0.512 +33%
0.333 -4% 0.456 +32%
0.309 -2% 0.409 +29%
0.233 + 10% 0.296 +40%
0.186 +9% 0.218 +27%
0.139 + 16% 0.169 +41%

+ 19.7% + 27.7% +6.5% +29.3%
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on the relationship of Fig. 6-1 is used to relate r and DOCFREQ for the rele­
vance weight calculation: in particular, a straight line similar to line segment OA 
of Fig. 6-1 (r = a • DOCFREQ) is used for document frequency values up 
to DOCFREQ = 8; for larger values of DOCFREQ a logarithmic relation­
ship (r = d + e log DOCFREQ) is assumed between r and DOCFREQ.

A comparison between the output of Tables 6-1 and 6-2 indicates that the 
utility and relevance weighting systems are not as powerful when the parameter 
values must be estimated than when actual values are available. However the 
relevance weighting system appears to be more effective than the inverse docu­
ment frequency even when the relevance parameters are estimated. Since the 
estimated relevance weights are based purely on the occurrence frequencies of 
the terms in the documents of a collection, the results of Table 6-2 confirm that 
substantially more information may be contained in the term frequency data 
than is normally included in conventional retrieval. Additional work is needed 
to produce good estimates of term relevance and justification for the curves of 
Figs. 6-1 and 6-2.

**C Term Weighting in Boolean Query Systems

It was mentioned earlier that systems based on Boolean query formulations are 
capable of separating a document collection into two parts consisting of the re­
trieved items on one hand and the rejected (nonretrieved) ones on the other. 
Additional operations are sometimes carried out for the set of retrieved docu­
ments only in order to generate additional discrimination or ranking among 
these documents. No term weights need to be introduced for this purpose and 
no changes arise in the interpretation of the normal Boolean operations. The 
question arises whether the necessary discrimination among documents can be 
obtained directly by reinterpreting the standard Boolean operations to render 
them applicable to systems using weighted query terms, and possibly weighted 
documents.

It is not possible in the present context to examine in detail the questions 
relating to the processing of weighted Boolean queries [8,9]. It may be suffi­
cient instead to suggest some obvious approaches that lend themselves to a 
practical implementation. Consider two arbitrary index terms A and B, and let 
A and B represent the set of documents indexed by terms A and B, respectively. 
The Boolean operations normally receive the following interpretation:

1 The query “A OR B” is designed to retrieve the document set (A U B) 
consisting of documents indexed by term A or by term B or by both A and B.

2 The query “A AND B” retrieves document set (A fl B) consisting of 
documents indexed by both terms A and B.

3 The query “A NOT B” retrieves document set (A -  B) consisting of 
documents indexed by term A that are not also indexed by B.

Let a and b denote term weights varying from a minimum of 0 to a maxi­
mum of 1, and consider an extension of those operations that includes the use
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of weighted query terms. When the term weight is chosen equal to 1, the nor­
mal Boolean operation is implied, whereas a term weight of 0 implies that the 
corresponding operand may be disregarded. Thus one has

Aj OR B'i = A OR B 
At AND Bi =  A AND B 
Aj NOT Bi =  A NOT B 

and At OR B„ =  A 
Ax AND B0 =  A 
At NOT B0 =  A

When both the document and the query terms are weighted, a weighted 
Boolean query now receives a simple interpretation. In response to a query 
such as Aa OR B„, the set of retrieved documents consists of those having ei­
ther term A with a weight at least equal to a or term B with a weight at least 
equal to b. The retrieved items can be ranked according to the sum of the 
weights a + b in the documents.

When only the documents are weighted, but not the queries, the full docu­
ment sets A and/or B are retrieved using the appropriate Boolean combination, 
and the ranking applies as before. This situation appears simple to implement in 
operational retrieval because weights can be assigned to the document terms by 
the expert indexers, or frequency-based weights can be automatically obtained 
by the system. To assign weights to the query terms, some input is needed from 
the users, and reliable term weighting information of this kind may be difficult 
to obtain.

In the unlikely situation where the query terms alone are weighted but the 
document terms are not, it appears reasonable to suggest that each weighted 
query term affects a partial set of documents instead of the full set. Consider as 
an example, query statements of the form ( . . . ((Aa * Bb) * Cc). . . . * Zz), 
where * stands for one of the operators AND, OR, NOT, and where a, 
b,j .  . . , z represent weights attached to terms A, B, . . . , Z respectively, 
such that 0 < a s  1, . . . , 0 ^  z <  1. The general case involving a multiplicity 
of binary * operators may be reduced to that of a single binary operator with 
two operands by assuming that the search process is carried out iteratively, one 
operator at a time. The problem then consists of interpreting query statements 
of the form (Aa * B), where * is a binary connective and a and b are the term 
weights.

The operations of the three Boolean connectives may be described by con­
sidering the special case where only one of the two operands carries a weight 
smaller than 1, that is, where the queries have the form (Aj * Bb). Extensions to 
the general case where both query terms carry weights less than unity will then 
be immediate. Remembering that query term B0 can be disregarded, whereas 
B, covers the full set B of documents indexed by B, it becomes clear that query 
A OR Bb expands the output document set from A to A U B as the weight of b
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increases from 0 to 1. A U B comprises the full set of items that are either A’s or 
B ’ s . A query such as (A OR B0 33) must then retrieve all the A’s plus a third of the 
B’s. Correspondingly, (A AND Bb) shrinks the size of the output from A to 
A fl B, that is, to the set of items that are both A’s and B’s as b increases from 0 
to 1. This suggests that (A AND B0 33) covers all the A’s that are also in B plus 
about two-thirds of the A’s that are not in B. Finally, (A NOT Bb) shrinks the 
output from A to A -  B, that is, to the items in A that are not also in B. The 
query (A NOT B„.33) would then cover all A’s that are not in B plus two-thirds 
of the items in the intersection between A and B.

It remains to determine how the partial set of items that are either included 
in or excluded from the answering document set is to be identified. The follow­
ing mode of operation suggests itself:

1 OR operation: as b increases from 0 to 1, the items in B not already in A 
that are closest to the set A are successively added to A to generate A U B in 
answer to query (A OR B).

2 AND operation: as b increases from 0 to 1, the items in A -  B that are 
farthest from A fl B are successively subtracted from A until only A fl B re­
mains in answer to query (A AND B) when b is equal to 1.

3 NOT operation: as b increases from 0 to 1, the items in A fl B that are 
farthest from A — B are successively subtracted from A until only A -  B re­
mains in answer to query (A NOT B).

To determine the closeness of a particular document to another document 
or to a set of documents, the similarity coefficients previously introduced to 
compare queries and documents [expressions (1) to (5)] can be used to obtain 
affinity indicators between pairs of documents or between a particular docu­
ment and a set of documents. In the latter case, a typical document C is chosen 
to represent the given set, such as, for example, the centroid of the document 
set, and for each document DOCi, the size of the coefficient SIM(C,DOCj) is 
used to indicate whether DOCt is to be retrieved or not. The computation of a 
cluster centroid is described in detail in the next section of this chapter.

Consider, as a typical example, the operations for query (A0 33 OR B0.66) 
illustrated in Fig. 6-3 together with other examples. The following steps may be 
used:

1 Compute the centroids of sets A and B.
2 Remove from set A two-thirds of the documents consisting of those ex­

hibiting the largest distance to the centroid of B.
3 Remove from set B one-third of the documents consisting of those ex­

hibiting the largest distance to the centroid of A.
4 The response set is then the union of the remaining items from A and B

Correspondingly, the output set for query (A0.33 AND B0 66) (see Fig. 6-3b) 
is obtained by removing from set A one-third of the items not included in the 
intersection of A and B and situated farthest from the centroid of B ; at the same



214 CHAPTER 6

A B

A B

(b)

A B

Figure 6-3 Interpretation of weighted 
Boolean operations, (a) (A0.33OR B0.66). (b) 
(A 0 .3 3  AND Bnfi6) (c) (A0.33 NOT B0>50).

time, one removes from B two-thirds of the items that are most removed from 
set A. For the query (A033 NOT B0 50) of Fig. 6-3c, two-thirds of the items in A 
are removed from the answer set plus half of the items in the intersection be­
tween A and B.

To summarize, when weighted terms are used for queries that do not in­
clude Boolean operators, a query-document similarity computation can be used 
directly to obtain a retrieval value, or ranking, for each document; documents 
may then be retrieved in decreasing order of their retrieval values. When Bool­
ean operators are included in the queries, a similarity computation is first car­
ried out between certain documents and the centroids, or representatives, of
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certain document sets. The size of the corresponding similarity coefficients 
then determines which documents are to be added to (for the OR operation) or 
subtracted from (for AND and NOT) the basic answering set. The use of term 
weights in Boolean systems remains to be validated by appropriate retrieval ex­
periments.

4 FILE CLUSTERING 

*A Main Considerations

Most information retrieval work is based on the manipulation of large masses of 
data. The document files to be stored may be extensive, and the vocabularies 
needed to represent document content may include tens of thousands of terms. 
In these circumstances, it is useful to superimpose an organization on the 
stored information in order to simplify file access and manipulation. One way of 
providing order among a collection of stored records is to introduce a classifica­
tion, or c l u s t e r in g ,  among the items. Clustering is used to group similar or re­
lated items into common classes. In a classified or clustered file, items appear­
ing in a class can be stored in adjacent locations in the file so that a single file 
access makes available a whole class of items. Such an approach is used in 
most conventional libraries where the library items are placed on shelves ac­
cording to their subject content. By browsing among the shelves, the library 
users can then retrieve a number of different items within a given subject area.

In information retrieval, classification methods are used for two main pur­
poses:

1 To classify the set of in d ex  te r m s ,  or keywords, into term classes ac­
cording to similarities in the keywords, or according to statistical characteris­
tics of the terms in the documents of a collection

2 To classify the d o c u m e n t s  into subject classes so that related items are 
accessible to the user population

The k e y w o r d  c la s s i f ic a t io n s  lead to the construction of thesauruses and syn­
onym dictionaries that can be used for document indexing and query formula­
tion. These may also provide the associative indexing capability previously il­
lustrated in Chapter 3. The d o c u m e n t  c la s s i f ic a t io n s  on the other hand may 
serve as devices for the representation of knowledge, and in retrieval they may 
provide efficient search strategies and effective search results. The efficiency is 
produced by making it possible for the user to limit the search to specific sub­
ject areas. The potential effectiveness of the cluster search process stems from 
the c lu s t e r  h y p o th e s i s ,  which asserts that closely associated documents tend to 
be relevant to the same queries [2]. The use of clustered document files may 
then lead both to high recall and to high precision searches [10].

The following two characteristics are generally considered important for 
object classifications [11,12]:
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1 The classification should be stable in the sense that small alterations of 
the data, because of either the addition of new items or changes in the old ones, 
should cause only minor alterations in the classification.

2 The classification should also be well defined in that a given body of 
data should produce a single classification or at least one of a small set of com­
patible classifications.

As it will be seen, the second property is not always present in various heuristic 
or single-pass classification systems constructed for actual objects. Rather, ex­
amples exist where a variety of different classification systems all perform 
equally well in practical applications. Stability, on the other hand, appears to 
be essential if a classification is to operate satisfactorily.

Many different methods can be used to cluster a collection of items. If the 
classification is to perform a useful ro}e, controls must normally be introduced 
to limit the minimum and maximum number of classes that are generated, as 
well as the size of the classes and the overlap between classes. Obviously, the 
number of classes generated should be greater than 1 but smaller than the total 
number of objects to be classified. It is helpful if the various classes exhibit a 
roughly comparable size. Further, storage efficiency considerations make it 
necessary to limit the overlap between classes, defined as the number or pro­
portion of items jointly assigned to two or more classes.

The number, size, and overlap of the classes may be controlled during 
cluster generation by parameter settings. An example is given in Fig. 6-4 for six 
items labeled Dx to D6. The input to the clustering process is assumed to be a 
similarity matrix giving similarity measures between all pairs of items as shown 
in Fig. 6-4a. The clustering process then consists in fixing a threshold T in the 
similarity coefficients, and grouping all pairs of items whose similarity exceeds 
the chosen threshold. The illustration of Fig. 6-4b shows that when T = 0.95, 
no clustering action is possible, and the file consists of 6 unclustered items. As 
the threshold is lowered to 0.8, three pairs of items can be grouped including 
(Dj ,D5), (Dx ,D6), and (D2 ,D6); pairs of related items are identified by lines join­
ing the respective items in the graph of Fig. 6-4c. As the threshold value is fur­
ther reduced to 0.60 and 0.50 additional pairs of items can be joined as shown in 
Fig. 6-4d and e.

For purposes of the example, one may assume that each cluster of items is 
defined as a connected component in the sense that in a graph representation 
such as that of Fig. 6-4, a path formed by lines exists from any item to all other 
items in the cluster. In these circumstances, the illustration of Fig. 6-4 demon­
strates that the number of clusters formed decreases and the size of the clusters 
increases as the similarity threshold is decreased. The number of clusters pro­
duced by the four thresholds of Fig. 6-4b to 6-4e is, respectively, 6, 3, 2, and 1.

In information retrieval the cluster processing operation consists in taking 
an item— for example, a new incoming document or an incoming user query— 
and comparing it with an existing cluster to determine the affinity of the item 
with that cluster. This operation is easily carried out by defining for each clus-
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D, d2 d3 d4 d5 °6

D, - 0.3 0.5 0.6 0.8 0.9

d2 0.3 - 0.4 0.5 0.7 0.8

d3 0.5 0.4 - 0.3 0.5 0.2
0.6 0.5 0.3 - 0.4 0.1

d5 0.8 0.7 0.5 0.4 - 0.3

0.9 0.8 0.2 0.1 0.3 -

(a)

oVQ

o  o
d3 d5

O
d2

o
D6

<b)

DJ 0*

d3 d5 D° " ° 6  .

(d)
Figure 6-4 Role of threshold in item similarity for cluster formation, (a) Initial item-item simi­
larity matrix, (b) Threshold T = 0.95. (c) Threshold T = 0.80. (d) Threshold T = 0.60. (e) 
Threshold T = 0.50.

ter a cluster representative or centroid to represent the class during the cluster 
manipulations. Comparisons between individual items and the cluster are then 
performed by computing the item-centroid similarity.

In principle, the centroid of a cluster might be represented by any docu­
ment located in that cluster. In practice it may be preferable to construct a spe­
cial centroid vector that is centrally located in the cluster. Typically, the cen­
troid may be defined as the average of the documents in a cluster. That is, the 
weight of a centroid term is computed as the average of the weights for that 
term over all items in a cluster, or

CTERMk = — j  TERMlk (12)
i= l

where CTERMk is the kth term in the centroid, TERMik is the kth term in the 
ith document in the cluster, and the cluster contains m documents in all.

A computation such as the one specified by expression (12) produces a 
centroid vector that is reasonably representative of the items in a cluster. The
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most heavily weighted terms in the individual documents will be heavily 
weighted in the centroid. The sample centroid derivation shown in Table 6-3 
demonstrates that the two terms 3 and 6 best represent the clustered items. 
These two terms also receive the highest weight in the centroid. The example of 
Table 6-3 also shows that the standard centroid computation leads to full cen­
troid vectors with few zero terms even when the individual document vectors 
are sparse (that is, consist mostly of 0 terms). To improve the storage efficiency 
of the centroid vectors, it is customary to add a thresholding operation which 
eliminates centroid terms of excessively low weight. The reduced centroid 
shown in Table 6-3 is obtained by eliminating centroid terms with weights 
smaller than 1. F/

The centroid averaging process suggested in expression (12) may overem­
phasize the importance of some terms that receive excessively high weights. In 
some systems the final centroid term weights are therefore determined by using 
rank values rather than actual weights. For example, a weight of 1 can be as­
signed to the term exhibiting the lowest reduced weight; the next lowest term is 
given a weight of 2, and so on up until all nonzero terms are accounted for. The 
rank value process produces term weights of 1 and 2 for terms 6 and 3 of Table 
6-3, respectively, replacing the original weights of 3 and 4.

Additional cluster centroid definitions may be used to produce binary cen­
troid vectors with centroid weights restricted to 0 and 1 only. Alternatively, the 
term weights may be normalized to lie between 0 and 1 by dividing each term 
weight by the length of the centroid vector [1,2,13]

Many cluster generation systems, including the method described in Chap­
ter 4 in connection with the SMART system description, produce a hierarchical 
cluster tree where large clusters are analyzed and broken down into a number 
of smaller clusters, which are themselves broken down into still smaller clus­
ters, until finally the lowest level clusters are (figuratively) broken down into 
individual documents. A typical hierarchical cluster arrangement is shown in 
Fig. 6-5.

Table 6-3 Cluster Centroid Formation for 
Three Documents

DOCUMENT, = (1 , 0 , 3, 0, 0 , 4, 0 , 0 , 0 , 0)
DOCUMENT;, = ( 0 , 0 , 2, 0, 0 , 3, 1 , 1 , 0 , 0)
DOCUMENT, = ( 0 , 1 , 7, 0, 1 , 2, 0 , 0 , 1 , 1 )

Standard 
centroid 

Reduced 
centroid 

Centroid using 
rank values = ( 0 , 0 , 2 , 0, 0 , 1, 0 , 0 , 0 , 0 )

= (1/3, 1/3, 4, 0, V3, 3, 1/3, 1/3, 1/3, 1/3)

= (0 , 0, 4, 0, 0, 3, 0, 0, 0, 0)
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Figure 6-5 Hierarchical cluster arrangement.

A cluster tree such as that of Fig. 6-5 can be searched in many different 
ways. Intuitively the simplest method consists in proceeding from the top 
downward in the cluster tree, by comparing the incoming query first with the 
centroids of the topmost clusters, and continuing downward by next examining 
the next level of centroids for the clusters that were sufficiently similar to the 
query. This step is repeated by considering successively smaller clusters until 
eventually the individual documents in some of the lowest-level clusters are 
compared with the query. This is a top-down cluster search strategy based on 
the availability of auxiliary files containing all cluster centroids.

An alternative bottom-up search strategy may be introduced that uses only 
the clusters on the next to lowest level of the cluster tree. In that strategy, the 
incoming queries are compared with the centroids of the lowest-level clusters, 
and the individual documents included in certain lowest-level clusters are then 
considered [2,5,14]. The bottom-up search strategy reduces the storage cost for 
the tree of centroid vectors and may lead to more rapid identification of docu­
ments actually relevant to a given query than the top-down search. Further­
more, the likelihood of going down the wrong cluster path and winding up with 
useless information is reduced when the comparisons with the top centroids are 
eliminated. Since the number of low-level clusters may, however, be very 
large, an auxiliary index may be required to gain access to the low-level 
classes. This index may be conveniently implemented as an inverted file for all 
low-level centroid terms. A typical search then proceeds by using the individ-
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ual query terms to access the inverted file of low-level cluster centroids. This 
leads to the identification of one or more low-level clusters, and these in turn 
lead to the retrieval of individual documents located in these classes.

Additional details for cluster generation and searching are including in the 
remainder of this section.

*B Classification Methods

One method for clustering a collection of objects uses similarity (or distance) 
measurements between each object and each other object in the collection. The 
objects are grouped into classes when they exhibit sufficiently large similarities 
or small distances. This process was illustrated earlier in Fig. 6-4, where an 
item-item similarity matrix was used to generate several cluster arrange­
ments depending on the threshold used.

The clustering methods based on the availability of item-item similarities 
lead to a variety of graph-theoretical grouping strategies. Normally, rules are 
imposed on the graph obtained by transforming the item-item similarity matrix 
into a graph as shown in the example of Fig. 6-4. The following restrictions 
could be imposed on the graph representing the object similarities:

1 The clusters are defined as the cliques of the graph, that is, as the 
groups (maximal subsets) of items for which each item is connected to each 
other item in the group.

2 The clusters could also be strings of items such that item a is connected 
to b, and b is further connected to c, and so on until no further connected item 
can be added to the string.

3 The clusters might also be defined as stars where some central item is 
connected to all other items in the group.

4 Finally, the clusters could be connected components where an arbi­
trary path is found between each item in the component and each other item; 
the single-link method described in Chapter 4 is based on the use of connected 
components.

Consider, as an example, the connection graph of Fig. 6-4e obtained from 
the item-item similarity matrix of Fig. 6-4a using a similarity threshold of 0.50. 
The following classes are obtained from Fig. 6-4e for the graph specifications 
given earlier:

1 For the clique restriction, one finds one clique with three items and five 
additional cliques each with two items (Dx ,D3 ,D5), (Dx ,D4), (D4, D6), (D2, D5), 
(D2,D6), (D2,D4).

2 Several subdivisions into strings are possible for the graph of Fig. 6-4e. 
Assuming that the strings to be produced are nonoverlapping, the following two 
strings will cover the graph: (D3 ,DX ,D4) and (D5 ,D2 ,D6); another string subdivi­
sion would be (D3 ,DX ,D4 ,D2 ,D5) plus the single-item string (D6).

3 Various nonoverlapping stars can be generated from Fig. 6-4e such as 
(Dj ,D3 ,D5 ,D4) and (D2,D6).
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4 Finally for the connected component strategy, a single cluster is ob­
tained consisting of all six documents under consideration.

The example of Fig. 6-4 illustrates that even for the graphical clustering 
methods that exhibit all the theoretically desirable characteristics such as being 
stable and well-defined, many different cluster structures can be constructed 
depending on various parameter settings and clustering requirements. The con­
nection pattern between objects is uniquely determined by the threshold cho­
sen for the item-item similarities. However, the final cluster arrangement also 
depends on the graph representation used to define the clusters, and on addi­
tional rules that may be specified concerning the permitted size and overlap of 
the clusters (the number of items included in a cluster and the number of items 
jointly assigned to more than one cluster).

The graph-theoretical clustering algorithms tend to be expensive to imple­
ment when the number of objects to be grouped is large. In fact, the construc­
tion of the item-item similarity matrix alone requires a comparison of each item 
with each other item, that is, the computation of about n2/2 similarity coef­
ficients for n items. A number of heuristic clustering methods have therefore 
been developed for which the construction of an item similarity matrix is not 
required.

Most of the heuristic methods are based on the prior availability and subse­
quent use and refinement of an initial set of clusters. In some cases, the prob­
lem under consideration may simply require that a set of new or unknown ob­
jects be added to an already existing cluster structure. Alternatively, when 
initial clusters are not available, some easily identified property of the objects 
might be used to define an initial set of trial clusters— for example, all objects 
that have a given property or term in common could be entered into a common 
trial class. Another possibility consists in taking a small subset of the objects to 
be clustered and using these to construct a set of so-called core clusters. The 
remaining parts of the collection that are not originally handled are then subse­
quently assigned to the existing core clusters.

Assuming the existence of an initial set of clusters, the heuristic methods 
next proceed by constructing cluster representatives for the existing clusters. 
The clustering operation itself is again based on similarity measurements be­
tween the objects to be clustered and the already existing cluster centroids. A 
typical iterative cluster refinement process involves the following steps:

1 Compare each document D with all existing cluster centroids, and ob­
tain similarity coefficients SIM(D,Ck) for all clusters in the cluster structure.

2 Determine the cluster for which SIM(D,Ck) is largest for each given 
document D and place D into that cluster (alternatively, if overlapping clusters 
are desired, place D into all clusters for which the corresponding centroid simi­
larity is larger than some arbitrary threshold).

3 Recompute the cluster centroids based on the new document assign­
ments, and return to step 1.
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4 Stop the process after a fixed number of iterations through steps 1 to 3 
or alternatively stop after all document movements from one class to another 
have ceased.

Such an iterative cluster reassignment process is normally less expensive 
to perform than the graph-theoretical process described earlier, because the 
similarity coefficients are not computed for all pairs of items but only for all 
items with respect to all cluster centroids. If one assumes that log n clusters 
exist for the n items, the number of centroid-document comparisons is of order 
n log n (instead of n2 as before). However, the heuristic clustering methods 
are theoretically less satisfying than the graph-based methods because the final 
cluster structure obviously depends on the initially available cluster arrange­
ment. This undesirable property also characterizes the one-pass clustering 
methods described in Chapter 4. In that case, the documents are processed se­
quentially one at a time, and each item potentially forms a new class if it does 
not exhibit sufficient similarities with already existing clusters. The order in 
which the items enter into the centroid comparison process will then determine 
the shape of the final clusters.

The two types of classification methodologies can be combined into a sin­
gle process by using the less expensive n log n process (for example a simple 
one-pass clustering system) to generate an initial set of trial clusters, and re­
serving the expensive graph-theoretical method to refine and subdivide each 
trial cluster. Each trial cluster of size m (m being much smaller than the total 
collection size n) could then be broken down into several smaller clusters using 
a graph-theoretical method requiring on the order of m2 vector comparisons. 
Such a hybrid clustering process could generate useful low-level clusters that 
are as effective as clusters produced by graph-type methods applied to the com­
plete collection.

*C Cluster Search Evaluation

Because of the substantial expense involved in clustering large document col­
lections, a thorough evaluation of cluster search methods has never been per­
formed. Only fragmentary results are available obtained with a few typical clus­
tering arrangements and a few sample document collections [14-17]. In 
principle, the.tradeoff involved in using a clustered document collection for in­
formation retrieval purposes, as opposed, for example, to using a standard in­
verted file, is simple to describe: on the one hand, one may expect that im­
proved recall and precision are obtainable from a search when related 
documents are collected into common classes because the retrieval of a partic­
ular document then automatically leads to the retrieval of additional related 
items; on the other hand, the clustered organization produces a good deal of 
systems overhead because of the cost of the clustering operation itself and the 
requirement to store an auxiliary file of cluster centroids. Furthermore, as will 
be seen, the comparison of incoming queries with the centroid structure may in
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fact identify marginal search paths when the centroids appear to be similar to 
the queries but the corresponding clusters contain few relevant documents.

It was seen in the preceding section that many different methodologies are 
available to cluster a given document collection. Moreover, given a particular 
clustering arrangement the comparison of user search queries with the avail­
able cluster centroids and the identification of the relevant document clusters 
can also be carried out in many different ways. Thus given a cluster structure 
such as the one in Fig. 6-5, one can proceed from the top down, choosing at 
each level the most likely cluster centroid until eventually the documents in a 
single cluster on the lowest clustering level are reached. Such a search, known 
as depth-first, is likely to produce high precision searches that may, however, 
be deficient in recall. Higher recall may be obtained by following several paral­
lel paths of the cluster structure, leading to the eventual identification of several 
low-level document clusters. Unfortunately no obvious search strategy exists 
which will necessarily lead to the retrieval of most useful materials.

One problem arising in cluster searching is the difficulty of obtaining an 
unequivocal result from a comparison between a user query and a cluster cen­
troid. Normally, an attempt must be made given a particular user query to esti­
mate the probability that a given cluster is a useful cluster. Such an estimate 
can be based on the frequency of occurrence (or on the weight) of the individual 
query terms in the corresponding cluster centroid. When the query terms col­
lectively exhibit high occurrence frequencies in a cluster centroid, the pre­
sumption may be that the corresponding cluster is useful for retrieval purposes. 
Unfortunately, the higher level centroids normally represent broad subject 
classes and the query-centroid comparisons may not identify any particular 
centroid that is clearly preferable to the other centroids. Such a situation ob­
viously complicates the cluster searching task.

As an example of the efficiencies attainable in cluster searching, consider 
some sample searches performed for several sets of search requests with a col­
lection of 2,000 documents in computer science. A hierarchical cluster arrange­
ment was generated for the document collection using the one-pass clustering 
system described in Chapter 4. The hierarchy consisted of four levels, illus­
trated in the scheme of Fig. 6-5, including 200 clusters on the lowest clustering 
level with an average of 10 documents each. This arrangement was used with 
four different search strategies [18]:

1 A standard inverted file search, using an inverted term directory for all 
terms occurring in the documents of the collection; the documents themselves 
are entered into the document file in arbitrary order.

2 A standard inverted file search for which the document file is stored in 
cluster order, that is, one access to the document file retrieves a cluster of re­
lated documents.

3 An inverted file constructed for the centroids on the lowest cluster level 
only, providing access to a number of low-level document clusters for each 
query term.
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4 A top-down search of the full cluster hierarchy based on a stored file of 
all cluster centroids.

The auxiliary inverted term files and the cluster centroid files cannot nor­
mally be stored in internal machine memory. In order to carry out the required 
query-centroid comparisons, it is therefore necessary to transfer various por­
tions of the centroid directory from external bulk storage to internal memory. 
Such transfers from one type of memory to another are usually carried out for 
fixed size blocks of data, known as pages. For the experiments under discus­
sion, a page is defined as 4,096 characters of storage. A normal page transfer 
process would transfer into internal storage the particular data page containing 
the centroid needed at each particular time. To make room for a new page of 
data, an old page no longer in use must be transferred back to external storage 
from internal memory. The standard way for doing this is the “least recently 
used” (LRU) page replacement method which transfers out the page that has 
remained unused for the longest time.

When only a single page is brought into storage at any one time, a complete 
disk seek operation is needed for each page (that is , for each centroid) transferred 
into internal memory. Such a strategy appears ill suited to the processing of hier­
archical tree structures, because the need for a particular centroid vector nor­
mally implies the simultaneous need for its descendants on a lower level of the 
tree or for its brothers on the same level of the tree. This suggests that a com­
plete set of centroids ought to be brought into internal memory at the same 
time, preferably consisting of the originally needed centroid together with its 
immediate descendants and possibly its brothers. By using a so-called prefetch 
strategy, the pages containing the descendants or brothers of a given centroid 
can be prepared for transfer while the initial page is being sought. In these cir­
cumstances, a complete disk seek operation is still required for the initial page 
to be transferred. The pages containing descendant and brother centroids can, 
however, be transferred at much lower cost amounting to only about one-tenth 
the time required for a complete disk seek operation.

The file storage requirements for the several search systems are sum­
marized in Table 6-4. The document file itself requires 71 pages of data. The

Table 6-4 Storage Requirements for Cluster Searches
(2,000 D ocum en ts  in C o m p u te r S c ience ; Page Size =  4,096 Bytes)

Standard search Inverted term index 1r 39 pages
using inverted file without weights 110 I
for document terms Document file Il  71 pages

Search using the Inverted index to low- Ir 13 pages
low-level document level centroids 84
clusters only Document file I( 71 pages

Full top-down search Full centroid file (400 |f 75 pages
through cluster terms per centroid) 146
hierarchy Document file Î  71 pages
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standard inverted term file (using as entries all terms occurring in the docu­
ments) uses 39 additional pages. Thirteen pages are needed to store an inverted 
index for the short centroids on the lowest level of the cluster hierarchy; fi­
nally, 75 pages are used to store the full hierarchy of cluster centroids. A clus­
ter storage search Using only the low-level centroids appears therefore to pro­
duce better storage efficiency than a standard inverted file search or a top-down 
search through the full store of cluster centroids.

The average search precision and the average number of page faults re­
quired to reach a given level of recall using the single-page replacement 
process are shown in Table 6-5 for three of the four search methods previously 
described [18]. The averages of Table 6-5 are computed for 23 short Boolean 
queries containing an average of 4.8 search terms per query. Next to each sta­
tistic, Table 6-5 also contains the percentage improvement or deterioration 
over the standard inverted file search method.

A valid comparison of the search runs can be made only if the total number 
of retrieved items over the 23 queries is approximately the same for all 
methods. Since no choice is possible for the number of items retrieved by a

Table 6-5 Short Boolean Queries— Precision and Page Faults
(23 Queries— Separate Relevance Assessments)
Relative Inverted document Inverted low-level

recall terms (clustered) centroids Tree search

a Average precision comparison

0.1 0.900 0.406 -55% 0.277 -69%
0.2 0.888 0.406 -54% 0.277 -69%
0.3 0.847 0.403 -52% 0.255 -70%
0.4 0.845 0.393 -53% 0.212 -75%
0.5 0.838 0.388 -54% 0.203 -76%
0.6 0.830 0.385 -54% 0.192 -77%
0.7 0.828 0.356 -57% 0.183 -78%
0.8 0.824 0.346 -58% 0.162 -80%
0.9 0.817 0.329 -60% 0.149 -82%
1.0 0.815 0.329 -60%

-55.7%
0.141 -83%

-75.9%

b Average page fault comparison (no prefetch)

0.1 4.89 3.00 -39% 14.90 +205%
0.2 5.54 3.50 -37% 14.90 + 169%
0.3 5.87 4.20 -28% 14.85 + 153%
0.4 7.44 4.20 -44% 16.55 + 122%
0.5 8.53 4.45 -48% 16.43 +93%
0.6 10.26 4.50 -56% 17.83 + 74%
0.7 11.21 4.50 -60% 18.96 + 69%
0.8 12.21 4.65 -62% 21.17 + 73%
0.9 12.94 4.65 -64% 21.83 +69%
1.0 12.94 4.95 -62%

-50%
21.83 +69%

+ 109.6%
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conventional Boolean search, that number must necessarily be used as a stan­
dard for all methods. For the query collection used in the experiments, a total 
of 341 documents were retrieved by the conventional inverted file method over 
the 23 queries. The threshold used for the clustered searches was therefore 
chosen to retrieve approximately 15 documents per query (15 • 23 = 345).

Separate relevance assessments were available of each document with re­
spect to each query (that is, the inverted file searches were not automatically 
assumed to produce perfect search output). Furthermore, the recall level ex­
hibited in Table 6-5 is computed separately for each search method rather than 
globally. That is, relative rather than absolute recall levels are shown, defined 
as the proportion of relevant items retrieved at a given level out of the total 
relevant that can be retrieved by each particular method.

The results of Table 6-5 indicate that the full cluster tree search is not com­
petitive with the conventional inverted file process either in precision or in the 
page fault rate when short Boolean queries are processed. In that case only a 
few lists of document references must be processed in the inverted file system, 
corresponding to the few terms included in each query. The cluster tree must, 
however, always be traversed from top to bottom. The low-level cluster inver­
sion is much more attractive in that case, since only about half as many page 
faults are needed as in the inverted file process. Both cluster search systems 
do, however, produce substantially lower precision than the inverted file sys­
tem.

The amount of work required by an inverted file search increases as the 
query length and to some extent the number of documents to be retrieved in­
crease. The experimental conditions of Table 6-5 thus favor the inverted file 
technology. When longer, vector-type queries are processed, the evaluation re­
sults become very different. Table 6-6 contains both average precision and av­
erage page fault rates averaged over 33 long queries (16.8 terms per query) 
using page replacement methods with and without prefetch [18].

The results in Table 6-6a show that the standard inverted file search again 
produces the best search precision. However, the cluster searches are now 
more competitive than before: the tree search shows a deterioration of 15 per­
cent in precision; for the inverted low-level centroids the precision loss is 19 
percent, compared with the earlier losses of 76 and 56 percent, respectively. 
The page fault rates which apply to the cluster searches conducted for the long 
queries are much improved over the equivalent runs using the shorter queries. 
Even with the unfavorable page-at-a-time (no prefetch) page replacement 
method, the full tree search is nearly competitive with the inverted file list pro­
cessing. Table 6-6c shows that with a prefetch page replacement, the tree 
search is 30 percent better than the document inversion.

The results of Table 6-6 indicate that for the long, vector-type queries, a 
cluster search method seems preferable to the conventional inverted list manip­
ulations. Even more clear-cut results in favor of the top-down cluster search 
are obtained when a larger number of documents are retrieved in each search 
than the 15 used in the experiments of Tables 6-5 and 6-6 [18].
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Table 6-6 Long Weighted Vector-Type Queries— Precision and Page Faults
(33 Queries; 15 Retrieved Items per Query)

Inverted document terms

Relative Clustered Random Inverted low-level Complete tree
recall storage storage centroids search

a Average precision comparison

0.1 0.893 0.783 -12% 0.837 -6%
0.2 0.871 0.746 -14% 0.775 -11%
0.3 0.844 0.702 -17% 0.748 -11%
0.4 0.835 0.679 -19% 0.734 -12%
0.5 0.827 0.664 -20% 0.721 -13%
0.6 0.817 0.656 -20% 0.682 -17%
0.7 0.812 0.623 -23% 0.670 -17%
0.8 0.803 0.612 -24% 0.639 -20%
0.9 0.784 0.610 -22% 0.612 -22%
1.0 0.757 0.582 -23% 0.607 -20%

-19.4% -14.9%

b Average page fault comparison (no prefetch)

0.1 14.8 15.2 +2% 18.1 +23% 14.9 + 1%
0.2 15.7 16.1 +2% 19.4 +23% 17.4 + 11%
0.3 17.5 18.2 +4% 22.9 +31% 18.2 +4%
0.4 18.7 19.4 +4% 24.4 +30% 19.2 + 3%
0.5 19.9 20.6 +4% 25.9 +30% 21.0 +6%
0.6 21.1 21.8 +4% 28.2 +34% 23.2 + 10%
0.7 22.1 23.2 + 5% 31.7 +44% 24.5 + 11%
0.8 23.2 24.3 + 5% 34.7 +50% 26.8 + 16%
0.9 24.5 26.0 +6% 36.7 +50% 29.5 ' +20%
1.0 25.5 27.4 +9% 37.9 +49% 31.8 +25%

+4.5% +36.4% + 10.7%

c Page fault comparison (with prefetch)

0.1 10.12 10.55 +4% 12.97 +28% 6.44 -36%
0.2 11.00 11.47 +4% 14.02 +27% 7.62 -31%
0.3 12.54 13.29 +6% 17.09 +36% 8.16 -35%
0.4 13.58 14.48 +7% 18.23 +34% 8.76 -35%
0.5 14.80 15.66 + 6% 19.59 +32% 9.81 -34%
0.6 15.83 16.84 +6% 21.36 +35% 11.06 -30%
0.7 16.90 18.18 +6% 24.01 +42% 11.87 -30%
0.8 17.87 19.19 +7% 26.28 +47% 13.17 -26%
0.9 19.12 20.78 +9% 27.99 +46% 14.79 -23%
1.0 20.08 22.05 + 10% 28.80 +43% 16.06 -20%

+6.7% +37% -30%

**D Automatic Pseudoclassification

It was mentioned earlier that automatic classification techniques can be used to 
construct affinity classes for either documents or terms. In the former case, the 
principal aim is to impose structure on the search system in the hope of gaining 
search efficiencies during the comparison between user queries and stored doc-



228 CHAPTER 6

uments. When terms are clustered, the result is a term class arrangement, or 
thesaurus, that can be used for the construction of expanded search requests 
and document descriptions by inclusion in the vectors of synonyms and other 
terms related to those originally available. It is generally accepted that the use 
of a thesaurus in the indexing and search formulation process can enhance re­
trieval effectiveness [19,20].

The use of thesauruses in retrieval was briefly illustrated in Chapter 3 as 
part of the discussion on automatic indexing. Thesauruses are normally con­
structed manually by subject experts, although automatic classification proce­
dures are usable in principle based, for example, on use of similarity informa­
tion for term pairs. The similarity between terms might be based on the 
frequency distribution characteristics of the terms across the documents of a 
collection. Thus, if two or more terms co-occur in many documents of a given 
collection, the presumption is that these terms are related in some sense and 
hence can be included in common term classes. Alternatively, when term dis­
tribution information is not available, term classifications can be automatically 
constructed by adapting an existing document classification and assuming that 
terms which occur jointly in the document classes could be used to form the 
desired term classes [21-26].

Even though considerable effort has been devoted to the development of 
automatic thesaurus construction methods, a really viable thesaurus generation 
process is still lacking. One problem is the difficulty of identifying representa­
tive document collections which could guarantee that the resulting term distri­
bution characteristics would be applicable to other collection environments. 
Unfortunately, there is no obvious way for obtaining such representative docu­
ment samples, short of using large comprehensive collections. However, large 
collections cannot be processed at a reasonable cost. In some studies, term 
classes have been generated from locally defined, small subcollections of docu­
ments, such as the set of documents retrieved in response to a given search 
request [27]. Whether such procedures will prove generally viable remains to 
be seen.

Since document retrieval environments normally operate in an on-line 
mode, permitting users to communicate directly with the retrieval system, the 
question arises whether information obtained from the user population during 
the retrieval effort might be used as an aid in constructing term classifications. 
Such a consideration forms the basis for the so-called pseudoclassification pro­
cess where the normal use of term frequency information and term probability 
distributions is replaced by user relevance information of documents with re­
spect to search requests. Since the term classification obtained by a pseudo­
classification process depends on particular user queries and specified subject 
areas, the term classes that are obtained may be applied to other documents in 
related subjects only if the input data are comprehensive enough to make them 
applicable to other user groups in different collection environments. The pseu­
doclassification process is based on the existence of four distinct types of infor­
mation: (1) a collection of documents in a given subject area, (2) a set of infor-
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mation requests addressed to that collection, (3) a retrieval threshold T which 
leads to the retrieval of a given document in answer to a particular query when­
ever a similarity measure between the document and query exceeds T, and (4) a 
set of user relevance assessments specifying the relevance of individual docu­
ments with respect to the available queries [28].

Consider, in particular, a given collection of n documents and m queries in 
a topic area. The previously specified information can be used to construct two 
binary n by m matrices specifying the retrieval status and the relevance proper­
ties, respectively, for each document-query pair (DOC,,QUERY,). Specifi­
cally, let VAL and REL represent the retrieval and the relevance matrices for a 
given collection of documents and queries. Thus VAL,, may be defined to be 
equal to 1 whenever DOC, is retrieved in response to QUERY,, that is, when­
ever SIM (DOQ,QUERYj) >  T ; otherwise VALjj is set equal to 0. Correspond­
ingly RELij is defined as 1 when DOQ is specified as relevant to the QUERYj 
and as 0 otherwise. The relevance and retrieval matrices are represented in Fig. 
6-6 for typical document and query collections.

Consider now the results of a retrieval operation. It is obvious from the 
definition of the VAL and REL matrices that four different situations can arise 
for a given document-query pair (DOQ, QUERYj):

1 Both VALjj and RELU are defined equal to 1, implying that the relevant 
document DOQ is retrieved in response to QUERYj.

2 Both VALjj and RELjj are defined equal to 0, implying that the nonrele- 
vant document DOQ is rejected in response to QUERYj.

VAL

REL

QUERY, q u e r y 2 QUERYm

DOC, VAL,, v a l ,2 •• V A L,m

d o c2 v a l 2, V A L^ • • VAL2m

DOC„ VALn, VALn2 • • VALnm

(a)

QUERY, q u e r y 2 QUERYm

DOC, REL,, REL,2 •• REL,m

do c2 r e l 2, r e l22 REL2m

D0C„ REL„1 RELn2 RELnm

• ( b )
Figure 6-6 Retrieval and relevance matrices, (a) Retrieval matrix VAL. (VAL,, implies that 
DOCj is retrieved in response to QUERYj.) (b) Relevance matrix REL. (REL13 implies that DOCj 
is judged relevant to QUERYj.)
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3 and 4 VALy = 1 and RELy = or vice versa VALy = 0 and RELy = 
1, implying either that a nonrelevant document is retrieved or that a relevant 
item is rejected.

From the viewpoint of retrieval effectiveness, cases 1 and 2 represent a 
favorable outcome, whereas 3 and 4 constitute system failures. A perfect sys­
tem will produce VAL and REL matrices that are identical, implying that all 
(DOCi,QUERYj) pairs fall into classes 1 or 2, being either correctly retrieved 
or correctly rejected. Correspondingly, the number of (DOQ,QUERY]) pairs 
falling into classes 3 and 4 may be used as a measure of system inadequacy or 
failure.

To improve the operations of a retrieval system it is necessary to introduce 
methodologies capable of shifting some of the (DOC],QUERY]) pairs from 
classes 3 and 4 to classes 1 or 2, while ensuring at the same time that 
(DOCj,QUERY]) pairs that are already correctly classified are left undisturbed. 
Two different situations may arise:

3 When a document is incorrectly retrieved (VAL]] = 1 and RELy = 0), 
it becomes necessary to decrease the similarity coefficient SIM with the query 
so that eventually SIM(DOC],QUERY]) <  T, thus ensuring the rejection of 
DOC] in response to QUERY].

4 On the other hand, for documents that are incorrectly rejected 
(VALy = 0 and RELy = 1), the similarity coefficient with the query must be 
correspondingly increased to achieve SIM(DOC],QUERY]) >  T, causing the 
document to be retrieved.

The size of the similarity coefficients for query-document pairs can be al­
tered by introducing refined automatic indexing methods designed to change 
the original term assignment to queries and documents. Alternatively, sophisti­
cated term weighting strategies could be introduced. A third possibility consists 
in utilizing term relationship information. This last strategy forms the basis for 
the pseudoclassification process. Consider in particular a given term classifica­
tion or thesaurus, in which p different classes are used to group the terms into 
affinity or similarity classes. The term classification is represented in matrix 
form in Fig. 6-7. The document and query vectors can now be represented by 
lengthened constructs as follows

DOC] = (dj^dij, . . . ,dit,Cu ,ci2, . . . ,C]P)
QUERY] — (qji,qj2, • • • >qjtjCji>Cj2> • • ■ ,Cjp)

where dlk represents the assignment of term k to document i and qjk represents 
the assignment of term k to query j. The elements clk and cjk represent the 
term class assignments to the respective vectors. In each case cik (or cjk) is set 
equal to 1 whenever class k pertains to document i (or to query j). To in­
crease the size of the similarity measure between a given document-query
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CLASS. CLASS. CLASS,p

TERM

TERM.

0
0 1

GROUP

TERM, 0 0

Figure 6-7 Classification matrix GROUP. (GROUPy = 1 implies that TERM, occurs in 
CLASS,.)

pair, it suffices to place into a common term class two or more terms that did 
not originally produce a term match in the respective vectors. This operation 
adds one or more common class identifiers to both vectors, thereby increasing 
the similarity between them. Analogously, the similarity coefficients can be 
decreased by appropriately reducing the number of matching term classes.

Consider, as an example, two typical vectors consisting of six terms each 
(where a 0 entry is used to denote a term that is absent):

DOQ = (0, 0, lift, propeller, roll, wing)
QUERY, = (aileron, drag, 0, propeller, 0, wing)

In their original form, two terms (propeller and wing) are present in both vec­
tors. If the document is now assumed to be incorrectly rejected (RELU = 1 and 
VALU = 0), the size of the matching coefficient can be increased by placing 
into a term class two or more initially nonmatching terms. Specifically for the 
two sample vectors, aileron and lift could be placed into a common class k (or 
alternatively, drag and lift, or roll and aileron, or roll and drag); in each case, 
the identifier for class k would be added to both vectors thereby increasing the 
similarity between them. For example, placing terms aileron and wing into 
class k adds the indicator for class k to the DOC, vector because of the pres­
ence of lift in DOC,, and the class k indicator to QUERY, because of the pres­
ence of aileron in the original query vector. This operation on the term classifi­
cation produces the following lengthened vectors exhibiting one additional 
matching identifier:

DOCi = (0, 0, lift, propeller, roll, wing, “ class k” )
QUERY, = (aileron, drag, 0, propeller, 0, wing, “ class k” )

When a document is incorrectly retrieved (VALtj = 1 and RELy = 0), the 
reverse operation is performed and certain terms are removed from the thesau­
rus classes so as to decrease the number of matching classes assigned to both 
vectors.

The assignment of terms to classes (or the eventual removal of terms from 
classes) presents no difficulty in principle when the number of document-term
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pairs is small and when a large number of thesaurus classes can be introduced. 
Unfortunately, in practice it is necessary to operate with a large number of 
(DOC,QUERY) pairs and a restricted number of term classes (small p), and the 
task consists in constructing the best possible term classification which places a 
maximum number of (DOC,QUERY) pairs into the correctly retrieved or cor­
rectly rejected groups.

Since a given (DOC,QUERY) pair does not occur in isolation in the re­
trieval system, an operation on the term classification undertaken to help re­
trieve (or reject) a given document may have unfortunate effects on other docu­
ments in the collection. Thus, a given operation such as placement of TERM, 
and TERMj into class k may properly raise the similarity measure for a particu­
lar (DOC,QUERY) pair and shift that pair from class 4 to class 1; at the same 
time that same operation may carry a large number of (DOC,QUERY) pairs out 
of the 1 and 2 classes and place them into the undesirable 3 or 4 classes. Hence 
it becomes necessary to check the applicability of a proposed thesaurus opera­
tion by determining its effect on all (DOC,QUERY) pairs in the system, and to 
carry out a given operation only when its overall effect is judged to be benefi­
cial.

The standard pseudoclassification process which is designed to produce an 
optimal term classification in which the maximum possible number of 
(DOC,QUERY) pairs satisfy assessment (that is, belong to classes 1 and 2) is 
then burdened with a number of substantial disadvantages:

1 To prove the optimality of a given term classification for a particular 
query and document collection, it is necessary to evaluate each perturbation of 
the classification by checking its effect on all other (DOC,QUERY) pairs in the 
system; thus each classification step necessarily involves all (DOC,QUERY) 
pairs.

2 The sequence in which the individual (DOC,QUERY) pairs are consid­
ered and the structure of the term classification available at the beginning of the 
process may complicate the classification process.

3 A given thesaurus operation may have to be considered many times in a 
given pass through the (DOC,QUERY) pairs, because although undesirable at 
a given moment in time, that same operation may be useful at a later time after 
additional changes have been introduced in the classification.

A variety of heuristic procedures have thus been proposed for the con­
struction of acceptable term classifications. These methods differ from the pre­
viously described situation in that convergence of the procedures can normally 
be proved, but not optimality of the result.

In the standard pseudoclassification method the changes made to the term 
classification may lead to oscillations because a change once introduced may 
later have to be reversed. Alternatively, sequences of classification changes 
may be developed which are repeated indefinitely, so that the process runs for­
ever. To avoid this possibility, on-the-spot global decisions can be introduced 
to ascertain whether a given operation on the classification should be carried
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out at any given time. The idea is to process the (DOC,QUERY) pairs in se­
quence and to make the applicability of a given thesaurus operation dependent 
only on the (DOC,QUERY) pairs previously processed in the current pass. 
Furthermore, the whole process must be guaranteed to terminate. The follow­
ing two strategies have been shown to be effective in practice [29,30]:

1 A proposed change in the term classification is accepted if no essential 
deterioration is produced for any other previously processed document-query 
pair. By essential deterioration is meant that the document-query similarity for 
a relevant document currently retrievable is not decreased so far as to render 
the item nonretrievable; similarly, the correlation measure for a nonrelevant 
item currently rejected is not increased so much that the item is eventually re­
trieved.

2 A proposed change in the term classification is accepted if the number 
of document-query pairs that exhibit improvements as a result of the change 
exceeds the number of pairs exhibiting deteriorations. Improving means in­
creasing the similarity for relevant documents, and vice versa for nonrelevant 
items. Deterioration is the reverse of improvement. This strategy uses a global 
condition in which correctly retrieved or rejected pairs are allowed to cross the 
retrieval threshold provided only that overall the gains exceed the losses.

Several small-scale evaluations of these strategies were carried out with 
experimental document collections. In each case, the first strategy appears 
most effective in increasing the number of (DOC,QUERY) pairs that satisfy the 
relevance assessment (correctly retrieved or correctly rejected pairs), while the 
second strategy should be used in order to obtain the best recall and precision 
results.

The normal pseudoclassification process builds a complete term classifica­
tion matrix which specifies for each term one or more classes to which the term 
may be assigned during the course of the operations. However, the term 
classes themselves are never used for retrieval purposes. Instead relations be­
tween term pairs are used by adding special identifiers to the document and 
query vectors whenever a particular term pair is included in a common class. 
This suggests that the construction of a full-term classification could be re­
placed by a simple determination of term pair relationships followed by the in­
corporation of term pair relationship indicators (instead of term class indica­
tors) in the query-document similarity computations. Furthermore, the 
determination of the relationships between term pairs might depend on the 
global occurrence characteristics of each particular term pair in the documents 
and queries of a collection. Such considerations have led to the construction of 
term-term similarity matrices used for pseudoclassification purposes in which 
the term relationships are derived from the term occurrence frequencies in the 
documents of a collection [31-32],

Consider, in particular, the collection of term pairs (TERMk ,TERMh) ob­
tainable from a collection of queries and documents with the property that one 
of the terms in each pair occurs only in a given DOCi while the other occurs
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only in QUERYj for a given (DOCi,QUERYj) pair. Alternatively, one of the 
two terms might be assigned to both DOQ and QUERYj, while the other is 
assigned to either query or document alone. Such a term pair is called an ac­
ceptable pair. Clearly a full term match does not exist for an acceptable term 
pair when a standard vector matching process is used, because the assignment 
of the two terms differs for the components of a given (DOCt,QUERYj) pair.

If one assumes that the acceptable term pairs occur principally in docu­
ment-query pairs that already satisfy assessment, that is (DOQ,QUERYj) pairs 
that are either correctly retrieved or correctly rejected, then no particular ac­
tion is warranted. On the other hand, if the term pairs occur mainly in 
(DOCj,QUERYj) pairs for which DOQ is relevant to QUERYj (RELjj = 1) but 
the document is not retrieved (VALjj = 0), then one might conjecture that a 
positive semantic relationship exists between the respective terms and that this 
term relationship has not in fact been taken into account in the query-document 
match. Analogously, if the term pairs occur in query-document situations 
where the documents are retrieved even though they are not identified as rele­
vant (RELjj = 0 but VALjj = 1), then a negative semantic relationship may be 
assumed to exist between the corresponding terms.

This suggests the following term matching strategy. For each acceptable 
term pair (TERMk ,TERMh) a term relationship factor is computed as a direct 
function of the number of document query pairs containing the term pair for 
which RELjj = 1 and VALjj = 0, and as an inverse function of the number of 
document-query pairs containing the terms such that RELjj = 0 and 
VALjj = 1. The term relationship factor may then be incorporated into the 
query-document matching process in an attempt to increase the similarity coef­
ficients for documents that are incorrectly retrieved or incorrectly rejected.

The term relationship factors can be computed in a single pass through the 
(DOCj,QUERYj) pairs to construct a term-term relationship (TTR) matrix of 
dimension t by t containing for each acceptable term pair (TERMk ,TERMh) the 
corresponding number of (DOCj,QUERYj) pairs for which RELjj — 1 and 
VALjj = 0 as well as the number of (DOCj,QUERYj) pairs for which 
RELjj = 0 and VALjj = 1. In particular, for a given (TERMk,TERMh) pair 
(k >  h), the below diagonal (k,h)th element of the term-term relationship ma­
trix may be used to store the positive count, Pos(k,h), of term-pair occurrences 
in (DOCj QUERYj) pairs for which the term pair is acceptable while the docu­
ment is incorrectly rejected. Analogously, the above diagonal (h,k)th matrix 
element stores the negative count, Neg(k,h), of term pair occurrences in 
(DOCj,QUERYj) pairs where the document is incorrectly retrieved. An appro­
priate term relationship function T(k,h) for terms TERMk and TERMh might be 
defined as

_  Pos(k,h) -  a Neg(k,h) 
n , )  Pos(k,h) + a Neg(k,h)

for some constant a.
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Aileron Drag Lift Propeller Roll Wing

QUERYk 0 1 0 1 0 1

DOC, 1 1 1 0 0 1

DOC, 1 0 0 1 1 1

(a)

(DOC„ QUERY*): RELik = 1, VAL,k = 0 

(DOCj, QUERYk): REL|k = 0, VAL]k = 1

(b)

(DOC;, QUERYk) 

(DOCj, QUERYk)

(aileron, drag), (aileron, propeller), (aileron, wing), (drag, lift)

(drag, propeller), (lift, propeller), (lift, wing), (propeller, wing) 

(aileron, drag), (aileron, propeller), (aileron, wing), (drag, propeller) 

(drag, roll), (drag, wing), (propeller, roll) (roll, wing)

(c)

TTR

Aileron
Drag
Lift
Propeller
Roll
Wing

Aileron Drag Lift Propeller Roll Wing

Term relationship 
formula

-r,,. _ Pos (k, h) -  Neg (k, h) 
IIK' n' Pos (k, h) + Neg (k, h)

Null relationship Positive relationship Negative relationship

Tlaileron, drag) = 0 Tldrag, lift) = 1 Tldrag, roll) = -1
T(aileron, propeller) = 0 T(lift, propeller) = 1 Tldrag, wing) = -1
Tlaileron, wing) = 0 T(lift, wing) = 1 Tlpropeller, roll) = -1
Tldrag, propeller) = 0 Tlpropeller, wing) = 1 T(roll, wing) = -1

(e)

Figure 6-8 Term relationship computation, (a) Original term vectors, (b) Relevance charac­
teristics. (c) Acceptable term pairs, (d) Term-term relationship matrix, (e) Term relationship 
factors.
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The single-pass construction of the term-term relationship matrix consists 
in processing each (DOQ,QUERYj) pair in turn, identifying the acceptable 
term pairs, and increasing the count stored in the (k,h)th or (h,k)th matrix ele­
ments depending on whether the term pair (TERMk ,TERMh) is associated with 
an incorrectly rejected or an incorrectly retrieved document-query pair [31- 
32], An example is given in Fig. 6-8 for two document vectors DOQ, DOQ and 
query QUERYk, where DOQ is assumed incorrectly rejected and DOQ incor­
rectly retrieved. The acceptable term pairs are listed in Fig. 6-8c. The corre­
sponding term-term relationship matrix is given in Fig. 6-8d and the term rela­
tionship computations are included in Fig. 6-8e.

It remains to define a vector similarity function incorporating the normal 
similarities between the term vectors DOQ and QUERYj, as well as the added 
term relationships derived from the term-term relationship matrix. Let 
SIM(DOQ,QUERYj) represent the matching function used to compare the 
DOQ and QUERYj vectors, and let SIM^TERMk ,TERMh) and 
SIM2(TERMk ,TERMh) represent similarity functions based on the occurrence 
counts of positively [T(k,h) >  0] and negatively [T(k,h) <  0] related term 
pairs, respectively. Then an appropriate composite similarity function could be 
defined as

NEWSIM(DOQ,QUERYj) = a0SIM(DOQ,QUERYj)
+ 2  ajSIMj(TERMk ,TERMh)

k.h
+ 2  a2SIM2(TERMk ,TERMh) (13)

k.h

for properly chosen constants a0, at , and a2, similarity functions SIM, SIM,, 
and SIM2, and acceptable term pairs (TERMk ,TERMh) contained in the appro­
priate query-document vectors. The summation signs preceding the second and 
third terms of expression (13) indicate that the term pair similarity factors need 
to be summed for all acceptable (TERMk ,TERMh) pairs contained in a given 
pair of query-document vectors.

Experimental evaluation results available for small document collections 
of several hundred documents and several dozen queries show improvements 
for the composite similarity function NEWSIM over the standard cosine simi­
larity measure ranging from 10 percent in the precision values to over 30 per­
cent in precision for fixed recall levels [32].

5 DYNAMIC QUERY ADJUSTMENT 

A General Considerations

Most operational retrieval systems offer an interactive search environment in 
which users, or search intermediaries, communicate directly with the search 
system and responses are furnished more or less instantaneously following sub­
mission of the search requests. Two kinds of interactive manipulations may be
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carried out during the course of an information search: the first relates to the 
submission of queries (search terms) and to the viewing of displayed responses; 
the other is the construction of the query formulations, sometimes aided by dis­
plays of thesaurus contents.

In some of the more sophisticated on-line systems it is possible to list for a 
given term all alphabetically related terms, or terms included in the same the­
saurus category as the original term. In constructing an effective query state­
ment, information about the number of items retrieved in response to earlier 
query formulations (known as the number of “hits”) could then be useful; al­
ternatively, the display of portions of retrieved documents or of documents re­
lated to those retrieved earlier can also be used for query reformulation pur­
poses. Typically, the number of documents retrieved furnishes some idea about 
the specificity of the search terms used in the current query formulation: the 
terms can then be either broadened if the aim is to increase the number of re­
trieved items, or they can be narrowed in the opposite case. The display of the 
related search vocabulary or of previously retrieved document texts immedi­
ately suggests additional or alternative query formulation possibilities.

Stop
Figure 6-9 Typical interactive retrieval 
sequence.
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Currently available evidence indicates that the query reformulation pro­
cess is easier to manage by the user when the feedback information utilized for 
the formulation of query statements consists of previously retrieved document 
excerpts or surrogates rather than of vocabulary displays [33-36]. This reflects 
the fact that the display of retrieved documents furnishes indications of how the 
system has interpreted the user queries, but vocabulary displays do not. How­
ever, vocabulary displays can be produced inexpensively before performing 
any searches at all, but document displays are dependent on a prior search.

The more sophisticated, existing interactive search systems simplify the 
alteration of query statements by maintaining in storage various stages of ear­
lier query formulations, thereby enabling the user to perform only selective al­
terations at each step. Appropriate tutorial features may also be used during the 
search process, including the display of multiple-choice response frames that 
give the user a choice of processing steps to perform next, as well as backtrack 
methods capable of returning to earlier displays. A typical interactive search 
process is illustrated in the chart of Fig. 6-9 [37].

*B Feedback Theory

The query reformulation methods mentioned earlier are designed to generate 
query statements capable of retrieving the relevant items and of rejecting the 
nonrelevant ones. When the query modification is carried out manually, the 
process is difficult to control, first because the characteristics of the relevant 
and nonrelevant items are known imperfectly, and also because document 
characteristics are not easily transformed into correct query formulations.

The relevance feedback process described in Chapter 4 relieves the user, 
or search intermediary, by automatically generating new query formulations 
based on relevance assessments obtained from the users during earlier search 
operations. More specifically, a newly constructed query will exhibit a high 
similarity with the document set previously identified as relevant and a low sim­
ilarity with the nonrelevant document set. Assuming that the set of relevant 
documents DR with respect to a query is known, and hence also the set of 
nonrelevant documents DN_R, the best query Q is one that maximizes a func­
tion F defined as the difference between the average query-document similarity 
for all relevant items and the average query-document similarity for the nonre­
levant ones. That is, a query vector Q is wanted which maximizes F, where

F = SIM (Q A ) -  SIM (Q A ) (14)
Dl€DR DteDN_R

SIM represents the average similarity coefficient between the query and the set 
of all documents included in the relevant and nonrelevant document subsets, 
respectively. When the similarity between vectors is measured by the cosine 
coefficient, the optimal query has term weights proportional to the difference 
between the average weights of the terms in the relevant and the average
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weights of terms in the nonrelevant items [expression (5) in Chapter 4] [38,39, 
40].

In practice the relevant and nonrelevant document sets DR and DN_R are of 
course not known in advance— if they were, no search would have to be con­
ducted to identify them. Instead a query statement is used to retrieve a number 
of documents. The user then identifies some subset DR/ of relevant items and 
some subset DN, of nonrelevant items. A new query can then be constructed 
proportional to the difference between the average of the R' relevant items pre­
viously identified and the N' nonrelevant items [expression (6) of Chapter 4]. 
This query will not, however, perform well unless the subsets DR. and D,r  are 
representative of the actual relevant and nonrelevant sets DR and DN_R for the 
given query.

Consider as an example the situation of Fig. 6-10 where the original query 
is assumed to have retrieved three relevant and four nonrelevant items (located 
inside the dashed line of Fig. 6-10). The feedback query actually constructed by 
the normal relevance feedback system (open triangle in Fig. 6-10) will lie in the 
center of the set of relevant items where the average distance to the relevant is 
smallest. When that query is actually used for retrieval, a great many nonrele­
vant items located outside the original retrieval perimeter will then be re­
trieved. The ideal feedback query (filled triangle in Fig. 6-10) would be situated 
much closer to a set of relevant items not previously retrieved and farther away 
from the relevant items retrieved earlier. The retrieval failure illustrated in Fig. 
6-10 can be avoided in part by deemphasizing the role of the previously re-. 
trieved items in constructing a feedback query and assigning greater impor-: 
tance to the original query statement. In other words, the feedback query is 
expected to be reasonably close to the original query statement, and in addi-1 
tion, it should exhibit a greater resemblance to the items previously identified 
as relevant than to the nonrelevant ones. A typical formula used to construct an:

Figure 6-10 Unfavorable relevance feedback situation.
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improved query statement Q' from an original query Q, a set of R' documents 
previously identified as relevant, and a set of N' documents identified as non- 
relevant is given by

<15)

where a, (3, and y  are constants, and the terms in parentheses represent the 
earlier query statement, and the average relevant and average nortrelevant pre­
viously identified documents.

The relevance feedback operation is most effective when the relevant doc­
uments are tightly clustered and hence exhibit large pairwise similarities, and 
the nonrelevant documents are also tightly clustered. At the same time the dis­
tance between the relevant and nonrelevant items should be large; that is, the 
similarities between them should be small (see Fig. 4-14a for a schema repre­
senting such an ideal document space).

*C Feedback Variations

The relevance feedback process can be implemented in a variety of different 
processing modes. The formal feedback equation [expression (15)] makes pro­
visions for the incorporation of both relevant and nonrelevant documents in the 
feedback process. However, the role of the two document types is basically 
unequal: when the relevant items are used to update the query, certain terms 
are added to the query and the weight of other terms is increased; the query is 
then forced to move in the direction where other relevant items may be ex­
pected to be located. When nonrelevant items are used for feedback purposes, 
certain terms are deleted from the query, and other term weights are decreased. 
The negative feedback operation diminishes the affinity of the query with some 
items but does not provide alternative directions to control the query move­
ment. Thus a positive feedback strategy, where relevant documents are used to 
update the query serves to construct new queries that will exhibit greater re­
semblance with the items Originally defined as relevant. A negative strategy 
using the nonrelevant items for query updating decreases the query similarity 
with these nonrelevant items but may not provide a positive direction toward 
which to move.

The relevance feedback process can then be executed in the following 
modes [41,42]:

1 A positive mode where relevant documents are available for feedback 
purposes

2 A negative mode where nonrelevant documents are used to update the 
query

3 A mixed mode incorporating both positive and negative modes

In each case, the number of documents used to update the query can be varied.
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Among the strategies that have been formally evaluated are the standard mixed 
strategy [equation (15)], a strategy using all relevant items that may be avail­
able but only one nonrelevant document (normally the one retrieved earliest in 
a search providing ranked output), and a system which emphasizes the original 
query statement and deemphasizes the role of the feedback documents [the a 
parameter in expression (15) receives a large weight].

A positive relevance feedback operation is illustrated in the example of 
Table 6-7. The initial query vector is shown in Table 6-7a. The term weights are 
listed under the corresponding terms in each case. The updated query (Table 
6-7c) contains terms from document 102 originally retrieved and identified as 
relevant to the query. Two document vectors (numbers 80 and 81) are shown at 
the bottom of Table 6-7 whose retrieval rank in order of query-document simi­
larity improves from 14 to 7 and from 137 to 6, respectively, as a result of the 
feedback operation. A comparison of the vectors in Table 6-7b, d, ande reveals 
that the feedback operation for document 102 is directly responsible for the re­
trieval improvement of documents 80 and 81.

The positive feedback strategy is obviously not applicable when no rele­
vant documents are retrieved by the original query vector. Furthermore the

Table 6-7 Positive Relevance Feedback Illustration

Vector type Illustration

a Initial query vector

b Relevant document 102 
retrieved with rank 2 
(partial vector)

c Query modified by 
document 102

d Relevant document 80 
(improves from rank 14 to 
rank 7; partial vector) 

e Relevant document 81 
(improves from rank 137 to 
rank 6; partial vector)

airplane available blast dynamic 
12 12 12 12 

gust information regime response 
12 12 12 12 

subsonic 
12

gust lift oscillating penetration 
48 48 12 12

response subsonic sudden 
24 12 12

airplane available blast dynamic 
12 12 12 12 

gust information lift oscillating 
60 12 48 12

penetration regime response subsonic
12 12 36 24

sudden 
12

gust lift penetration sudden
24 72 12 12

lift oscillating sudden 
84 12 12

Adapted from  reference 13.
Query Q146: What in form ation is available fo r dynamic response of airplanes to gusts o r blasts in 

subsonic regime?
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strategy must fail when dissimilarities are evident in the set of retrieved docu­
ments. In that case, the new query is in principle required to approach several 
different directions at once, and the effect of the feedback operation becomes 
unpredictable. A negative feedback operation then becomes mandatory.

A comparison of the positive and mixed retrieval strategies indicates that, 
on the average, the performance of queries that do retrieve some relevant docu­
ments in the initial search is not hindered by incorporating some nonrelevant 
documents in the feedback operation. However, the amount of perturbation in 
the query vectors is normally larger for the mixed feedback system than for the 
purely positive one. The mixed strategy must therefore be used with care be­
cause of the greater potential for improper query disturbance.

The purely negative feedback strategy is even more difficult to control. 
Consider the case of Table 6-8, where the most important query term (“data 
set”) is subtracted out because that term happens to have been present in some 
of the nonrelevant items previously retrieved. Various solutions can be devised 
which will avoid the predicament illustrated in Table 6-8. One possibility con­
sists in leaving original query terms intact in a negative feedback situation; the 
updated query will then consist of the original query terms plus additional nega­
tively weighted terms taken from the nonrelevant documents previously re­
trieved. Alternatively, a thesaurus could be used to add related terms to the 
original query vector prior to the negative feedback operation. An illustration 
of such a modified negative feedback system is shown in Table 6-9 for the query 
previously used as an example in Table 6-8. A comparison of the final query 
statements shows that the problem exhibited in Table 6-8 is avoided by the pro­
cess of Table 6-9 [13,42,43].

Several variants of the basic relevance feedback system have been de­
scribed in the literature. These include a query splitting system designed to gen­
erate several subqueries from a given original query whenever the set of rele­
vant items retrieved by a given query is not sufficiently homogeneous. Each of 
the subqueries is then expected to retrieve a different set of relevant items [44]. 
Another feedback variant, known as “cluster feedback,” constructs separate 
feedback queries from the relevant and/or nonrelevant documents located in 
different document clusters in a clustered collection [13]. This last process thus 
performs the feedback operations separately in each document cluster. The 
feedback refinements remain to be thoroughly evaluated.

Table 6-8 Example of Inadequate Negative Feedback
Type of vector Illustration

a Initial query vector available current data set specification
12 12 12 12

b Sum of retrieved access data set file list structure
nonrelevant documents 48 60 24 24 84

c Standard negative available current specification
feedback result 12 12 12

Adapted from reference 13.
Query: Please give specification fo r all currently available data sets.
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Table 6-9 Negative Feedback with Related Concepts for Query of Table 6-8
Type of vector Illustration

a Initial query vector available current data set specification
12 12 12 12

b Concepts related to “ data set” access bandwidth file interface line list
with correlation strength 77 28 50 58 52 47

retrieval sort structure transmission
49 40 49 30

c Related concept vector (top 5 access file interface line structure
concepts with weight of 24) 24 24 24 24 24

d Query vector with related con- access available current data set file
cepts 24 12 12 12 24

interface line specification structure
24 24 12 24

e Sum of retrieved nonrelevant access data set file list structure
documents 48 60 24 24 84

t Updated query vector (com- access available current data set interface
puted by d -  e with initial query -24 12 12 12 24
terms intact) line list specification structure

24 -24  12 -60

The basic relevance feedback process may be expected to produce between 
10 and 20 percent improvement in precision for fixed recall levels. When a sec­
ond feedback iteration is added, that is, when a modified query is itself modi­
fied a second time by a feedback process, additional improvements of a few 
percentage points may be gained.

An evaluation of the relevance feedback process raises complex problems 
that are not normally met in the evaluation of single search systems. In particu­
lar, it is unclear how documents should be treated that were originally retrieved 
by a given query and are retrieved once more by the modified feedback query. 
Some of these documents may well be relevant to the queries. However, a user 
may not be interested in seeing for a second time items that were already re­
trieved in an earlier search iteration, and the repeated retrieval of such relevant 
items should not be included in the recall-precision computations.

Several feedback evaluation systems have been proposed in the literature. 
The most effective of these known as the “test and control” evaluation, is rep­
resented in simplified form in Fig. 6-11 [45]. The idea is to break up a collection 
into two parts with roughly equal relevance properties. The first subcollection, 
known as the “test collection,” is used in a relevance feedback situation to 
generate a set of modified feedback queries from the originally available 
queries. The second, so-called control collection, is then processed in two dif­
ferent searches first against the original queries and later against the modified 
queries. Recall-precision measurements are used in each case to compare the 
respective performance. Under experimental conditions, improvements of up 
to 10 percent in precision for fixed recall levels have been noted for the modi­
fied feedback queries compared with the original ones.
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Figure 6-11 Test and control feedback evaluation.

D Dynamic Document Space

It was noted earlier that in some circumstances it becomes useful to modify not 
only the query statements during the course of the retrieval process, but also 
the document vectors themselves. For example, when the user population is 
fairly homogeneous and many queries of the same type are expected to be sub­
mitted to the retrieval system, a dynamic document modification process may 
lead to easier retrieval of relevant documents and a more useful document 
space for search purposes.

Consider, for example, the document modification system represented in 
simplified form in Fig. 6-12a. The process consists in modifying the documents 
retrieved with respect to a given query and identified as relevant by the user so 
as to render them somewhat more similar to the query that was used to retrieve 
them. This can be done by adding certain query terms to the various document 
vectors, or by increasing the weight of query terms that already occur in the 
document vectors. By making the document vectors more similar to a common 
query, they are also made more similar to each other. Hence when a new query 
is submitted that resembles the original one, the modified documents become 
more easily retrievable.

The document space modification process of Fig. 6-12b is an extension of 
the earlier one, because documents identified as nonrelevant by the user popu­
lation are also altered in Fig. 6-12b so as to make these items less similar to the 
original query, while at the same time, the relevant documents are moved 
closer to the query as before. In each case, the idea is to perform only minor
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A  Relevant document

Figure 6-12 Document space modifica­
tion. (a) Relevant document modification, 
(b) Relevant and nonrelevant document 
modification.

adjustments in the document vectors in response to any particular user-system 
interaction. Significant document movements will then occur only after a con­
sensus has been reached among several different users concerning the useful­
ness of particular items in response to a number of different queries. Following 
many small individual moves of the document vectors, an equilibrium space 
may eventually be produced where no major additional document alterations 
occur. Such a conjecture remains to be proved [46],

When the user population of the retrieval system is not sufficiently homo­
geneous, few queries may be submitted that are similar to each other. In that 
case, it may not be possible to construct an improved document space. How­
ever, a document space modification method may nevertheless be useful in 
order to handle document growth and retirement. In particular, when a collec­
tion grows indefinitely through the addition of new items, limitations in the 
available storage space may make it necessary to retire from the active storage 
area those items that are least likely to be useful for retrieval purposes. The 
problem then consists in identifying items as candidates for possible retire­
ment. A number of strategies suggest themselves for this purpose: items may 
be retired if they have never been retrieved in response to earlier queries or, 
having been retrieved, if they are always identified as nonrelevant to the re­
spective user queries or if they are always retrieved late in a search.

Some of the foregoing retirement strategies involve a document space
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modification step, followed by the retirement of items that will have moved to 
the periphery of the document space. Preliminary evaluations indicate that au­
tomatic document retirement methods can usefully be incorporated into a doc­
ument retrieval system [47].

The concept of document collection modification remains to be tried out in 
real user environments. In principle, it appears natural that the relationship be­
tween items should be altered as science advances, new applications emerge for 
old ideas, and the use of the collection changes. On the other hand, when 
changes are introduced into the stored data, searches that are repeated periodi­
cally will not necessarily retrieve the same information as before. This loss of 
stability may be disturbing to some users. Furthermore, the effort to alter the 
document representations of many items of a transitory nature may hardly be 
worth the effort. Because of the connection between collection modification on 
the one hand and collection management (growth and retirement) on the other, 
the document space modification process may be expected to attract increased 
attention in the future.

6 CITATION PROCESSING 

A Basic Citation Properties

The use of bibliographic references and citations in document processing has 
not yet been considered. Citations and references between documents are us­
able for many types of literature studies. References and citations attached to 
individual literature items may provide alternative expressions of document 
content. Citation and reference counts can also be used to assess the impor­
tance of individual documents or of complete document collections, by assum­
ing that citation frequencies reflect the influence of bibliographic items in a field 
of study. By extension this argument may also be applied to authors of docu­
ments or to selected groups of authors; in particular, author influence might be 
measured by using the citation frequencies of documents written by a given au­
thor. Finally, citations and references can be followed from item to item, and 
the resulting “network” of papers can serve as a basis for a variety of historic 
studies and for an examination of the development of individual disciplines 
[48-53].

A distinction must be made between bibliographic references and cita­
tions. A reference for a given document is a bibliographic item mentioned in the 
bibliography of that document. Thus the phrase “A refers to B ” implies that 
document B is included as an entry in the bibliography of document A. Cita­
tions between documents specify additional relationships between biblio­
graphic items. A citation is an inverse reference: when a document A refers to 
document B, the latter is cited by document A. For a particular document, it is 
then possible to identify a set of references obtainable by consulting the bibliog­
raphy of that document, as well as a set of citations made by other documents 
to the document in question. To identify the citations it is necessary to use a
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Luhn

Figure 6-13 Citation terminology: Stiles 
refers to Luhn, or Luhn is cited by Stiles, 

i  (Luhn is contained in Stiles’s reference 
Stiles list.)

citation index or, alternatively, to process the reference lists using appropriate 
sort and merge operations. The dual relationship between references and cita­
tions is represented graphically in Fig. 6-13—a reference by an outgoing arrow 
and a citation by an incoming arrow. When document B refers to document A, 
B may be expected to postdate A; hence vertical displacement from top to bot­
tom in a citation graph represents increasing time.

The occurrence of bibliographic citations is a comparatively rare phenom­
enon. For example, about 25 percent of all published papers are never cited at 
all. Of the archive of citable papers in a particular field of endeavor, about one 
half are not cited in any given year. Of those that are cited in a particular year, 
72 percent are cited once in that year, and 18 percent are cited twice. Thus only 
about 5 percent of the archive of citable papers is cited at least three times in a 
given year [54], From these statistics, it is not difficult to conclude that when a 
given document attracts many dozens of citations— and, of course, such 
papers are not hard to find— the very rarity of the phenomenon carries signifi­
cance. A long list of studies have also shown that citation counts for papers, 
journals, authors, etc., correlate highly with peer judgments concerning the im­
portance and influence of documents and document authors.

*B Main Citation Usage

In order to make use of bibliographic reference and citation data, it is first nec­
essary to collect citations for a given corpus of documents. This can be done by 
taking a number of source documents and following either references or cita­
tions to new documents. These new documents can then be used as sources for 
new searches that discover still other documents. Two possible search strate­
gies are represented graphically in Fig. 6-14.

The search of Fig. 6-14a is a pure citation search which uses as a source a 
well-known (historical) document in a given area (Luhn). A citation index is 
then used to identify a number of more recent documents all of which cite 
Luhn. One of these citing items (Cleverdon) is then used to produce still newer 
documents which cite Cleverdon (documents Lancaster, Keen, Salton of Fig. 
6-14a). The search could continue to cover many generations of documents, 
thereby using connections between documents over long periods of time.

The search of Fig. 6-14b, on the other hand, covers documents that remain 
more or less stationary in time. The source document (Luhn) is used as before 
to uncover the citing items Stiles, Cleverdon, and Sparck Jones. One of these 
(Sparck Jones) is then used in a backward search by taking the references for 
Sparck Jones (documents Luhn, van Rijsbergen, Harter) and obtaining further
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Luhn

(a)

Luhn van Rijsbergen Harter

Stiles Cleverdon Sparck Robertson Harper Bookstein Kraft 
Jones

(b)

Figure 6-14 (a) Citation search forward in time, (b) Citation search forward and backward.

citations for some of these referenced items. Such a lateral search stays within 
a relatively narrow time frame, as opposed to the vertical search of Fig. 6-14a.

Citation and reference tracing methods of the kind illustrated in Fig. 6-14 
may be used to generate complete citation networks for individual subject 
areas. Such citation networks are then used as a basis for historical researches 
of various kinds. A typical citation network is illustrated in Fig. 6-15, where 
once again downward displacement of the page implies increasing time.

Each reference or citation between two items represents a relationship in­
dicator for the items. However, a direct reference (item A refers to item B) 
does not imply identity in the subject areas covered by the items. A stronger 
indication of congruence in subject matter is furnished by the so-called biblio­
graphic coupling and cocitation counts. Two items are coupled bibliographic- 
ally when they share certain references, that is, when their bibliographies con­
tain various items in common. The coupling strength between two items may in 
fact be defined as the number of references in common for both items [55,56]. 
One may expect that when the coupling strength between documents is suffi­
ciently large, the subject matter of the items exhibits strong similarities.

Two documents may also be related by common citation patterns from 
other documents. In particular, a cocitation link is said to relate two items 
when these items are jointly cited by a third document. The number of cocita­
tions for two documents, that is, the number of documents that jointly cite the 
two items, is believed to be more significant than the bibliographic coupling 
strength in pointing to subject matter similarities. Cocitations have thus been 
widely used to study the development of individual fields of science as well as
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the structure of science as a whole [57-59]. Figure 6-16 presents a sample con­
tour map in which individual documents are grouped, based in part on the 
strength of their cocitation links. In particular, the diameter of the circles 
around each document is related to the total number of citations attracted by! 
the documents and hence to the importance of the documents. The distance 
between two documents, on the other hand, is inversely related to the cocita­
tion strength between them, that is, the closer the items in the map, the higher

Figure 6-16 Typical contour map based 
on cocitations.
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the number of cocitations between them. Maps such as that of Fig. 6-16 have 
been constructed at different periods in time for certain subject areas thereby 
describing the development of a given field of study [50,59].

If citations and references attached to documents carry subject signifi­
cance, it appears reasonable to use them for content representation in addition 
to, or instead of, the normal index terms. In particular, if the citation and refer­
ence patterns are known for a collection of documents, a particular document 
could be represented by a bibliographic attribute vector of the form

DOC, (Tii)Ti2> • • • Tin ,C[x ,C[2 , . . . ,C]m) (16)

where ry is an identifier representing the jth reference attached to DOQ and cik 
the kth citation to the document. The normal vector similarity computations 
between pairs of documents or between queries and documents, can then be 
performed using the standard term vectors or alternatively, the bibliographic 
attribute vectors of expression (16). The two vector forms can also be com­
bined by adding the bibliographic information to the normal index terms.

Studies in which bibliographic indicators have replaced the standard terms 
and keywords for content identification have shown that bibliographic indica­
tors represent more specific content identifications than normal keywords [55, 
60,61]. Furthermore, precision improvements have been noted in searches car­
ried out with bibliographic vectors replacing the normal term vectors [62]. In 
some retrieval environments the bibliographic identifiers may be immediately 
available as a by-product of the computer composition of the documents, 
whereas the terms and keywords might have to be generated by a more or less 
complicated indexing process. One may expect an increased utilization of bibli­
ographic data for retrieval purposes in the immediate future [63].

7 SUMMARY

The standard information retrieval operations may be refined by using sophisti­
cated automatic indexing methods that are capable of assigning weighted, in­
stead of binary, terms to the documents of a collection. The term weights may 
be based on the term occurrence characteristics in the documents of a collec­
tion—for example, terms occurring mostly in documents identified as relevant 
to the user queries may receive higher weights than terms occurring in the 
nonrelevant documents.

Improved search efficiency may be obtained by clustering the document 
collection and placing into common classes all documents that appear to be suf­
ficiently similar to each other. Various automatic classification methods are 
available for this purpose, and efficient top-down or bottom-up cluster search 
methods have been devised.

T h e m an ip u la tio n  o f  w e ig h ted  q u ery  and  d o c u m e n t term s a lso  le a d s  to  
m eth o d s for  gen era tin g  im p roved  q u ery  sta tem en ts  b a se d  o n  in form ation  Ob­
ta in ed  from  th e  u se r  p o p u la tio n  in  th e  c o u r se  o f  th e  re tr iev a l O perations. T h e
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relevance feedback operations have been shown experimentally to lead to sub­
stantial improvements in retrieval effectiveness. Relevance information ob­
tained from the users about the importance of certain documents in the collec­
tion can also lead to improvements in the document descriptions themselves, 
and to modern collection management strategies capable of accommodating 
growing or shrinking document collections. Furthermore, relevance data are 
needed for the construction of improved term weighting measures: indeed the 
relevance feedback process represents an obvious possibility for the estimation 
of the term relevance factor. Finally, relevance information may be used to 
generate trial or starting clusters in various heuristic clustering systems.

Improvements in search and retrieval performance may be obtainable by 
incorporating bibliographic citations instead of only content terms in the docu­
ment descriptions. There are indications that at a time when document texts are 
increasingly available in machine-readable form, the latter possibility may be 
especially attractive.
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EXERCISES

6-1 Consider the follow ing similarity matrix betw een objects

1 2 3 4 5 6 7 8 9

1 0 0 1 0 1 1 1 0 0
2 0 0 0 0 0 0 0 0 1
3 1 0 0 0 1 0 1 0 0
4 0 0 0 0 0 1 0 1 0
5 1 0 1 0 0 0 0 0 0
6 1 0 0 1 0 0 0 1 0
7 1 0 1 0 0 0 0 0 0
8 0 0 0 1 0 1 0 0 . 0
9 0 1 0 0 0 0 0 0 0

a Find all the cliques, 
b Find all the connected com ponents.
c State the algorithm used to determine the clusters using a single-link method, 
d Give a list o f desirable clustering properties for a docum ent collection leading to  

an effective and/or efficient retrieval system . Under what circum stances would  
it be preferable to use cliques rather than connected com ponents to search a 
collection o f objects, and vice versa? What are the tradeoffs betw een the tw o  
methods?

e D o the cliques listed under part a exhibit the desirable properties listed under 
part d? Same question for the connected com ponents listed under part b. If not, 
how  could the cliques or the connected com ponents be modified to produce 
an improved classification?

6-2 What is the main idea behind the pseudoclassification process? What are the differ­
ences betw een a standard term classification and the notion o f pseudoclassifica­
tion? W ould you expect the results o f a pseudoclassification to remain unchanged 
when the user population o f a retrieval system  changes?

6-3 H ow  can a citation index be used in retrieval? Suppose the cocitation strength were 
available for all docum ent pairs in a collection o f docum ents. H ow  could that fact 
be utilized to design an effective retrieval service? Are there obvious similarities 
betw een the use o f  citations and the use o f pseudoclassification in retrieval?

6-4 Consider the docum ent output obtained for a given query by an initial search and a 
feedback search based on user relevance assessm ents for the top three retrieved 
items.



256 CHAPTER 6

Initial search Feedback search

Document Document
Rank number Relevant number Relevant

Initially 1 680 425 X

retrieved 2 425 X 430
3 430 129 X

4 129 X 680
5 320 529

a Compute the recall-precision pairs following the retrieval o f each document for 
both searches.

b Are the differences in recall-precision measures reflective o f the improvements 
actually obtained by the feedback process?  

c D esign a feedback evaluation system  which em phasizes the retrieval o f relevant 
items not previously seen by the user.

d U se  the sample search to compare the new  feedback evaluation derived under 
part c with the original evaluation under part a.

6-5 Consider the follow ing document collection indexed by three terms A , B , and C:

D, d2 D3 D„ d5

A 1 0 1 0 1
B 1 1 0 0 1
C 0 1 0 1 0

a Exhibit the docum ents retrieved by the following queries

(A OR B) A N D  C 
(A A N D  B) OR C 
A N O T B

b H ow  many docum ents would you expect to retrieve using the following  
weighted B oolean queries for the sample collection?

A o.33 OR B0.66 
A o.33 A N D  B 0 66 
A 0.33 N O T B 0 50

c D o any com m on documents appear in the responses to the three weighted B ool­
ean queries o f part b? Carefully explain your reasoning.


