
Technique for redundancy
control in a distributed

hierarchical filestore
K Lunn and K H Bennett*

A means o f controlling multiple-copy redundancy o f files
through a hierarchical directory system is described.
Both the access paths to and the individual copies o f files
are replicated in such a way that a file can be located if
and only i f there exists a volume online which contains a
copy o f that file. A simple mechanism based on time-
stamps is used to resolve inconsistencies between files
before access. The algorithm is suitable for a distributed
filestore on a local area network, or even for a multiple-
volume filestore on a stand-alone machine. I t is not
proposed as a sensible solution to wide area network file
storage on a large scale. The hierarchy is UNIX-like
(UNIX is a trademark o f Bell Laboratories), but without
links.

Keywords: file organization, redundancy control, distri
buted filestorage

IN T R O D U C T IO N

Distributed filestorage is a topical subject that has been
investigated in different ways. One approach is effectively
to ignore user-naming and concentrate on low-level
details concerning location, access and update of files,
and the control of replication1. Files are referred to by
system-interpreted names, called unique identifiers, and
the mapping of user names to unique identifiers is imple
mented by a higher layer of software. Another approach is
to combine stand-alone filestores to provide a distributed
filestore by linking together the name spaces to give a
larger name space5.

This article describes an approach that concentrates on
the user-oriented file naming scheme. There is a general
University of Bradford, West Yorkshire BD7 1DP, UK
•University of Keele, Staffs ST5 5BG, UK

consenus that hierarchical organization of directories and
files provides a useful naming scheme, e.g., UNIX.
Hierarchies are typically spread across a number of
volumes. There are several ways to construct a name
space for multiple-volume filestores. This article presents
an alternative method that provides extra reliability and is
suitable for a multiple-volume filestore on either a single
machine or a network. The name of a file is independent of
the location of copies of the file, and the location can be
changed without changing the name. The naming scheme
and the associated algorithms have been described by
Lunn3,4.

Essentially, the naming scheme provides multiple copy
redundancy of both files and directories. The higher
echelons of the hierarchy have the highest levels of
redundancy. It is possible to trace any file on a volume,
using its full path name, if that volume is accessible.
Consistency between copies of a file is ensured before
access to any of those copies is allowed.

The naming scheme has been implemented as a
prototype on a local area network. Two LSI11/02 micro
computers each ran a single volume file server, and the
directory system. The filestore was accessed by a personal
workstation over a Cambridge Ring.

C O N STR U C T IN G M ULTIPLE-VO LUM E
FILESTO RES

U N IX

Each volume in a UNIX filestore is organized as a
hierarchical file system. One system is designated as the
root file system. Other volumes can be mounted on the
root file system, so that the root of the mounted file system
replaces a directory in the root file system. Further

vol 3 no 3 1984 0144-817X /84/03015 7-05 $03.00 © 1984 Butterworth & Co (Publishers) Ltd 157

volumes can be mounted on mounted file systems, and so
on. Thus a typical file system might look like

Unix Bin Usr US I

Staff Student TMP

Ken

File I File 2

Here a volume has been mounted at US1, and the file
system for that volume becomes a subtree of the total
online filestore. Similarly a volume has been mounted at
TMP. Thus the filestore naming scheme is infinitely
extensible.

This approach has been extended to cover a distributed
filestore by the Newcastle Connection, which implements
a network operating system using standard UNIX
operating systems. As well as mounting the file system of
a volume it is possible to mount the filestore of another
UNIX system. Thus, we might see a filestore with a naming
scheme like

UK

BRADFORD KEELE

Bin Usr MATHS COMPUTING

UK, BRADFORD, KEELE, MATHS and COM
PUTING are the roots of separate UN IX systems. The
files of these separate UNIX systems can be accessed
as if they were part of the local filestore. Further
UNIX systems may be mounted on, for example, the
BRADFORD, KEELE or COMPUTING systems.
Similarly, the UK system could be mounted in another
UNIX system. Thus, it is possible to build an infinitely
extensible filestore (both upwards and downwards) out of
a number of separate UNIX filestores.

Another technique for uniting multiple UNIX-like
filestores is popular. A global root is constructed from
unique names given to all the file stores on the network. A
user accesses local file names in the normal way, and
specifies a full path name from the global root to access
remote files. Thus a system might look like

//

MATHS COMPUTING ENGINEERING

Here MATHS, COM PUTING and ENGINEERING
represent roots of separate filestores on separate
machines. A user on the COMPUTING machine might
refer to a file by the path name /usr/ken/filel. A user on
another machine would refer to it relative to the global
root (denoted //) as //COM PUTING/usr/ken/filel.

V A X /V M S

A common way of uniting file systems on volumes is
typified by the VAX/VMS operating system. All online
volumes are uniquely named. The name may be that of the
drive on which it is mounted, or a user-provided name. A
typical configuration might look like

SYSTEM (DRAO) USER I (DRAI) USER2(DRA2)

There are three discs mounted on drives DRAO, DRAI
and DRA2, with names SYSTEM, USER1 and USER2
respectively. A user may name a file in two ways, using
the drive name or the volume name as the name in the
apparent root directory. Thus USER1 : [KEN.FILE1]
and D R A I: [KEN.FILE1] refer to the same file. The
name between “ [” and “]” is a path name delimited by

and a full hierarchy can be constructed.
The network version of this uses names of systems. A

configuration might look like

SYSTEM A SYSTEM B SYSTEMC

Here SYSTEMA, SYSTEMB and SYSTEMC are names
of computers on a network. A file on SYSTEMA might
have the name USER1 : [KEN.FILE1]. A user on
SYSTEMB would refer to it as SYSTEMA :: U SE R 1:
[KEN.FILE1].

An alternative approach

Lunn’s3 approach to naming differs from the above. Each
volume contains a complete set of directories enabling all
files on that volume to be traced without reference to other
volumes. Multiple volume filestores are constructed by an
overlay of all the file systems of individual volumes. Thus,
two volumes may be combined like this

to give

Usr

Usr Us I

/

Us 2 Us 3

Us 2 Us 3

Further volumes may be overlaid on this newly created
structure. The file naming is the same as in standard
UNIX.

158 information technology

With the overlay technique it is possible to have multiple
copies of files and directories. For example, we might
overlay the following two structures

a a •

6 c c d

to give
£7(2)

6(1) c(2) rf(l)

The number in brackets indicates the number of objects
with that name. It is possible to overlay arbitrarily
complex trees. For example:

a a a a

b e d c d e d e f e f g

h t i » j k / k m n

to give
a(4)

1
6(1) c(2) d(3)

\
6(3)

6(2) /(I) j(2) A(2) /(I) 777 (1) 77 (1)

Thus an arbitrary level of replication can be introduced.
Mounting a file is simply the addition of an overlay, and

dismounting the removal of an overlay. To access a file it
is merely necessary to trace the path from root to the given
file; if two or more copies exist, an arbitrary choice
can be made.

The overlay scheme has some quite distinct properties
from the previously described naming schemes.

• It can cope with multiple-copy redundancy within the
naming scheme.

• The path name of a file remains the same, irrespective
of the location of the volume.

In UNIX, the full path name of a file on a non-root system
depends on where that file system is mounted. In the other
schemes, it may well depend on which system it is located.
The ability to name an object uniquely irrespective of its
location is highly important where names are bound into
other objects or programs. On the other hand, there is no
possibility of constructing an ‘infinite network’ like the
Newcastle Connection.

Extra controls are required for a dynamic system. For
example, how are updates to replicated files controlled?
What happens if a volume is offline for a period? On what
volumes should a file be replicated? The solutions described
by Lunn3 are presented here. Alternative solutions, based
on the overlay technique are possible, and perhaps prefer
able in many instances, and some of these are discussed.

IM PLE M E N T A TIO N O F TH E N A M IN G
SC H E M E

The techiques used to implement a prototype of the above

naming scheme are described here. However, they are not
ideal, and possible alternative means will be discussed.

Associated volumes

On creation, a directory is given a set of volumes, called
the associated volumes for that directory, which must be a
subset of the associated volumes of its parent, i.e.,

(1) assocvols (P/d) C assocvols (P)
where P is the path name of a directory and d is a subdirec
tory of P. Clearly, the set of volumes available are
precisely the associated volumes of the root directory.

All files referenced by a directory are stored on all the
associated volumes of the directory. A directoiy is stored
on all its associated volumes, In this way, redundancy of
both files and access paths is controlled. The access path
to a file can be traced if a volume containing it is
online.

Associated volumes allow tailoring of the hierarchy to
meet specific requirements. For example, a user with data
which must be online with a higher expectancy might be
allocated a directory with three or more associated
volumes. A user with multiple associated volumes in his/
her home directory may create subdirectories with fewer
associated volumes for less critical applications. Suitable
accounting should prevent profligate misuse of available
redundancy. Clearly the higher echelons of the hierarchy
should not generally be used for storing files.

Primitives may be required to increase or decrease the
set of associated volumes of a directory. This is necessary
to add new volumes to the system, or to remove volumes
from the system. Clearly these must not violate the
constraint (1) above. Thus if a directory gains an associated
volume, that volume must be associated with the parent
director. If a directory loses an associated volume, then
that volume must be disassociated with all subdirectories.

The active filestore

In a large filestore, only a part is likely to be in use at any
one time. The algorithms3 take advantage of this fact. All
files which are open, and the directories on paths to
those files are said to constitute the active filestore. For
each directory in the active filestore, a single process is
created to administer activities in that directory. In the
implemented prototype, a single site was elected to run all
the directory processes. Clearly, these processes could be
distributed according to the location of data or according
to other criteria such as load balancing.

The choice of a single directory process for each active
directory solves synchronization problems. However, it
does imply an unfortunate overhead in process creation. It
may also cause problems if a directory process fails,
breaking the path to an open file. Other solutions to
synchronization may be worthy of consideration. In a
sense, the process-per-directory is a move toward a
centralized solution, but it is one way of enforcing
consistency constraints on a directory.

The notion of an active filestore is largely introduced
for efficiency. Ideally, a process for each directory should
be running or ready to run all the time. It would be very
difficult to implement this on existing hardware and
operating systems.

vol 3 no 3 1984 159

Consistency resolution

For high accessibility, it must be possible to access files
even if a number of volumes are offline. This can lead to
situations where copies of files are out of date. On creation
a directory process resolves whatever consistencies it can
detect before allowing access to the contents of the
directory.

Each file on a volume is timestamped, the timestamp
being stored in the copy of the parent directory on that
volume. This implements a function

time: volume, pathname — integer

If P is the path name of a directory on vl and v2, and vl
and v2 are online, the directory process enforces the
constraint

(2) tim e(vl, P/n) = time(v2, Pin)
for all files named n in directory P. The directory uses
a careful replacement strategy for update, and on update
of a file it copies the replacement file to all (online)
volumes on which it should be stored, and allocates a new
time to the copies. If constraint (2) is violated, the direc
tory process selects the online volume vl for which

time(vl, P/n) > time(v2, P/n)
for all online v2 in assocvols(P). Whenever v2 violates the
constraint (2), the directory process replaces the copy of
the file on v2 with the version on vl, and updates the
timestamp on v2 so that

time'(v2, P/n) = time(vl, P/n)
where time' is the time function after resolving inconsis
tencies. In this way, files can be updated when some
copies are offline, and the offline copies can catch up.

Another problem arises if a file is created when some of
the associated volumes of the directory in which it is
created are offline. The directory process enforces the
constraint

(3) P/n enam es(v l) AND v2 eassocvols(P)
=> P/n G names (v2)

where names (v) is the set of path names of objects on
volume v, and where vl and v2 are online. That is, if a file
exists in a directory on a volume, then it must exist on all
the associated volumes. This is simply done by copying a
version of a file onto all volumes which should but which
do not contain it. Files created in this way are given the
timestamp of the file which is copied.

Finally, it is possible to delete a file where not all copies
are online. This is done by leaving an assassin for the file
in the online directories so that future activations of the
directory can remove any remaining copies of a file. The
assassins are given timestamps, so that a recreated file
cannot be deleted because of an old assassin. Thus if

time (P/n, v l) < time (P/n, v2)
and P/n is the name of an assassin on v2 and a file on vl,
the file on vl is replaced by an assassin. If P/n is the name
of an assassin on v I and a file on v2, then the assassin on
vl is replaced by a copy of the file on v2. When all
associated volumes of a directory are online it is safe to
remove any assassins in that directory.

Weak consistency

By allowing access to any file which is online, the above

algorithms provide weak consistency, in the sense that
they will ensure consistency between currently online
volumes, but may result in problems over a period of time.
For example, suppose vl and v2 are die associated
volumes ofP, and that they are online at different times. If
a user creates a file P/n on v l, and later cannot find it
because vl is offline, so he recreates it on v2, when vl and
v2 are online together, which one does the user really want
to keep (it may not be the most recently created). More
complex examples can be created with more than two
volumes.

If the likelihood of a volume being accessible is high,
the above algorithm may suffice, and the occasional
problems may be infrequent enough to be ignored.
However, on a complex system, where volumes may be
dismounted frequently, or where network partitioning
may occur, an extra constraint may be necessary.

Strong consistency

The extra constraint of requiring a majority of associated
volumes to be online for activation of a directory process
removes a number of problems. Clearly, under this
constraint, whenever a file is created, updated or deleted,
the current majority will intersect with any future majority,
so that the most recent change to a file will always be
reflected in an online directory. This constraint must be
taken into account when increasing or decreasing the
associated volumes of a directory.

Timestamping

Whilst a timestamp is used to detect and resolve inconsis
tencies between copies of a file, any guaranteed mono-
tonically increasing value might be used. If the majority
online constraint is used, then an integer stored in each
copy of a directory will suffice, the integer being increased
every time a file is created, updated or deleted. An integer
per file (a version number effectively) would also suffice.

Recovery

Careful replacement was used as a means of updating
files. This simplified the prototype implementation, but it
is recognized that such a policy would generally be unsuit
able. Alternative means of roll-forward recovery for files
which fall behind may be considered. For example, an
audit trail might be stored on all online associated
volumes of a directory when one or more associated
volumes are offline. Such an audit trail would clearly
depend on the semantics of the operations on the files
involved.

C O N C LU SIO N

This article has attempted to distil some of the ideas
described by Lunn3. A large amount of detail has been
omitted, especially concerning performance, operations
on files, and protection. However, the overlay technique
should be applicable independently of the file access
methods used. In fact, the technique should be applicable
to the naming of objects other than files where multiple

160 information technology

copy techniques are appropriate. The technique does not
depend upon the implementation loosely described above;
alternative methods of error detection, consistency
resolution, error recovery and directory administration
could readily be devised. Work is continuing at Keele to
adapt the overlay technique using the Newcastle
Connection.

A C K N O W L E D G E M E N T S

The above work was undertaken as part of a project
investigating distributed file storage at the .University of
Keele, funded by the Science and Engineering Research
Council; we are duly grateful for their support. Special
thanks are due to Pearl Brereton and Paul Singleton for
their contribution of constructive criticism and expertise
in software and hardware.

R E FE R E N C E S

1 Sturgis, H, Mitchel, J and Isreal, J ‘Issues in the
design and use of a distributed filestore’ ACM
Operating Syst. Rev. Vol 14 No 3 (July 1980)

2 Brownbridge, D R, Marshall, L F and Randell, B
R ‘The Newcastle Connection — or UNIXes of the
world unite!’ Software Pract. <6 Exper. (GB) Vol 12
(December 1982) pp 1147-1162

3 Lunn, K Reliable file storage in a distributed
computing system PhD Thesis, University of Keele
(1983)

4 Lunn, K and Bennett, K H ‘A highly reliable distri
buted filestore directory system’ Proc. 2nd Int. Conf
Distrib. Comput. Syst. IEEE catalogue 81 C H I591-
7 (April 1981) pp 299-307

BIBLIO G RA PH Y

Lamport, L ‘Time, clocks and the ordering of events in
a distributed system’ Commun. ACM Vol 21 No 7
(July 1978) pp 558-565
Randell, B, Lee, P A and Treleaven, P C ‘Reliability
issues in computing system design’ Comput. Surv. Vol
10 No 2 (June 1978)
Salter, J H Naming and binding objects, operating
systems — an advanced course Springer-Verlag, FRG
(1979) pp 99-208

vol 3 no 3 1984 161

