Maximum entropy and the
optimal design of automated
information retrieval systems

Paul B Kantor

The application of the maximum entropy principle is
extended to problems of information storage and
retrieval. The extension includes continuous or fuzzy
relevance valuations, fuzzy descriptors, and prior or
Sfeedback constraints. A decomposition property of the
entropy function is used to express the total entropy in
terms of the entropy of nonoverlapping components.
FEach component is described by a richness parameter
which is determined by a set of coupled constraint
equations given in closed form. A method is outlined for
solving those equations in real time, and possible
grounds for applying the maximum entropy principle are
explored. The relation to term weighting, and the
possibility of constructing rigorous relations between
information and effort, are also discussed.
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Cooper' and Huizinga? have suggested that the maximum
entropy principle (MEP) will correctly determine the
retrieval value of the various components of an
information reservoir’. According to this principle, the
‘value’ (or ‘relevance’) is distributed within the reservoir
in such a way that all known constraints on structure and
content are met and the entropy function is maximized.
The notion of entropy maximization has great
importance in the study of physical ensembles* where its
power traces to the fact that the microstate of maximum
entropy is the most probable microstate and nearly all
allowed microstates are quite close to it. The notion of

Tantalus Inc., Suite 218, 2140 Lee Road, Cleveland, Ohio 44118, UK
Received 28 June 1983, revised 10 January 1984

88  0144-817X/84/020088-07$03.00 © 1984 Butterworth & Co. (Publishers) I.;t_d.,

entropy maximization plays an important role in the
statistical theory of contingency tables® where it
prescribes a ‘null hypothesis’ in the presence of any
number of complicated marginal conditions. In this role it
is not subject to ‘experimental verification’, but it has
clearly had a great impact. In essence, the MEP makes
precise the notion of ‘at random’ in complicated
constrained situations.

In the area of information retrieval, the MEP serves as
adesign principle which is amenable to experimental test.
That is, given some constraints on the distribution of
value, the MEP leads to a unique determination of the
value of any Boolean atomic component of the reservoir.
For examples given four terms 4, B, C, D and estimates of
the expected (average) value per item in 4, in C, in
BUD and in A U C U B, the MEP leads to a unique
estimate of the value in any atomic component such as
ABCD, etc.

In a companion paper®, this problem has been analysed
completely, using the calculus of variations, for several
important situations. The present paper aims to provide a
less technical summary of the key results. To fix notation,
suppose that there are only three descriptors, defining
subsets 4, B, C of a reservoir R.

={reR: A(r)=1)

The case of fuzzy descriptors adds no essential features®.
However, it is realistic and important to recognize that
value may be neither O nor 1 but somewhere in between.
Maron, Robertson and Cooper”> 8 have described such
values as probabllmes of relevance, while Salton’ has
described them, in objective terms, by inner products in a
suitable vector space.

The present analysis makes use of the entropy function,
defined on any nonnegative distribution p, . .., p,, = 0;
p1+p2+. .. +pm=1.
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S(p) = —pllnpl *pzlnpz .. ‘pnlnpn (1)

Inp is the natural logarithm of p. If x =0, xInx =0
Also, the decomposition property of the entropy
function is used. If

n(a) = 0 11
4 an(a) o all aeQ (2a)
aeQ
and for each choice of
pla, v) =0 veV (2b)
= pla, v)=1 »
velV
and
g(a, v) = n(a)p(a, v) (2¢)
so that
q(a, V)ZO, Eq((lf, V):l (2d)
then
S(q) = S(n) + EQ n(a@)S(p(a)) (3)

All the possible values of « and v are represented as the
axes of a table

a Structure ' v
0
a n(a) q(a v) = p(a, v)-n(a)

1

The decomposition property (which may be proved
algebraically) means that the entropy of the entire
distribution is the entropy of the structure column (the
n( a)) plus the weighted sum of the entropy of the rows,
each row having weight n( a).

It is assumed® that, within each row, the value of any
item may lie anywhere between O and 1. Thus g(«, v) is
precisely that fraction of the entire reservoir which has
‘description « and value v’.

By application of the Lagrangian method for
constrained optimization, it has been shown that every
row « may be characterized by a richness parameter p,
and that, by the MEP:

o a)e”
P(a, v) = ?@_—12 0 (4)
1 .
Javpan=1 (5)

It has been shown® that the richness parameters are
determined by constraints on the value content of the
rows. The results of that analysis are reviewed briefly
using simple examples. Suppose that a given problem has
8 atoms and 3 constraints, whose effect is indicated as:
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Constraint 1

Constraint 2
Constraint 3

001\ & W~

The richness parameters® p,, . . . , pg are given by

=P =X

Pa = p5s = A 2 3 —
Ps =N T A3 (6a-f)
p7 = A3

pg undetermined

The Lagrange multipliers Aj, A;, A; are in turn determined
by 3 content equations; giving the ‘total value’ believed to
be in groups 1, 2 and 3.

Vi=n(1)v(A) + n(2)v(N) + n(3)v(A + A)
+ n(4)v(}\1 + }\2 + }\3) + n(5)v(}\1 + )\2 + >\3)
V2 = n(3)v(}\1 + }\2) + n(4)v(>\, + }\2 + >\3) +
n(5)v(}\1 + >\2 + }\3) + n(6)v(}\2 + >\3)
V3 = n(4)v(}\1 + >\2 + )\3) + n(5)v(>\1 + >\2 + )\3)
+ n(6)v( Ay + A3) + n(THv(A3)
(7a—c)

1 1 -
Since v(p) = 5 + 5 (coth p/2 — 2/p) these equations

can only be solved numerically.

To describe the general situation, another table may be
formed, the rows of which correspond to the atomic
components and the columns of which correspond to the
content constraints. A check at the intersection of a row
and column indicates that the constraint applies to the
corresponding component.

The present case would be represented as:

« 1 2 3

1 \//

2 | v

3 Vv Vv

4 \/ \/ vV
5 |V v |V
6 AV \Y%

7 v
8

The set of all atomic components is denoted by 4 and the
set of constraints by P. The constraints involving « are
represented by '

. P(a) ={Q¢eP Q constrains row a} ’ (8)
and the affected components by
A(P) ={ae A P constrains row a} {9)

The results of the analysis are that the richnesses p are
determined by

W)= £ A (10)
QeP(a)
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The Lagrange multipliers A are determmed from the
content constraints

Ve= X wp(a&))n(a) (11)
azA(P)
or,
Vp= X v( z }\P)~n(a) (12)
aed(P) \PeP(a)

THE COOPER-HUIZINGA
ENHANCEMENT PHENOMENON

Without solving the equations that determine the
Lagrange multipliers (and thus the effective temperatures),
we may see, qualitatively, the enhancement phenomenon
noted by Cooper and Huizinga. We have the basic
relation

Pa= I Ap (13)

PeP(q)

The situation is represented by a table with rows labelled
by & and columns labelled by the conditions imposed. An
entry appears whenever the condition applies to the row.
For example, with 3 ‘terms’ 4, B, C we might have

(C-H) (MC)
44 VA VB VC VR VR*
® =A4BC Vv
ABC Vv N4 V4
4ABC v v v
ABC v vV v
ABC v v v
ABC v vV v
ABC VARV Vv Vv
I1=A4BC VARRVARRVARNRV v
Lagrange multiplier M M A AD AR*

Let us compare ABC with ABC, ABC using the Cooper—
Huizinga assumption

p(@C) = >\B + >\C + )\p
p(ABC) = Ac + Az
A(ABC) = \j + Mg (142-d)

p(ABC) = p(ABC) + {p(ABC) — A}

However, g determines the p(4BC) and since this atom

is surely poorer than ABC, we must have Az > p(ABC);
therefore

o(ABC) > o(ABC) (15)

and so the intersection of B and C is enriched relative to
BC, 1ndependent of A.

In the minimum constraint formulatlon, Ar Is re-
placed by Ag* which corresponds to the richness of the set
determined by the (Boolean °‘OR’) union of the
descriptors. In this case, it is seen that

p(ABC) > p(ABC) (16)

if and only if p(ABC) > A\g* — that s, roughly speaking,
if ABC is ‘richer than average’ within the union. In the
minimal constraint case, we must recognize that this need
not always be true. Thus the Cooper—Huizinga enhance-
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ment of intersections may be a consequence of the use of
the constraint, and may be sometimes violated. Clearly, it
need not be violated, since we might have

p(ABC) < p(ABC) < p(ABC) < p(ABC) < . ..
< p(ABC) (17)

SUMMARY

To summarize, application of the MEP has been reduced
to the problem of computationally determining the
Lagrange multipliers subject to conditions such as (7). It
has also been found that the richness parameter p is
related to an ‘effective temperature’ 7" by the equation
T=—1/p. The value p= O, which corresponds to
‘average richness’ corresponds alsoto 7= + <. Positive
values of p correspond to negative temperatures and vice
versa.

The very important function v, which expresses the
mean value of items in a row in terms of the richness of
that row, is:

W) =3+ (cothp2=2p) (18)

The hyperbolic cotangent is given by

X —X
coth x = &€~ (19)
ex — e"X

The apparently infinite term, 2/p (for p = 0) serves to
remove the corresponding infinity of the hyperbolic
cotangent. In fact, as p varies from — = to + <, ¥p)
increases monotonically from O to 1 (see Figure 1).

This reformulation of the maximum entropy procedure
has several very important features. All of them relate to
the question of how the MEP can be implemented in real
time, so that it may be built into a retrieval system and,
ultimately, tested.

The key features are:

® Reduction of the dimensionality of the problem.
For N terms the number of variables is reduced from
2V atomic components to =N constraint equations.

® Freedom from unjustified or superfluous assumptions.
The formalism presented here is a minimal constraint
version of the MEP, which does not require any
assumed constraints (such as p(R)).

® Clear analytic structure. The function v is an entire
function in the complex p-plane and homotopic
solution methods are expected to work well.

® Conceptual insight into the nature of ‘richness’, the
relation between terms and their combinations, and
the overall mathematical structure of the maximum
entropy procedure.

The ultimate test of the MEP must be in the field, using
large, real databases and real inquirers (or ‘end-users’ as
they are unfortunately called).

v(p)

p—

0

Figure 1. The constraint function v(p)

information technology



A vparticularly promising approach to real time
implementation has been outlined®, which involves
homotopic optimization'®. This procedure uses the
analyticity of the problem to trace the solution from a
trivial simplification, back to the solution of the full
problem.

SPECULATION

While we await the development of the real time
implementation, and the experimental testing of the MEP,
it may be appropriate to speculate on the validity of the
MEP. A distinction is made between aesthetic and
conceptual speculation.

Aesthetic

It has been known for some time that the entropy function
is the unique continuous function satisfying certain very
reasonable constraints — constraints which should apply
to a measure of uncertainty!!. Thus we are fairly certain
that the MEP captures the distribution, subject to given
constraints, having the most residual uncertainty. This
seems to mean that we are ‘assuming as little as possible’
and that is, in turn, aesthetically attractive.
Furthermore, from the viewpoint of mathematical
aesthetics, the picture we have reached is compelling in its
clarity and simplicity. However, that simplicity is due to
the exact correspondence between the present problem
and the elegant machinery of statistical mechanics —
machinery that has been developed by many investigators
over scores of years. Thus simplicity and elegance do not
necessarily mean that we are on the right track.

Conceptual

There is a potential conceptual objection. When
statistical mechanics is applied to, for example, the
physics of gases, we are all somewhat prepared to accept
the notion that the molecules rush about as if at random.
There are difficulties — as in the paradox of the H-
theorem. We know that the motion of the molecules is not
random, but is governed by the physical laws of motion.
This has led to the development of a rich field of mathe-
matical analysis — originally ergodic theory — later the
study of the mixing properties of dynamical systems.

However, no one has ever interviewed a molecule, nor
do we ascribe to molecules volition, intelligence and other
entropy-decreasing virtues. For information storage and
retrieval, the situation is quite different. The items,
whether culled from this journal or the National Enquirer,
represent the products of volition, intelligence and other
entropy-decreasing virtues. Furthermore, their organiza-
tion (that is, the selection of descriptors, and the
assignment of items to the rows of the table) represents the
further application of intelligence (arguably, in some
cases, a higher order of intelligence).

In the face of all this, it seems almost perverse to argue
that the key feature of what remains is its randomness.
This is a disturbing objection, and not clearly wrong. For
example, is it not true that the ideal descriptors would

vol 3 no 2 april 1984

exactly correspond to the questions asked — so that every
row would have p =+ « and v =1 or 0? In the face of
this argument we can point to three factors. First, as in
mathematical sociology, it does appear that the voluntary
acts of individual human intelligences can exhibit
stochastic regularity: the classic example is the near
constancy of national suicide rates. The suicides of 1983
are surely different persons from the suicides of 1982.
Why is their total number nearly the same? Second, and
more specific to the case of information retrieval, the
descriptors are relatively fixed (one of the key virtues of
retrieval by relatedness is to weaken this restriction),
while queries are constantly shifting. Thus, although
descriptors may have been originally defined in ways that
decrease the randomness (by imposing correlations
among descriptors) evolution in meaning of terms and
areas of interest may quickly increase the randomness.
(Thus, the term ‘electronic’ once implied, for a vast
literature, the term ‘vacuum tube’, while the term ‘solid
state’ occurred only in the technical literature of
physics.)

A third reason is the remarkable result obtained by
VanCampenhout and Cover'?, They show that if the
average of many i.i.d. random variables is constrained, the
conditional distribution of any one of them is given
asymptotically by the product of the prior distribution and
the maximum entropy form. This suggests that if value
does ‘behave randomly’ within each row then the
maximum entropy principle is not only the least constrain-
ing assumption; it is asymptotically rigorous (as the rows
become large).

At present, it is the author’s opinion that the
applicability of the MEP to retrieval from large data
reservoirs will soon be subject to experimental test even in
complex situations. The question of whether it ‘ought to
be right’ may therefore be profitably postponed.

IMPLICATIONS AND OPEN QUESTIONS

In the companion paper®, certain mathematical problems
have been specified for solution; there are also questions
that go beyond direct calculation. Two particularly
interesting areas are: the validity of term weighting and the
‘infodynamics’ of information reservoirs.

Term weighting

The concept of term weighting may be abstracted as
follows: given a query Q, is there a term weighting
function W(Q) that assigns to every descriptor 4 a real
number W((Q, A) such that:

® W(Q AB) = W(Q, 4) + W(Q B)
W(Q, ABC) = W(Q, AB) + W(Q, C)
etc.

and

® W(Q, a) = W(Q, B) if and only if the average value
(in response to Q) of row « is at least as high as the
average value of row B (precision measure).

® IW(Q, -) is some help in achieving the (occasionally
desirable) goal of recall — complete extraction of the
value from the reservoir.

91



Clearly, the latter two conditions together define a
multiple criterion problem, and the rigorous elaboration of
the last condition involves a careful analysis of the
interplay between the information retrieved and the effort
required. Rows should be studied in order of decreasing
richness to obtain as much value as possible, but, at some

point, the inquirer will probably abandon the goal of ‘total

recall’. The problem of term weighting has been discussed
extensively by Sparck Jones and Robertson'?.

If we consider only the first two conditions, we have a
well defined mathematical question: if the maximum
entropy principle is correct,- does a weighting function
exist? We suspect that the answer is, in general,
negative.

The detailed relation between maximum entropy and
the current approaches to term weighting will be explored
elsewhere. The relation is more nearly one of conflict than
of harmony, as several examples will show. To make
contact with the usual discussions, the value v must be
restricted to O or 1. Also, the rows are labelled by vectors
called document vectors (xy, xz, . . .). In a particular row,
x; = 0 if the jth term does not apply to documents on the
corresponding row. If it does apply, x; may be either a
Boolean indicator (x; =1) or some sort of ‘count
indicator’ (x; = number of times term j appears in each
document of the corresponding row). The latter case is a
discrete version of ‘fuzzy descriptors’. Let us concentrate
on the Boolean or binary version. If 4 is term 1, etc. the
table now becomes

Com- Document :
(e, v=0) 9(a, v=1)

ponent  vector n
ABC 000  n(000) x X'
ABC 100  n(100) a a
ABC 010  n(010) b b’
001  n(001) ¢ ¢
110  n(110)  ab/P ab/Q
101 n(101)  ac/P a'c/Q
011  n(011)  be/P b'c/Q
111 n(111) abo/P2  a'b'c/Q?
P 0

The table has been filled in using the pattern resulting from
the ‘binary independence hypothesis’. At once, it is clear
that this hypothesis requires that six parameters
a, ..., C explain seven numerical properties of the
reservoir — that is

n(011) = (be/P) + (b'c'/Q)

etc. The problem is not apparent when terms are
considered only two at a time, since the table

0 0 n(00) x y
1 0 n(10) a a’
0 1 n(01 b b
1 1 n(1l) ab/P a'b/a

has four parameters with which to describe three
variables. If tempted to argue that one overconstraint is
something ‘we could live with’, one should recall that the
degree of overconstraint is

overconstraint = 2" — 1 — 2n
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Thus for four terms, the problemis 16 — 1 — 8 = 7 times
overconstrained. (The fact of overconstraint has been
noted by van Rijsbergen — in unpublished remarks at the
ACM-SIGIR conference, 6—8 June 1983.) It certainly
means that the binary independence hypothesis has
drastic implications for the structure of large reservoirs.
One might, of course, turn the argument around and assert
that there are certain ‘good terms’ for which this structure
does prevail.

The more general question ‘do term weights exist?’ is
now considered. A term weight is a vector such as
(w1, wa, w3) such that

w- x(a) > w- x(B) if p(a) > p( B)

Our constraint tables provide a good tool for exploring this
question. We note that, for binary value (0 or 1) the
function v becomes

v(p) = e?/(1 + ¢°) = 0.5(1 + tanh p/2)

but this explicit form is not needed for what follows.
Let us consider several possible constraint tables

Constraints
Comp A B C

000
100 X
010 X
001 X
110 X X
101 X X
011 X X
111 X X X
Table (ABC)
Constraints
Comp A B C R
000 : p'e
100 X X
010 : X X
001 X X
110 X X X
101 X X X
011 X X X
111 X X X X
Table (4BCR)
Constraints
Comp A B R*
000
100 X X
010 X X
001 X
110 DX X X
101 X X
011 ‘ X X
111 X X X
Table (ABR*)
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Constraints

Comp AorB C
000

100 X

010 X

001 X
110 X

101 X X
011 X X
111 X X

Table(A or B, C)

Table (4BC) supports term weighting. For example
p(110) = \; + Ag = p(100) + p(010)

and it is easy to see that w = (A4, Ap, Ac). However, this
is a rather special case. Table (4ABCR) does not have this
property, as

p(110) = p(100) + p(010) — Ag

Table (4BR*) has the same problem, and so does the
innocent looking (4 or B, C) for which

p(lll) = >\AorB+ }\C= p(lOO) + p(OII) - >\A0rB

What we have is a picture in which the richness parameter
serves as a term weight in one case, but fails in three. This
does not, of course, prove that term weights do not exist,
but it causes grave doubts about the compatibility of term
weights and the maximum entropy principle.

Consider now the conditional probabilities Pr{(x;, X2,
x3)/v =0} and Pr{(x;, x3, x3)/v = 1}. The ratio

; Pr{(xl’ X2, X3)/V = 1}
20 320 %) = e e 32y = 0)

can serve to rank the rows of the table'®. Specifically

Priv=0} _P
Priv=1) 0°

Z(x1, xz, x3) = €0 X2 %) P

. P . .
The ratloa has nothing to do with the document vector

(x1, X2, x3) and so ranking by Z is the same as ranking by p
or by e”. However, binary independence suggests using
log Z as a weight. That is

w = (log Z(100), log Z(010), log Z(001))
Writing ¢’ = P/Q we see that
logZ=p+y

Hence, even in the most favourable case, Table (4ABC),
the values of log Z are not additive. In other words, if the
maximum entropy principle is correct, the binary
independence principle is not, as long as constraints of the
form in Table ABC are allowed.

Effort and Information
The concept of ‘infodynamics’ is still rather vague. It is

used here in a very technical sense, akin to the discipline
of thermodynamics. In thermodynamics, one of the
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fundamental relations (the First Law) may be expressed .
as

dU = TdS — pdV (20)

where dU represents a small change in the internal energy
of a thermodynamic system; T represents the temperature;
dS represents a small increase in the entropy of the
system; pdV represents the pressure of the system
multiplied by a small change in the volume which it
occupies. This product is the work done by the system, on
its environment.

This law states that during a reversible change (one for
which the equation of state applies throughout), the heat
added to the system (7dS) produces an increase in
internal energy (dU) or external work (pdV).

In the present analysis, there is an analogy between the
value and the internal energy U. In fact, it has been found
(Ref 6, Appendix II) that the derivatives S'(p) and v'(p)
are related by

S'(p)/V(p)=—p=1/T (21)

This follows from the first law, if there is no external work.
In other words, this discussion relates the average value of
a component to the disorder of the component, but sheds
no light on the effort required to change either of them. At
present, the literature on the rigorous study of the relation
between information and mechanics (the study of
mechanical energv) is very sparse, consisting of a single
monograph'> which is more fundamental in outlook. It is the
author’s belief that some progress can be made towards
‘infodynamics’ by combining the maximum entropy
analysis and detailed study of the effort required to
maintain or examine the several components of a
reservoir. The link, if one can be found, will be in the
relations between the cost functions for a component:

® M(a; N) = cost of maintaining component « at size N,
® C(n; a) = cost of examining n elements of com-
ponent «

and the ‘success functions’

® N(k; n; o v*) = Probability that the examination of
n elements from a will produce exactly k whose value
exceeds v¥,

® S(n; o V*) = Probability that the sum of the values
of elements drawn from a will first exceed V* at the nth
drawing,

In the companion paper®, the success functions have been
expressed in terms of the richness, or effective tempera-
ture, of the components. The problem of ‘infodynamics’ is
to expand the analysis to include M and C in a rigorous
fashion.
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APPENDIX

In the companion paper®, the following mathematical
results are established. The variable g is defined as

B=—p
The entropy of a row with richness f is given by

S(B) =1+ In2 + In(27! sinh p/2)
— 287! coth (B/2)

The expected or average value of v in a row is given by
v(B) = 0.5(1 — (coth p/2 — 2/pB))

The fS-values of rows are determined by maximizing:
Zn(a)S(B(@) + Z A(n()v( () — Vp)

Differentiating with respect to any particular f(«) yields
n(a)S'(B) + z Apn(a)v'(B) =0

where the sum extends over all conditions which constrain
row «. It is further shown that

S(B/V(B)=B=—p

Thus, for each row «a

pla)= Z Ap
PeP(a)
and
VP= Z

aed(P) QeMa)

where A (P) is the set of rows constrained by the Pth
condition and P(«) is the set of conditions constraining
the ath row.

n(a)v( > AQ)
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