A nearest neighbour search
algorithm for bibliographic
retrieval from multilist files

Peter Willett

Nearest neighbour, or best match, retrieval involves the
identification of the document or documents most
similar to some query specification, the degree of
similarity being based upon the numbers of terms
common and not common to a document and the query.
Several upperbound best match search algorithms have
been described recently that permit the efficient
identification of such documents using inverted files. The
present paper extends this work to cover document
collections that are based on the multilist file
organization. A new nearest neighbour algorithm, based
on Hsiao and Harary’s parallel algorithm for
generalized files, is presented and the search efficiency
tested with several sets of documents and queries: it is
Sfound that the algorithm can lead to a marked reduction
in computation over a conventional nearest neighbour
search if the exhaustivity of the query indexing is not
high. The results are compared with those obtainable
Jfrom the use of an alternative algorithm that is derived
from earlier work on searching inverted files.

INTRODUCTION

Smeaton and van Rijsbergen! define the nearest
neighbour problem as ‘Given a set of N points in #-space
and a distinguished point, @, find the m (m < N) points
‘closest’ to Q, closeness being measured by some distance

Department of Information Studies, University of Sheffield, Western
Bank, Sheffield S10 2TN, UK
Received 5, January 1984, revised 20 January 1984

78 0144-817X/84/020078-06$03.00 © 1984 Butterworth & Co. (Publishers) Ltd.

measure’. Typical applications of the nearest neighbour,
or best match, problem in bibliographic databases include
finding the documents most similar to a query for the
purpose of document retrieval, and the documents, or
terms, closest to some specified document, or term, in
various classification procedures. Because of the
importance of nearest neighbour searching, there have
been several attempts to develop algorithms that ensure
the identification of the best matches for Q without the
need to inspect all of the other points!™.

Much of the work on nearest neighbour searching has
involved the use of the inverted file organization since this
is widely used for the implementation of present-day
commercial bibliographic retrieval systems. Although
permitting a rapid response to Boolean partial match
queries, such files present severe problems if online
updating is required to add new records to the file, or to
modify or delete some of those already present. An
alternative file organization, the multilist file structure,
may be used where such updating facilities are required,
although this flexibility is counterbalanced in part by the
increased retrieval times that may be expected when
compared with the inverted file>®. Multilist files are
currently encountered primarily in commercial data
processing environments, but it is to be expected that they
will be increasingly used with textual data in the volatile
files of letters, memoranda, and reports that are becoming
available with the spread of integrated office automation
systems.

After a brief description of the multilist file
organization, this paper reports a new nearest neighbour
algorithm for use with such files, and tests the search
efficiency of the algorithm on a range of document and

. query sets.

information technology

MULTILIST PROCESSING

Introduction

A multilist file for a document collection consists of a
data file, which contains the individual document records,
together with an associated directory. Each entry in this
directory corresponds to one of the keywords or indexing
terms that have been used for the indexing of the
document collection, and besides containing various data
about that term, such as the collection frequency and the
field type, also contains a pointer, i.e. an identifier or a
relative or absolute disc address, to the first document in
the collection to which that term has been assigned. The
data records are augmented by a series of pointers, one for
each of the terms in a document, that indicate the next
document containing the corresponding term: thus a
document containing » terms will have an associated set
of n pointers and access to subsequent documents
possessing these terms may be obtained only via this
pointer set. If there are no further documents containing
some term, the corresponding pointer is set to some null
value. A retrieval operation will hence be initiated by
access to the directory and continued by repeated
reference to the data file; in an inverted file structure,
conversely, the data file is required only for the presenta-
tion to the user of those records that satisfy the constraints
imposed by the query.

Hsiao and Harary® have described a generalized file
structure, of which the multilist is a special case, and
proposed two retrieval algorithms for use with such
structures. The first of these involves the processing of all
of the records on one keyword list before proceeding to the
records on the next, while the second search is carried out
using all of the keyword lists at the same time: these two
searches will be referred to in this paper as the keyword
serial and the keyword parallel search respectively. As
Gudes and Ganesh’ note, the keyword parallel algorithm
is rather more complex in character but is much more
efficient in operation when sorted muitilists are used since
the records may be processed in sequence, substantially
reducing the amount of disc seek time for files that extend
over more than one cylinder. The new best match search
procedure described below, which is based on Hsiao and
Harary’s keyword parallel algorithm, has been developed
with this factor very much in mind. Unsorted multilists
result in random accesses to the discs with consequent
delays while the disc heads move from one track to
another: efficient algorithms for partial match retrieval
from unsorted multilists are described by Claybrook and
Yang’. Even if the multilists are ordered, keyword serial
list searching algorithms will involve the data file being
scanned several times, once for each of the query term
lists, and will again occasion a considerable amount of
head movement.

It should be noted that the full benefits of keyword
parallel searching, in terms of minimizing disc head
movement, will be obtained only if the search algorithm is
implemented using a disc unit that is dedicated to
servicing a particular search until it has been completed’:
an example of such an implementation would be a single
user microcomputer system. Conversely, if the disc unit is
shared between several processes that are executing
simultaneously, as with the time-sharing system used for
the experiments reported here, it is likely that a
considerable degree of head contention will ensue. In this
case, keyword parallel searching is unlikely to offer any

vol 3 no 2 april 1984

advantages unless some form of operating system control
is adopted to minimize head movement'®. Similar
considerations apply to sorting algorithms that are
designed to minimize disc head movement, as with that
described by Cooper et al.!!

In the discussion that follows, it is assumed that each
query, Q, is represented by a binary term vector

(91,92 - 9i- - qm)

where g; is the ith indexing term to have been assigned to
the query. When the entries in the directory corresponding
to these terms are inspected, a comparable vector of
identifiers

(FIRST([q,], FIRST[q,] . . FIRST[q,] .. FIRST[q,.])

is obtained where FIRST[g;] represents the first docu-
ment containing g, A document in the datafile has
associated with it a term vector

(dy,dr..d;.. dy)
and a similar vector of identifiers
(NEXTI[d,], NEXT[d,].. NEXT[d,] .. NEXTI[4,])

where NEXT][d,] is the identifier of the next document
containing the jth document term: this identifier may have
the value NULL if there are no further documents to
which that term has been assigned.

Keyword serial best match search algorithm

A keyword serial search algorithm for multilist files may
be obtained by the use of the upperbound procedure for
inverted files described by Smeaton and van Rijsbergen'.
The query terms are sorted into increasing frequency
order so that the shortest lists of document identifiers are
processed first: such frequency information is normally
included in the directory of a multilist file. In addition, a
table, MIN, is created that contains the numbers of terms
inthe shortest document, i.e., the document containing the
smallest number of terms, in each of the lists of documents
in the directory: thus MINJ[g;] gives the length of the
shortest document containing the ith query term. The
MIN value of such a term could sensibly be included in
the corresponding directory entry, with the value being
updated to reflect changes in the constitution of the list.
Assume that { of the m query terms have been
processed so that an uninspected document can have at
mostm — i terms in common with the query. Knowing the
number of terms in the query, m, and in the shortest
document in the i + 1th list, MIN][g; ;], the maximum
possible similarity for documents in that list can be
calculated, the exact form of this upperbound calculation
depending upon the particular similarity coefficient that is
being employed. If the upperbound similarity is less than
that for the current nearest neighbour, none of the
documents in the list needs to be inspected; since the
query terms are processed in order of increasing collection
frequency it will be the longer lists that will be eliminated
by this procedure. Fuller details of the algorithm are given
by Smeaton and van Rijsbergen! in their original paper,
while Perry and Willett! describe a modification that
results in a slightly more precise upperbound calculation.
The only difference between the inverted file and
multilist implementations of the algorithm is in the
manner in which the next document for processing is

79

determined, this difference arising from the two types of
file structure: the upperbound calculations and reductions
in file search are identical in the two cases. There is,
however, one area where the multilist file structure
necessitates a modification of the original algorithm. This
change arises from the fact that if a document has more
than one term in common with the query, its identifier will
appear in more than one of the lists corresponding to the
terms in the query. Some of these lists may be obviated in
toto by the upperbound procedure but, for those lists
which are processed, the documents will need to be
retrieved from backing storage whenever they have been
assigned the corresponding term. Since a backing storage
access may be as time-consuming as many thousands of
main store similarity calculations, it is vital to eliminate
such redundant accesses if at all possible, and Smeaton
and van Rijsbergen describe a means by which this may be
achieved in the inverted file context. A note is kept of all
those documents processed during a search so that if a
previously encountered document identifier is found in the
current inverted file list, no attempt is made to retrieve the
corresponding document from backing storage; instead,
consideration is transferred to the next identifier in the
inverted file list. Such an approach is not appropriate to
multilist processing since the next document can only be
identified from the pointers associated with the current
one, i.e., the previously encountered document. It would
thus seem that this document must be retrieved again if
processing is to continue, causing a redundant, and
expensive, disc access. Such accesses may, however, be
obviated if the list of previously encountered documents is
augmented by the inclusion of some additional
information, as suggested by Yang'? in the context of
partial match retrieval from multilists. Specifically, when
a document, D, is encountered that has more than one
term in common with the query, a note is made in an
internal table of the other query terms occurring in the
document, together with the corresponding identifiers
NEXT][q,], NEXT][q,] etc. During the processing of a
subsequent multilist, g; say, the occurrence of the
identifier for D as the next document triggers an access not
to backing storage, but to the internal table to determine
the document after D. The reduction in such redundant
disc accesses will rise in line with the mean number of
terms in common between a query and those documents
with which it has at least one term in common.

Keyword parallel best match search algorithm

The algorithm to be described here provides a means of
traversing the m lists associated with some query in
parallel without the need to inspect all of the documents in
these lists, while still ensuring the identification of the
nearest neighbour. The algorithm involves the
maintenance of an array, S, which contains the identifiers
of the current documents in each of the m keyword lists. S
is initialized by the set of identifiers FIRST[q,],
FIRST[q,] . . FIRST][q,,] obtained by an inspection of
the keyword directory. Let T be another array containing
the identifiers in S after they have been sorted into
ascending order and duplicates eliminated, while the
array F contains the corresponding frequencies of
occurrence in S: thus T[1] will represent the lowest
document identifier in S, one which occurs F[1] times

80

there. BESTCOEFF contains the highest similarity
coefficient at any point in the search; BESTCOEFF is
initially set to zero in the case of a similarity coefficient, or
to a large value in the case of a dissimilarity or distance
function.

The heart of the search algorithm is an upperbound pro-
cedure for the selection of the document in S that must
next be retrieved from backing storage for matching
against the query. As each such document is identified, S
is updated and the procedure iterated until all of the m
keyword lists have been traversed, or until it is certain that
the best match has been identified.

Having initialized S and the elements of T and F, the
question arises as to whether there is a document with an
identifier, @, such that T[1] <=a < T[2], and which
could have a greater similarity to the query than
BESTCOEFF. The maximum possible number of terms,
MAX, that the document can have in common with the
query is F[1] since, if it had more, it would have appeared
in S. Knowing MAX and the length of the shortest
document vector amongst those documents containing the
term, this information coming from MIN, as in the
keyword serial best match search described above, an
upperbound to the similarity may be calculated for
documents in the range T[1] to T[2] — 1. If the upper-
bound is greater than BESTCOEFF then documents in
this range must be inspected since it is possible that one of
them is the best match. Such documents, if in fact they
exist, may be processed by taking as the first document
which needs to be retrieved that whose identifier is
contained in T[1]. If, however, no such potential best
match exists, consideration passes to those documents
with addresses in the range T[2] <=a < T[3]. As
before, an upperbound similarity may be calculated
for the documents: in this case, MAX is given by
F[1] + F|2]; in general, for documents with identifiers in
tl}e range T[x] <=a < T[x + 1], MAX is given by

> F[y] and the document length chosen for the upper-
y=1

bound calculation is the smallest of the entries in MIN
corresponding to these terms.

This procedure for the evaluation of documents in the
ranges T[x] to T[x + 1] — 1 forx=1, 2 . . continues
until some document is identified whose upperbound
similarity is greater than BESTCOEFF: the identifica-
tion of such a potential best match results in the selection
of T[x] as the next document that must be processed.
Once this document has been identified, it is retrieved
from backing storage and the similarity calculated and
compared with BESTCOEFF, which is modified if
appropriate. Attention is then given to the pointers
associated with the query terms that occur in this
document. For each such term, g;, present, the
corresponding identifier NEXT][g;], or NULL, is used to
update the entry corresponding to g; in the set S. Once this
updating has been completed, the process of selecting the
next document for inspection may be re-commenced by
identifying the elements of T and F. An example of the
workings of this algorithm is given as an appendix to this
paper.

It should be noted that it is possible for no potential
nearest neighbour to be found. In this case, the
upperbound calculation may be performed for documents
lying between the last element of T, T[m’], and N, the end
of the file, with MAX set to m; if a possible best match is
then identified, T[m'] may be selected as the next

information technology

document for processing, otherwise, the search may be
terminated.

EXPERIMENTAL DETAILS AND RESULTS

The experiments involved the three well-known document
test collections detailed in Table 1. Although the
collections are quite small, they are sufficiently disparate
in character to provide a fair assessment of the efficiency
of the search algorithm.

Table 1. Details of the three test collections used

Keen Cranfield Evans

Number of documents 800 1400 2542

Number of queries 63 225 39
Number of terms 1432 25517 3730
Mean number of

terms per document 9.8 28.7 6.6
Mean number of

terms per query 10.3 8.0 27.5

Five different measures were used to determine the
degree of similarity between the query and a document in
the file, these being the Simple, Dice, Cosine and Overlap
similarity coefficients, and the Hamming distance. For a
query containing m terms, and a document containing »
terms, ¢ of which are common to both, these coefficients
are defined as

Simple: ¢

Dice: 2¢/(m + n)
Cosine: ¢/\/m*n
Overlap: ¢/min(m, n)
Hamming: 2¢ —m — n

In the case of the Hamming distance, it is assumed that a
document must have at least one term in common with the
query for it to be considered as a nearest neighbour?.
The experimental measure used to evaluate the
efficiency of the search algorithms is the mean fraction of
each file that needed to be retrieved and searched, the
average being taken over the entire set of queries in each
case. Table 2 contains the search results obtained using
the keyword parallel algorithm, while Table 3 lists the
corresponding results for the keyword serial algorithm.
The search measure ignores any additional storage and
processing overheads resulting from the use of the
algorithms. In the case of the keyword serial search, the
use of the internal table to obviate the retrieval of
previously inspected documents may be efficiently
implemented as described by Yang!?, who has shown that

Table2. Search efficiency using the keyword parallel
best match algorithm

Keen Cranfield Evans
Simple 0.12 0.11 0.19
Dice - 0.25 0.31 0.21
Cosine 0.27 0.30 0.22
Overlap 0.28 0.18 0.17
Hamming 0.29 0.33 0.22

vol 3 no 2 april 1984

Table 3. Search efficiency using the keyword serial
best match algorithm

Keen Cranfield Evans
Simple 0.06 0.05 0.13
Dice 0.11 0.21 0.15
Cosine 0.13 0.19 0.16
Overlap 0.16 0.08 0.16
Hamming 0.17 0.28 0.17

the overheads are not onerous, and are likely to be of little
consequence in comparison with the reduction in disc
accesses that results. In the case of the keyword parallel
search, on the other hand, space must be allocated for the
arrays S, T and F, and these must be updated as a search
proceeds; however, these arrays are of size m elements or
less for a query containing m terms and the overheads are
again small since, as Table 1 shows, queries typically
contain only relatively small numbers of terms.

In a conventional nearest neighbour search, each of the
documents must be matched against the query to find the
most similar one(s) in the file: in this case, the mean
fraction of the file searched is clearly 1.0. A superior search
may be obtained by traversing the multilists correspond-
ing to the query terms and matching only the documents in
these lists against the query, thus removing from
consideration the many documents that share no common
terms with the query. This traversal may be accomplished
by using either of Hsiao and Harary’s search algorithms,
and both of them will give the same reduction in search, if
some procedure is adopted for the elimination of duplicate
documents as described earlier. The mean fractions of
each file that would need to be inspected in such a search
are0.37,0.52 and 0.24 for the Keen, Cranfield and Evans
data sets, respectively, and these figures may be used as a
baseline against which the keyword serial and keyword
parallel best match algorithms may be compared. It
should be noted that the figures are identical for all of the
similarity measures listed above since the reduction in
search is determined only by the documents present in the
query terms multilists, and is independent of the particular
similarity measure that is chosen.

DISCUSSION

It will be seen from the results presented in Table 2 that
the proposed algorithm can achieve substantial reductions
in the numbers of documents that need to be retrieved

. when compared with the numbers retrieved in a

conventional multilist search. The reductions vary from
collection to collection, this reflecting the variant
frequency characteristics of the three data sets studied*. In
particular, the Evans collection shows only a very small
reduction in the expected search length in comparison
with the conventional keyword paraliel multilist search.
This arises because of the large numbers of terms that are
used to characterize each of the queries in this test set;
with exhaustive queries, each of the ranges T[1] to
T[2] — 1, T[2] to T[3] — 1, etc., will be short and thus
relatively few documents will be obviated by the’
upperbound calculation. When the ranges are greater, as
is the case with the Keen and Cranfield collections where
there are fewer terms associated with each query, the

81

number of documents eliminated in each iteration of the
search is likely to be proportionally greater.

The search lengths obtained with the various
normalized coefficients, i.e., the Dice, Cosine, Overlap
and Hamming measures, do not vary very much within a
data set, except in the case of the Overlap coefficient with
the Cranfield and Evans test sets. This behaviour arises
from the asymmetric nature of the coefficient, which
involves the length of either the document or the query,
whichever is the shorter, whereas the other measures
involve both of these lengths. For the Cranfield and Evans
data, there is a great disparity in the document and query
lengths and this is reflected both in the observed and
upperbound similarities and in the numbers of documents
eliminated from the search. A detailed account of the
subtle interplay between the type of similarity measure
used, the characteristics of the test collection, and the
relative magnitudes of the observed and upperbound
similarities is given by Perry'® in the context of inverted
file searching.

Table 3 contains the results for the keyword serial best
match search. This search is markedly more efficient in
terms of the numbers of similarity calculations since entire
lists of document identifiers may be eliminated from
consideration by the upperbound procedure. In the
keyword parallel best match search, conversely, only sub-
lists, some of which contain only a very few documents,
are eliminated at each stage in the search, and the savings
are proportionally less. As noted earlier, however, the
latter algorithm does ensure that the documents may be
retrieved from backing storage in a single linear scan.

Murtagh? described a modification of the Smeaton—
van Rijsbergen algorithm for nearest neighbour searching
in inverted files. The modification involved the lengths of
individual documents in the calculation of the upper-
bounds, rather than the use of the MIN values as in the
experiments reported here. Murtagh found that this
modification led to large increases in search efficiency over
the basic algorithm, and the question arises as to whether
such a procedure may be adopted for multilist searching,
In the case of keyword parallel searching, let there be an
internal table, DOCLENGTH, which contains the
numbers of terms assigned to each of the documents in the
collection. Then, when documents with identifiers in the
range T[x] <=a < T[x + 1] are being considered, an
upperbound may be calculated for the similarity of each
document in this range by using the calculated value for
MAX in conjunction with the corresponding element
from DOCLENGTH. If any of the upperbounds are
greater than BESTCOEFF then a nearest neighbour may
be present and T[x] must be retrieved. Such an approach
has the advantage that fewer documents will need to be
retrieved from backing storage since more accurate
upperbounds are calculated. In fact, experiments using
such a procedure yielded reductions in search length of up
to 25 per cent when compared with the figures presented
in Table 2. There are, however, two major problems
associated with such an approach.

Firstly, although the number of actual calculations is
considerably less than with the keyword parallel
algorithm presented earlier, the number of upperbound
calculations is very much greater: for documents in the
range T[x] <= a < T|[x + 1], the MIN method requires
only a single upperbound calculation, whereas the
DOCLENGTH method would involve one for each of
these documents. Internal calculations are, of course,

82

very much faster than accesses to backing storage but, for
large files, the use of the DOCLENGTH upperbound
would necessitate very many upperbound calculations
indeed. Secondly, and more importantly, the
DOCLENGTH method sometimes results in a non-
monotonically increasing sequence of document identifiers,
i.e., it may happen that a document needs to be retrieved
from backing storage for matching against the query even
though its identifier is less than that of a document that had
been retrieved previously in the search. Such an
occurrence, which was noted with the test sets used here,
interrupts the linear scan of the disc that is the raison
d’etre for keyword parallel retrieval. To see why this might
be so, consider some document with identifier T[1] and
suppose that the upperbound calculation resulted in T[2]
being selected as the next document that needs to be
retrieved; S, T and F are recalculated, this resulting in
some new value for T[2], T[2'] say. If it happens that
there is some document lying in the range T[2] to T[2'] — 1
and having a small DOCLENGTH value, it may well be
that the new set of upperbound calculations results in the
identification of a potential nearest neighbour in the range
T[1] <= a < T[2']; hence T[1] will be the next document
that must be retrieved, despite the fact that it corresponds
to a document occurring earlier in the file than T[2] which
had been retrieved in the previous iteration of the
algorithm.

The Murtagh algorithm is also, unfortunately, not
applicable to the keyword serial search, owing to the
nature of the multilist file structure. In the case of an
inverted file search, the identifiers for the documents in a
list are present within the main store and, given the table
DOCLENGTH, the upperbounds may be easily
calculated; the full document representatives are then
retrieved from backing storage only if the upperbound
similarity is greater than BESTCOEFF. With keyword
serial multilist searching, the next document in a list must
be brought into the main store, irrespective of its
upperbound or actual similarity with the query, to enable
the identification of subsequent members of that list; an
upperbound calculation may, of course, then be
performed but the great bulk of the computational expense
will already have been incurred in the backing storage
access. Similar comments apply to the efficient inverted
file nearest neighbour procedure described by Noreault et
al'* and by Perry and Willett*.

In conclusion, it is clear that the efficiency of nearest
neighbour searching in multilists is very much less than
the best that may be achieved in the case of inverted files.
The keyword serial search can perform only as well as the
Smeaton—van Rijsbergen algorithm, and this is achieved
when a fair amount of additional processing is carried out
to obviate the retrieval of duplicate documents. The
keyword parallel algorithm is still less efficient in terms of
the numbers of documents retrieved; however, this
algorithm does not need to invoke a procedure for
handling duplicate documents, and it may also involve
rather less movement of the disc heads in some
circumstances.

ACKNOWLEDGEMENTS

My thanks are due to Dr K. Sparck Jones and Mr L.
Evans for provision of the datasets used in this study, and
to Prof M. F. Lynch, Mr 1. G. Hendry and the referees for
comments on earlier drafts of this paper.

information technology

REFERENCES

1

10

11

12

13

14

Smeaton, A F and van Rijsbergen, C J ‘The nearest
neighbour problem in information retrieval. An
algorithm using upperbounds” ACM SIGIR Forum
Vol 16 (1981) pp 83-87

Murtagh, F ‘A very fast, exact nearest neighbour
algorithm for use in information retrieval’ Info. Tech.
Vol 1 (1982) pp 275-283

Eastman, C M and Weiss, S F ‘Tree structures for
high dimensionality nearest neighbour searching’
Info. Syst. Vol 7 (1982) pp 115-122

Perry, S A and Willett, P ‘A review of the use of
inverted files for best match searching in information
retrieval systems’ J. Info. Sci. Vol 6 (1983) pp
59-66

Lefkowitz, D File Structures for On-Line Systems
Spartan Books, New York (1969)

McDonell, K J ‘The design of associative key lists
(secondary indices)’ Aust. ComputerJ. Vol 8 (1976)
pp 13-18

Gudes, E and Ganesh, § ‘A survey of file
organizations and performance’ Adv. Info. Syst Sci.
Vol 8 (1981) pp 1-73

Hsiao, D K and Harary, F ‘A formal system for
information retrieval from files’s Commun. ACM
(USA) Vol 13 (1970) pp 67-73

Claybrook, B G and Yang, C S ‘Efficient algorithms
for answering queries with unsorted multilists’ /nfo.
Syst. Vol 3 (1978) pp 93-97

Teory, T J and Pinkerton, T B ‘A comparative
analysis of disc scheduling policies’ Commun. ACM
(USA) Vol 15 (1972) pp 177-186

Cooper, D, Dicker, M E and Lynch, M F ‘Sorting
of textual data bases: a variety generation approach to
distribution sorting’ Info. Proc. Manage. Vol 16
(1980) pp 49-56

Yang, C S ‘Avoiding redundant record accesses in
unsorted multilist file organizations’ Info. Syst. Vol 2
(1977) pp 155-158

Perry, S A Inverted file, nearest neighbour search
algorithms for document retrieval MSc dissertation,
University of Sheffield (1982)

Noreault, T, Koll, M and McGill, M J ‘Automatic
ranked output from Boolean searches in SIRE’ J. Am.
Soc. Inf. Sci. (USA) Vol 28 (1977) pp 333-339

vol 3 no 2 april 1984

APPENDIX

The operation of the algorithm will be illustrated by
reference to a simple query containing five terms
g1 — gs. Assume that MIN contains the values

3,4,3,6,2)

as might be the case with best match retrieval from a file of
document titles, and let BESTCOEFF be initialized to
zero prior to a best match search using the Dice coefficient
as the similarity measure. Let S contain

(26, 13, 57, 26, 82)
so that T and F contain
(13,26,57,82)and (1,2,1, 1)

respectively. Then the upperbound for documents with
identifiers in the range 13 to 25 is given by 2*1/(4 + 5),
which is about 0.222: this is greater than the current value
in BESTCOEFF, zero, so document number 13 is
retrieved, the actual coefficient calculated, and
BESTCOEFF updated. After inspection of the NEXT
pointers for this document, S is updated to

(26, 26, 57, 26, 82)
which results in
(26,57,82)and (3, 1, 1)

for T and F. The upperbound for documents in the range
26 to 56 is given by evaluating 2*3/(min(3, 4, 6) + 5); as
this upperbound value is greater than that currently stored
in BESTCOEFF, document number 26 is retrieved and
the actual coefficient evaluated: let the calculated value be
0.47. Then BESTCOEFF is modified to reflect the new
nearest neighbour, and S updated, this resulting in S, T
and F now containing

(30,82, 57, 118, 82), (30, 57, 82, 118) and(1, 1, 2, 1)

respectively. The upperbound similarity for documents
with identifiers in the range 30 to 56 is 2*1/(3 + 5) which
is less than the value currently stored in BESTCOEFF so
all of these documents may be ignored. The comparable
upperbound for the second group of identifiers is 2%2/
(3 + 5) which is greater than BESTCOEFF: accordingly,
document number 57 would be chosen as the document
that must be processed prior to the next iteration of the
search.

83

