Graphical interfaces for binary
relationship databases

F N Teskey, N Dixon and S C Holden

The increasing desire for information systems usable by
nonprogrammers leads to the need for powerful database
interfaces acting at a level well above that of traditional
database systems. Such users may wish to interrogate the
database either by use of formal queries employing
minimal syntax, or by browsing through the database in
a directed manner. Reducing hardware costs, and the
widening availability of high resolution video displays,
suggests that graphics-based interfaces, with their high
information content, can provide a solution to these
requirements.

This paper describes the design of one such graphical
interface, intended to act as a front-end to a binary
relationship model of information. Classes and
relationships within a particular model are represented
by nodes and arcs which are manipulated by a visual
interface system. The interface supports multiple
independent user views of the database and supports
both the formation of formal queries and the ability to
browse through class entities and relationship instances
in a nonprocedural manner. A further function of the
interface is to allow a simple and flexible means of
inserting and deleting classes and relationships, class
entities and relationship instances.

One of the applications of this interface is in a research
project aimed at integrating the storage and
manipulation of diverse types of information. The
problems of integration are compounded by the different
representations required for differing uses of the same
information. Hopefully a unification of the method of
storage of textual, graphical, and other types of informa-
tion will ease the problems of communication among the
various functional modules of the system. This should
allow modules to coordinate their display activities and
pass relevant parameters of their subject information to

Department of Computer Science, University of Manchester, UK
Received 14 March 1984, revised 2 April 1984

vol 3 no 2 april 1984

other modules which cannot ‘understand’ the different
representations.

Keywords: databases, graphical interfaces, graphic
representation, binary relationship databases

INTRODUCTION

In recent years computer hardware technology has
evolved rapidly, leading to a proliferation of computing
facilities. In the near future these facilities will become
ever more accessible to a widening spectrum of potential
users with greatly varying applications. One application
certain to be of common relevance is the storage and
organization of information. This information will, of
necessity, be stored in a database. Such information
systems will be used as powerful tools by those having
expertise in fields other than computer-oriented subjects,
and having neither the time nor motivation to become
computer programmers. .

It is commonly observed that the evolution of computer
science tends to be one of small steps in discrete subject
areas, with only occasional quantum leaps in the level of
technology. When these incremental advances are
combined in a single system, however, the results can
appear revolutionary by allowing and even encouraging
users to think in new ways about their problems and how
they might be solved. The design of database interfaces is
an example of such evolution.

In order that a nonprogrammer may organize,
manipulate and inspect his own database, while remaining
unaware of its internal structure, there is a need for
interfaces that lie between database and end-user that are
simple and receptive, yet powerful and flexible enough to
satisfy the majority of needs. This paper describes the
design of an interface that attempts to satisfy these
requirements.

0144-817X/84/020067-11503.00 © 1984 Butterworth & Co. (Publishers) Ltd. 67



A very important factor influencing the design of a
database interface is the model of data used by the host
database system (at least at the conceptual level). If the
user is to organize his own data, then this database model
should appear as natural as possible. Of the available
choices of model it is felt that the relational approach
comes closest to the human perception of reality, and in
particular, a binary relational model (BRM) provides the
best model on which to build a database interface.
Research into the development of such models is
progressing at several establishments'™. This research
indicates that databases based on such models may be
implemented efficiently and at a reasonable cost, through
the use of novel hardware.

The use of graphical displays to illustrate the content
and structure of the database is equally important. There
is nothing magical about computer graphics, which is
literally the production of visible images from information
held in a computer memory. The interesting feature of
graphics software is that, within the limits of compu-
tational power and computability, the represented
images may bear any desired relationship to the visible
appearance of the structure of the modelled object. This
gives the systems designer considerable freedom in the
use of metaphor, since he may choose any criteria
whatsoever for image production.

As an example, we shall use Date’s Suppliers-and-
Parts database®, as summarized in Table 1.

DATABASE INTERFACES

Conventionally, access to a database has required the
user to have a working knowledge of either a text-based
linear query language (e.g., SQL, QUEL, etc) or,
where the range of possible queries is limited, a language
specially tailored to the user’s application (e.g., the filling
in of forms displayed on a VDU by means of menu
selection). For a nonspecialized user to become familiar
" with a query language necessitates an initial period of
training in both the language and in the particular user’s
.view of the database. A specially tailored language
presents problems if the database is to be altered, as the
interface will also have to be changed to account for the
presence of new attributes and classes.

Research in recent years has investigated the problem
of providing an interface for naive users that is easily
learnt and that provides these users with the ability to
formulate complex queries in a flexible manner, and to
manipulate the database with relative ease’'2. Such
interfaces may also include the ability to perform data-
definition tasks in a better way than the conventional use
of a data definition language (DDL), to allow an end-user
to create/modify his own database structure.

Graphical interfaces

This research has led to the production of a number of
database interfaces for use by nonprogrammers. A
substantial number of these, and also the most successful,
have been those that have exploited the use of computer
graphics and the 2-dimensional capabilities of a VDU
screen. These graphical interfaces have two different
approaches to solving the problem: query language
interfaces and spatial data management systems.

68

Table 1. Suppliers-parts database

Suppliers
S no. Sname Status City
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens
P-arts
P no. Pname Colour Weight City
P1 Nut Red = 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog - Red 19 London
Shipments
S no Pno Quantity
S1 P1 300
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

Query language interface

Certain interfaces, such as Query-by-Example (QBE)*!,
FORAL LP°, CUPID" P -6 GOING!?, allow the
user to form the equivalent of text-based linear language
queries through the manipulation of graphical symbols.
QBE uses a single graphical symbol, the skeleton table,
which is filled in by the user to give an example of the
response expected. CUPID forms queries from a
collection of rectangles, hexagons and circles. In GOING
queries are expressed in terms of ellipses representing
domains, and arcs representing connections between
domains and connections to conditions. Many examples
comparing QBE, CUPID and GOING can be found in
Udagawa and Ohsuga'®.

In FORAL LP, the graphical display consists of a
diagrammatic representation of the database structure.
Queries are formed by the user selecting nodes and arcs
on this network, representing classes and relationships
respectively, and also by selection from a menu of
keywords and commands.

There is still an element of programming involved in
these interfaces, since a strict syntax must be adhered to,
although less is required than in a conventional query
language.

information technology



Spatial data management systems

A new generation of information systems has emerged in
recent years that has dispensed with the text-based query
entirely, and turned to using a very large amount of visual
content to allow naive users to navigate through and
interrogate certain types of database. The user is able to
‘browse’ through the database searching for items of
interest. Among such systems are the very ambitious
Dataland’”> PP 733 and the more down-to-earth SDMS!?
and VIEW" PP 8387 guch systems have virtually no
syntactic content, but are of little use for the tasks that are
the forte of conventional systems, that is extracting logical
and quantitative data and collating it into some tabular
form.

Natural languages

An alternative approach to graphical interfaces would be
the use of natural languages for access to a database.
Early attempts at this approach® led to only limited query
processing owing to difficulties of syntactic and semantic
analysis and a lack of portability to new applications due
to the use of domain-dependent linguistic analysis. More
recent research in this field'® uses a general framework'*
to separate the domain-dependent from the domain-
independent parts of the linguistic analysis to improve
analysis.

Some criteria for the design of the interface

Given the problems of natural language front-ends, the
promise shown by earlier graphical systems, and the
increasing availability of high quality graphics imple-
mentations, it was decided that graphical methods
would provide the best avenue of research into a powerful
application-independent database interface for naive
users.

The requirement for such an interface leads to the
following criteria in its design:

® The syntax of queries should be minimal. In particular
the amount of typing required should be minimal and
the user should be guided in the use of the interface as
much as possible. To this end, query formation should
proceed by the use of some type of pointing device (and
keyboard) to allow the user to interact with the
graphical diagrams and menus.

® The classes and relationships within the database
that are of interest to any particular user should be
readily apparent. Therefore the user should be
presented with his own independent view of the
database, thus removing any confusion due to the
clutter of information required by other users and
applications.

® The user should be able to formulate complex queries
by a process of modification of much simpler queries.
The user may wish to perform a certain amount of
browsing through the database at any stage in the
formulation of a query. Such browsing may be
combined with the selection of class entities and
relationship instances together with conditional
operators to qualify the query being made.

vol 3 no 2 april 1984

GRAPHICAL DATA

In any information system, visible images are useful for
two reasons. First, they can be used to show the
relationships between the conceptual entities whose
details are stored in the database. These might be called
‘structural pictograms’; for example, Figure 1 displays the
relationships between entities in a semantic network.
Second, visible images can be used to communicate
nonstructural information to the user. The most common
visible images used for this purpose are textual images; the
major reasons for this have been more to do with the
economics of terminal production than with the
desirability of text as a communications medium. We
refer to these two types as iconic and analogic
respectively.

This distinction between the structural and the
nonstructural is important for users without extensive
experience of the particular data model they are working
with. Structural information such as ‘rooms have
temperatures’ allows the user to discover the non-
structural fact that ‘the temperature of the bedroom is 68°
Fahrenheit’.

Our attitude is not that graphical interfaces are in
principle very different from purely textual ones, it is that
the nature of the interaction between the human user and
the computer system need no longer be constrained by the
limitations of having to present information as text.
Presumably this argument may apply to other sense-
extensions to the range of output devices; sound effects
are currently a major selling point for hobby computers.
This is also illustrated by the arcade games that have
become so popular in the last five years. Here the user
interacts with a very complex and fast-changing data
model. That such high-bandwidth interaction can seem so
natural is presumably a tribute either to the genius of the
games designers, who need to think about these matters!,
or to the adaptability of the human being.

Iconic- data

An icon is a prototypical image . which is meant to be
suggestive of some property of the data object that it is
used to represent. Such representations are used, for
example, to denote a set of processing facilities in the
Apple Lisa system; the user selects a particular system
function by pointing at the appropriate icon. This
approach has been taken much further in an experimental
system by Cattel'S, which shows that icons can be used
both to represent relationships between individual items
of data (concrete structure), and also the relations
amongst entity classes (abstract structure).

In the data model discussed in later sections, icons
could be used to represent the IS_A relationships that
are used to express semantic content. Thus, Figure 2
might be used to compress the representation of the
relationships between the individual data shown in
Figure 1.

Text is another good example of the use of iconic
representation. There is a basic icon for each member of
the character set, if emphases such as italics, emboldening
and character size are taken into account, then even the
representation of a single character depends on
information that may turn out to be contextual.

69



IS+A

HAS +SUPPLIER

(SHIPMENT )

HAS+ PART

HAS + QUANTITY

STORED+ AT

QUANTITY

O
CITY

SUPPLIER

—0
P1 PART + NUMBER

HAS + NUMBER

HAS+ NAME 1SeA

PART + NAME

HAS + COLOUR
HAS + WEIGHT

COLOUR

WEIGHT

Figure 1. Binary relationship information for part P1

When using bit-mapped displays it would seem natural
to store the icons as the desired raster pattern for direct
transmission to the display hardware.

Analogic representation

An analogic representation is used for data objects that
have no iconic representation. In a general analogic
representation, the number of possible instances of an
entity type is so large that it is impossible to have
individual icons for each possible instance. In this case, an
analogue is created either by juxtaposing a number of
iconic images, or by algorithmically modifying an
archetypical ‘base icon’. Thus each word does not have its
own iconic representation in textual display; rather, an
algorithmic process is used to send a sequence of
intermingled control and data characters to an
alphanumeric display terminal. Similarly, floating point
numbers are displayed by passing them to a routine which
computes a string of characters which the human user will
recognize as representing a number.

Note that the base icon does not need to be available to
the system for representing any particular object, although
it would be a useful icon to denote all objects of the same
semantic class. A pair of orthogonal axes would, for
example, be highly suggestive of some graphical mapping
of numerical data.

Towards unified representations

As the example of emphasized text shows, even such a

70

simple data item as a single character may, in the context
of a particular application, have many different visible
representations. If all possible representations of a data
object are iconographic we face the question of which
basic operations we wish to be able to perform on all
icons. Rotation, translation and scaling are the three
standard requirements. There are difficult but soluble
problems associated with performing these operations on
digitized images. Until these are solved it may be
necessary to store the icons as groups of lines which could
more easily be scaled, rotated and so on.

Some objects may be represented part of the time
iconographically and part of the time analogically,
depending on the view of the object the user wishes to
adopt. Thus a particular data object representing a map
might sometimes be represented as a document icon,
sometimes as a map-icon, and at still other times as an
analogic display of digitized cartographic information. In
order to be able to present the appropriate view at any time
there needs to be some interaction between the data
objects to be viewed and the user’s viewpoint. The change
from map icon to detailed map display might, for example,
be the result of a scaling operation, which certainly
represents a change in the point of view.

Some complex objects would have exclusively analogic
representation. Such objects might be combinations of
lines, for example, in a datastructure which detailed some
complex geometrical structure. If some universal icon
were adopted to represent all data objects at the least
discriminating viewpoint, it would naturally apply.

Since the graphical data would represent many
different conceptual objects, it seems natural to expect
that different types of operation, both computational and

information technology



SUPPLIER + NUMBER
PART + NUMBER
(SHIPMENT)
HAS + PART
(PART) NAME
" NUT
\ 4
Icon for instance of type
3{010
LONDON
L2 |
Icon for type ‘colour’

Figure2. Iconic representation of binary relationships

graphical, could be performed on them. An object-
oriented paradigm such as is used in the smalltalk-80'’
system would allow common specification of algorithms
common to classes of object, with ‘behavioural
subclasses’ defined by implementing the same operation
in different ways. This would need a system that was
capable of binding procedure names at run time, which
may not turn out to be straightforward. The property-
inheritance characteristics of object-oriented systems are
a natural way to specify datastructures in a manner that
allows easy refinement of behaviour.

THE BINARY RELATIONAL MODEL

The BRM is an information model consisting of two basic
components, entities and binary relationships between
entities. Entities may have some real world representation
or value, or may not, in which case they are merely
internal identifiers within the database. The entities within
the database may be grouped together into different,
possibly overlapping classes.

Several implementations of BRMs exist. The interface
system described in this paper is based on a BRM
simulation developed by the Intelligent File Store (IFS)
- group in the authors’ department and uses the interface
defined in Azmoodeh'. This is a subset of the semantic
binary relational model (BRM) developed by the IFS
group'®. In describing the general properties of the BRM,
we shall use the conventions of that implementation?*1°.

The membership of a class may be defined by an
instance of a special unary relationship, ‘IS__A’, which
has its own predefined semantics. For example, Figure 1
describes the information that would be required for
storing facts about the part P1 in Date’s Suppliers-and-

vol 3 no 2 april 1984

 Parts database. Nodes represent entities and arcs

represent binary relationship instances between entities.
Certain entities have a value (e.g., ‘NUT’, ‘PART _
NAME’, etc.) while others do not (e.g., the real world
representation of the shipment is its values for supplier,
part and quantity; similarly part is represented by its
values of name, colour, weight and location). Classes may
consist of entities with a value (lexical values) or without
(nonlexical values) but not a mixture of both.

The entities and relationships within the database are
categorized broadly into information and meta-
information. Meta-information consists of information
defining the structure of classes and relationships within
the database, as well as describing their properties. Figure
3 describes part of the meta-information used by the IFS
implementation. A class is represented by an entity that is
a member of the class ‘CLASS’, and similarly for
relationships. Both ‘CLASS’ and ‘RELATIONSHIP’ are
nonlexical classes, but the names of classes and
relationships are defined by connections to members of
the set NAME’. ‘CLASS’ and ‘RELATIONSHIP’ and
the relationships between them represent the structure of
the database, while ‘CLASS_STATUS’ and ‘COM-
PLEXITY’ represent the properties of the information
model. :

VISUAL INTERFACE SYSTEM

Conventionally, input of the BRM schema is by use of a
standard data definition language. Since this schema may
be represented diagrammatically, it is possible to input
this schema directly in graphical mode, using suitable
symbols to represent classes and relationships. The
information structure stored in a BRM is represented in

71



IS +SUB

&
—<

OVERLAPS Y CLASS

HAS + STATUS

HAS + CLASS + NAME

Y

Is+suB

FROM

RELATIONSHIP

TO
FROM « NAME

HAS + COMPLEXITY
TO «+ NAME

CLASS+STATUS

>
HAS+ NAME

NAME < COMPLEXITY

HAS + NAME

D Lexical ciass EI Nonlexical class ——%—— Direction of relationship between classes

Figure 3. BSN for metadata of IFS-BRM

the graphical interface by nodes and arcs, an agproach
used by Senko in his FORAL LP interface'® as an
interface to a data manipulation language (DML). It
is our intention to use VIS as a method not only for
retrieval, but also for input, update and deletion. Nodes
(drawn as boxes) represent classes while arcs represent
relationships from one class to another, the direction
being indicated by an arrow. Lexical classes are
represented by a single-walled box, while nonlexical
classes are represented by a double-walled box. Where
there is more than one relationship between any pair of
classes, a unique arc must exist for each relationship that
is of interest to the particular user. Figure 4 shows a BRM
representing the suppliers-and-parts database.

A problem of the FORAL LP implementation was the
difficulty of representing large database structures on a
single screen. This problem is overcome in VIS by the use
of three devices:

® The BRM is inscribed in a world coordinate system
over which the user may roam by shifting his viewport,
and zooming in or out to inspect the required part of the
BRM.

® All the classes and relationships within an application
need not be displayed at once. Multiple representations
are allowed by use of different nodes collected together
to form networks. For example, Figure 5 is as valid a
representation of the suppliers-and-parts database as
Figure 4. This ability to break complex models down
into a collection of simpler models has the advantage of
clarifying the contents of the database by breaking it
down into more easily assimilated units.

® Not all classes and relationships within a particular
application need be displayed.

VIS Metadata

As we have seen, the structure and properties of informa- ~

tion within the BRM may be defined by its metadata, and
this may be treated in the same fashion as any other data.
In a similar fashion the graphical interface also stores.its
own metadata, concerning user information and graphical

72

display data, within the BRM. Figure 6 is a BRM
representation of this metadata.

The structure of the metadata concerns users and
networks. Each user has a user—_name, a password, and
an access—status, as well as a collection of networks.

- Each network has a name, and consists of nodes and arcs.
Each node has an X__position and a Y__position (world
coordinates), and represents a class. Each arc represents
a relationship, and lies from one node to another. In
addition, an arc may pass through more than one vertex
which also has coordinates, these being ordered by their
vertex—list__position. This allows greater freedom in
drawing arcs. For example, in Figure 6 the relation
HAS_TO__NODE, from node to arc, is represented by
an arc which has a single vertex.

Independent user views

Since a network need not contain all the classes and
relationships within a given database, the VIS can be
tailored to a particular user’s requirements. The user does
not see information he is not interested in, nor information
that the database administrator does not wish him to see.
A user need not have only one network for each applica-
tion, but may have many, depending on the type of query
he is interested in. Thus, the interface supports multiple
independent views of the database.

DATABASE MANIPULATION

The graphical interface allows queries to be formed and
data-definition tasks to be accomplished, through the use
of a pointing device (e.g., bit pad and puck, mouse,
lightpen, etc.) and commands selected from multiple
menus. The menus list commands that may be performed
within each state of the interface. The pointing device is
used to select from menus, and also to select classes and
relationships. A class may be selected by pointing at the
corresponding node of the BRM, while a relationship is
selected by pointing at a vertex of the arc representing that

information technology



relationship, or, if no such vertex exists, by selection of the
FROM and TO classes of the relationship.

BRM creation

The structure of the database can be defined or modified
by the use of the editor module to create a network
containing the new classes and relationships. Such
networks may also be created to present independent user
views of the database. Networks are created by the
placing of nodes representing classes and by the drawing
of arcs representing the relationships. Having placed each
node or arc, the user is prompted for any additional
information concerning the class or relationship (e.g., in
the IFS-BRM the user must supply name, type and status
for classes; from-name, to-name and complexity for
relationships). Classes and relationships not already
present in the database will be created and information
concerning classes and relationships will be updated. The
ability of the user to perform these data-definition tasks is
dependent upon the user having a sufficient access-status.
The facility also exists for the user to remove nodes and
arcs from the network, but he is not allowed to delete
classes and relationships unless they are empty.

Additional commands also exist to move nodes and
vertices, in order to create clear and tidy networks.

Data retrieval

Data-retrieval operations take place through the use of a
sophisticated browsing module. The instrument of
retrieval is the browsing window, a window that acts as a
viewport onto the domain of a lexical class, displaying
entities within a particular class that satisfy the query
being made. The contents of these windows is, by default,
the entire domain, but may be restricted to particular sets
of items. The outline of a browsing window is shown in
Figure 7.

Simple browsing

The most primitive retrieval operation is the ability to
open a window on a particular lexical class and inspect its
contents. For instance, Figure 8 shows windows opened
on classes NAME and CITY. Notice that there is no
distinction on whether these entities are related to PART
or SUPPLIER. Lexical entities that are not in the window
may be viewed by pointing at the scroll bar, and moving to

PART + NUMER

HAS+ NUMBER

STORED+ AT )

HAS +« ADDRESS

I COLOUR I

A
HAS + COLOUR

]

y
HAS + NAME

CITY I NAME |

HAS+ NAME

WEIGHT

HAS + WEIGHT

HAS + PART

SHIPMENT |

¥ HAS + QUANTITY

CUPPLIER |QUANT'TY I

SUPPLIER

HAS + STATUS

STATUS

I- Nonlexical class

: Lexical class

—»— Direction of relationship between classes

HAS + NUMBER

NUMBER

Figure4. BSN for suppliers-parts—shipments database

vol 3 no 2 april 1984

73



LPART + NUMBER ~| I COLOUR | WEIGHT

v HAS + STATUS

| STATUS I

HAS«NUMBER $HAS+ COLOUR HAS « WE IGHT
PART
STORED + AT HAS « NAME
NAME
PART
cITY | NAME |
A LAS+NAME HAS + PART
HAS + ADDRESS
SHIPMENT
SUPPLIER

y HAS + QUANTITY

I QUANTITY I

HAS + SUPPLIER

SUPPLIER

Figure 5. Suppliers—parts-shipments database represented by three BSNs

left or right to scroll up or down respectively. To aid
clarity, when a window is first opened on a class, it can
then be dragged by the pointing device into its required
location.

Relational browsing

Queries are made by the selection of relationships which
are then linked together to form the query. This query
formation is performed incrementally by selecting one
relationship at a time. Selecting a relationship causes a
window to be opened for each lexical class connected to
that relationship. If a window already exists for a
particular class, then the existing window is used. The
exception to this is where a relationship is selected which
would form a closed loop with the relationships already
existant, e.g., selection of (PART) HAS NAME
(NAME) and (SUPPLIER) HAS NAME (NAME)
would cause two windows to be opened for NAME, one
for each relationship. As each new relationship is
selected, the window contents are set to the current range
of the selected relationship. Since a query may involve the
use of multiple windows on a particular class, the query
made so far is displayed by having the relevant windows
and arcs displayed in a special query window, with
nonlexical classes being represented by their class names

74

(see Figure 9). The query window may be moved over the
screen so as not to hide items of interest. The selected
relationships are highlighted by thickening of the relevant
arcs.

Conditions may be placed on the contents of a
particular window by pointing at the conditional area
(indicated by a ‘C’) at the foot of the window, followed by
entering a conditional expression, either directly from the
keyboard, or by selection from a menu of conditional
operators. The contents of the window are then restricted
to those values satisfying the given condition. In addition,
the contents of the window may be defined by selecting
particular elements as in simple browsing.

As an example, consider the following query:

‘How many screws have been shipped by Smith?’.

This query could be posed by the following series of
actions. Figure 9 shows the step-by-step development of
the query in the query window.

® Select (SUPPLIER) HAS NAME (NAME), Figure
9(a).

® Select (PART) HAS NAME (NAME), Figure 9(b).

® Select(SHIPMENT) HAS SUPPLIER (SUPPLIER),
Figure 9(c).

® Sclect (SHIPMENT) HAS PART (PART), Figure
9(d).

information technology




ACCESS

STATUS
4 HAS . ACCESS+ STATUS
PASSWORD < USER > USER + NAME
HAS+ PASSWORD HAS + USER » NAME
¥ HAS » NETWORK
HAS + NAME
NETWORK > NETWORK + NAME
HAS + NODE HAS+ ARC
HAS + TO+ NODE
ARC
NODE HAS + FROM + NODE
HAS + X+ POSITION
X + POSITION
+ HAS « X+ POSITION /.
VERTEX
HAS + Y+ POSITION
VERTEX
HAS + Y+ POSITION
' L 4
Y+POSITION
v REPRESENTS +
RELATION
REPRESENTS « CLASS
HAS+ LIST+ POSITION

VERTEX- LIST

POSITION

CLASS RELATIONSHIP

Figure 6. BSN for graphical interface metadata

® Select (SHIPMENT) HAS QUANTITY (QUAN-
TITY), Figure 9(e).

By browsing through the relationship instances retrieved
so far we could see that Smith has supplied two shipments
of screws, one of 400 and another of 200. However, for a
more complicated database, the output could be clarified
by supplying the conditions (PART) HAS NAME
‘SCREW’ and (SUPPLIER) HAS NAME ‘SMITH’.
The first condition may be supplied by pointing at the
condition box of the part name window and typing
‘SCREW’, or by selecting SCREW from this particular
window (note that the conditional operator ‘=" is assumed
unless some other is supplied). The supplier name can be
specified in a similar manner. This results in windows
appearing as in Figure 9(f). Finally, since the total
number of screws may be required, this could be done by
selecting the function TOTAL from a menu of conditional

vol 3 no 2 april 1984

operators and functions for the QUANTITY window
Figure 9(g).

Note that the order of selecting relationships or placing
of conditions was unimportant. For the simple database, it
was not necessary to complete the full query to get an
answer, since browsing allowed the user to see the result at
an early stage. The query could be formed with minimal

CLASS NAME

CONDITION OR FUNCTION

______________

ENTITIES

===

1 .
SCROLL BAR CONDITION SELECTION

Figure 7. Browsing window

75



use of the keyboard, since lexical values could be supplied
by selection from a browsing window. It remains to be
seen whether all queries can be formulated in such a
simple manner.

Data input/update/deletion

The graphical interface does not seem appropriate for
bulk data update. It is felt that this may be better
accomplished by the use of offline methods. However, it
may be that the browsing windows can offer a possible
method for inserting small amounts of data, and for
updating and deleting data in a similar fashion to QBE,
which uses the same syntax for update as for retrieval.
Further research is being undertaken to determine the
most appropriate methods for updating both large and
small volumes of data.

CONCLUSIONS

We believe that in any information system the user should
be able to comprehend fully the underlying knowledge
representation. The BRM provides a representation that
is conceptually simple and yet very powerful. We have
used the BRM as the basis for a graphical database system
that offers the nonprogrammer the opportunity to perform
a wide range of information-retrieval functions. The value
of a relational database from the point of view of the
graphics programmer is the potential ability to provide
large dynamic object stores. In return, graphics integrated
into a uniform representational paradigm offer the
database user a multiplicity of potential viewpoints, and
the ability to compose images from multiple diverse views
of sets of related objects. The work is still at an early stage;
the editor and simple browsing have been implemented on
an ICL PERQ under both POS and PNX, and multiple
views and relational browsing are now being implemented.
. Further research is necessary before we can demonstrate
a prototype system.

ACKNOWLEDGEMENTS

The work described in this paper was supported by a

HAS + WEIGHT

| COLOUR |

HAS. NUMBER |

PART « NUMBER

g HAS - COLOUR

HAS + PART

CITY NAME
-------------- A bR
ey K (e |

LONDON SMITH

PARIS JONES [ SHIPMENT l

ATHENS SCREW

ROME CLARK

NUT ¥ HAS . QUANTITY

t 1

HAS + ADDRESS

QUANTITY

HAS « SUPPLIER

SUPPLIER

HAS . STATUS HAS + NUMBER

STATUS

HAS « NAME

SUPPLIER || NAME
. —o-J
SMITH
JONES
BLAKE
CLARK
ADAMS
tCEEEIL
a *Who are the suppliers 7
HAS + NAME HAS - NAME
SUPPLIER NAME 7 | [nave
Gurmer ] | [oeer | | oave
SMITH NUT
JONES 8OLT
BLAKE SCREW
CLARK SCREW
ADAMS cam
t GERE 4 {C] ESSaNE)
b *what are the ports 2*
HAS . SUPPLIER HAS « NAME HAS « NAME
SHIPMENT l SUPPLIER I NAME [[Ceart i | name
........................
L . e oo oo
SMITH NUT
JONES 80LT
BLAKE SCREW
CLARK SCREW
ADAMS CAM
HES=of] tCERE ¢
C "What ore ihe supphier nomes of the shipments 7>
HAS + PART
HAS . SUPPLIER HAS - NAME HAS « NAME
5 1 1
SHIPMENT suppLIER] | Name PART NAME
OO R O
SMITH NUT
SMITH BOLT
SMITH SCREW
SMITH SCREW
SMITH Cam
He=cof ==os]
d Wit are the supplier nomes and parts of the shpments >-
HAS - QUANTITY
HAS « PART
HAS « SUPPLIER HAS + NAME HAS » NAME
[Sriement SUPPLIER NAME PART NAME QUANTITY
—=] aaaeres Wl ey
a1 [ e
SMITH BOLT 200
SMITH SCREW 00
SMITh SCREW 200
SMITH CAM 100
He=zal [c=con] lHGSoTH
e * What are the supplier nomes and parts, and how momy: did they supply in each shipment 2°
HAS . QUANTITY
HAS - PART
HAS.SUPPLIER HAS « NAME HAS « NAME
(sHipvent § [suepuier] [ name PART QUANTITY
[CZSMITH - s
____________ 8
SMITH 400
SMITH 200
O] § fEEEH 1

f ‘What quantities of screws hove been shipped by Smith 2

HAS « QUANTITY

HAS . PART

HAS « SUPPLIER HAS « NAME HAS . NAME
[ﬁu’mznr [(suppues | [ name NAME QUANTITY

st [oscrew Y FTOTAL ]

SMITH SCREW 600
I

TR TEERE @) [Tereel i

Figure 8. Windows opened on CITY and NAME

76

g * whot 15 the total number of screws shipped by Smith 7°

Figure 9. Stages in relational browsing

research grant (GR/C/51295) from SERC and a research
studentship from GEC. We are very grateful to the IFS
group in the Department of Computer Science, University
of Manchester for use of their BRM simulation. This
paper was originally presented at the BCS Conference on
the Storage and Retrieval of Integrated Graphics and Text
held in London on 22-23 November 1983.

REFERENCES
1 Azmoodeh, M ‘A BRM machine and its interface
procedures’ Internal Report IFS/3/83, Department

of Computer Science, University of Manchester (Feb
1983)

information technology



10

Lavington, S H and Azmoodeh, M ‘IFS — a
proposal for a data base machine’ Proc. 2nd Brit.
Nat. Conf Data Bases British Computer Society
(July 1982)

Lavington, S H ‘Intelligent file store: project
overview No 4’ Internal Report IFS/5/82,
Department of Computer Science, University of
Manchester (Oct 1983)

McGregor, D R and Malone, T W ‘The fact data-
base: a system based on inferential methods’ in
Information retrieval research Oddy et al (Ed.)
Butterworths, UK (1981) pp 203-217
Winterbottom, N and Sharman, G C H*‘NDB: non-
programmer data base facility’” Technical Report
TR.12.179, IBM United Kingdom Laboratories
Limited (Sept 1979)

Date, C J An introduction to database systems 3rd
Edn, Addison-Wesley, UK (1975)

‘Database’, inInfotech State of the Art Report, Series
9 M Atkinson (Ed.) Pergamon Infotech Ltd. (1981)
Hendrix, D G, Sacerdoti, E D, Sagalowicz, D and
Slocum, J ‘Developing a natural language interface
to complex data’ ACM Trans. Database Syst. Vol 3
No 2 (June 1978) pp 105-147

Senko, M E ‘FORAL LP — making pointed queries
with a light pen’ Inf Process. 77 IFIP, North
Holland, The Netherlands (1977) pp 635-640
Udagawa, Y and Ohsuga, S ‘Novel techniques to
interact with relational databases by using a graphics
display’ J. Inf Process. Vol 5 No 4 (1982) pp 256-

vol 3 no 2 april 1984

11
12

13

14

15

16

17

18

19

264

Zioof, M M ‘Query-by-example: a data base
language’ IBM Syst. J. Vol 16 (1977) pp 324-343
Herot, C F, ‘Spatial management of data’ ACM
Trans. Database Syst. Vol 5 (1980) pp 493-514
Boguraev, B K and Sparck Jones, K ‘How todrive a
database front-end using general semantic informa-
tion’ Technical Report No 32, Computer Laboratory,
University of Cambridge

Konolige, K ‘A framework for a portable natural
language interface to large databases’ Technical
Note, Artificial Intelligence Center, SRI Inter-
national (1979)

Malone, T W ‘What makes computer games fun?’
Byte Vol 6 No 12 (December 1981) p 258

Cattel, R G G Design and implementation of a
relationship-entity-datum data model, Palo Alto
Research Centre, Xerox

Goldberg, A and Robson, D Smalltalk-80: the
language and its implementation Addison-Wesley,
UK (1983)

Azmoodeh, M, Lavington, S H and Standring, M
‘The semantic binary relational model of informa-
tion’ to be presented at 3rd Joint BCS ACM Symp.
Res. & Dev. in Inf. Retr., Cambridge, July 2nd-6th
1984

Azmoodeh, M ‘A scheme for representing informa-
tion and its implication for storage technology’
Internal Report IFS/2/82, Department of Computer
Science, University of Manchester (Sept 1982)

77



