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ABSTRACT

The tree dependence model has been used successfully to incorporate
dependencies between certain term pairs in the information retrieval
process, while the Bahadur Lazarsfeld Expansion (BLE) which specifies
dependencies between all subsets of terms has been used to identify
productive clusters of items in a clustered database environment. The
successes of these models are unlikely to be accidental; it is of interest
therefore to examine the similarities between the two models.

The disadvantage of the BLE model is the exponential number of terms
appearing in the full expression, while a truncated BLE system may
produce negative probability values. The disadvantage of the tree
dependence model is the restriction to dependencies between certain term
pairs only and the exclusion of higher-order dependencies. A generalized
term dependence model is introduced in this study which does not carry the
disadvantages of either the tree dependence or the BLE models. Sample
evaluation results are included to illustrate the operations of the generalized
system.

1. DECISION-THEORETIC RETRIEVAL

From a decision-theoretic viewpoint, the information retrieval task is controlled by
two probabilistic parameters which specify for each document of a collection the
probability of relevance, and the probability of non-relevance, with respect to a

* This study was supported in part by the National Science Foundation under grant
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particular query. For obvious reasons, the larger the probability of relevance of a -
particular item, and the smaller the probability of non-relevance, the greater will be
the retrieval probability for the item.

* In particular, consider an item x in the database represented by binary attributes
(X1, X3, - . . 5 X,), where x; takes on the values 1 or 0 depending on whether the ith
attribute is or is not assigned to item x. For each item x and each query Q, it is in
principle possible to generate the two parameters P(x | rel) and P(x | non-rel),
representing the probabilities that a relevant and a non-relevant item, respectively,
has vector representation x. Using decision theoretic considerations, it is easy to
show that an optimal retrieval rule w1ll rank the documents in decreasing order
according to the expression :

_P(x] rel)
P(x | non-rel)

log o

That is, given two items x and y, x should be retrieved ahead of y whenever the value
of expression (1) for x exceeds the corresponding value for y (Maron and Kuhns,
1960; Robertson, 1977; Kraft and Bookstein, 1978; Salton, 1979; Yu et al., 1979;
Chow and Yu, 1982).

The probabilistic approach is of course useless in retrieval unless methods can be
found for estimating the probabilities P(x | s) for each item in the classes s of
relevant and non-relevant items, respectively. These probabilities will necessarily -
depend on the occurrence characteristics of the individual vector elements x; in the
relevant and non-relevant items of the collection. The class variable s will be
dropped in the remainder of this paper because the development that follows is
identical for the two classes of documents.

An exact formulation for P(x) is given by the Bahadur Lazarsfeld expansion (BLE)
as follows (Duda and Hart, 1973; Yuetal., 1979; Lam and Yu, 1982):

)(x p)
P = I p(-p) TN [1+2 LA e R
. t]:[l t t i<j \/P;P, (1 _pr) (1 _pj)

X;—Di) (x;— D)) (X —Pi)
+ Z Qijk
i<j<k \/plpjpk (1 px) a —P,) (1 —pk)

+012...n 2

G =p) 2= « . . Cn=Dp) ]
Vpip,. . Pn(=p)(A-p)...(A-py)

where p, is the probability of occurrence of attribute k in the class under considera- -
tion, that is, Prob(x,=1) and g, Qjjk» E1C. TEpresent the second, third, and higher

order correlations between term pairs x;, x;, triplets x;, xj, Xy, and higher order

~ subsets of terms. Specifically,

Q _ E.[(xi"pi) (xj—p)] _ E (x;x))—pip; = 3) ‘
’ \/Pipj A-p)(-p) \/F-pj(l—pi) (1-py o
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E[(x;—p) (x;—p)) (¢ =]
\/Pinpk (A-p)A-p)(1-py)

and g =

_ E(qx;x) — E (x; x)pr— E (X; x)p; — E (X; Xi)pi + 2pi D; Py

: _ )
\/Pipjpk (1-p)(A-py "Pk)

Correspondmg express1ons apply to the higher order correlations.
The BLE expansion (2) is of no help unless the term occurrence probabllmes Dr
can be obtained for all terms k in both the relevant and non-relevant document sets.

- - Furthermore the correlation coefficients g, g, etc. must also be available for all

‘term combinations in the two document classes. This last requirement is
unfortunately difficult to satisfy in practice for two main reasons:

1. It is in practice impossible to compute the correlation coefficients for an
" exponential number of term combinations.

2. - An injudicious truncation of the BLE series may produce unreliable results; for
example, the second order correlations g; become negative when the joint
occurrence probabilities E(x; x;) for pairs of terms are close to zero, but the
individual probabilities p; and p; are positive; this may lead to the computation
of negative (false) probability values from the BLE formula when third and
higher order dependencies are neglected.*

To render the computational task more manageable one often assumes that the
term occurrences are independent of each other in each of the relevant and non-
relevant documents of a collection. In that case -

P(x) = P(x;) P(xy) . . . . P(xy). - ®)

For the independence case, the BLE expansion reduces to

Pe = T] p¥(1—py

(6)
t=1 .
since all ¢ values will be equal to 0 (Robertson and Sparck Jones, 1976; Yu and
Salton, 1976).

In actual document collections, the assigned keywords and attributes do not of
course occur independently of each other. The elimination of term dependencies
may then lead to substantial losses of information and to a reduced retrieval .
effectiveness. This suggests that an approach be used in which certain selected term
dependencies are included while the others are disregarded. The tree dependence
" model represents such a compromise solution.

In describing the tree dependence model, the following notation is used:

* A referee has pointed out that a Ph.D. dlssertatndn by D. J. Harper (1980) considers the use
. of the Bahadur Lazarsfeld expansion and provides a detailed analysis of the tree dependence
N model introduced later in this section. - :
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1. P(x) or P(x;, x,, . . . , X,) represents the actual probability distribution for a
vector of n terms. When no ambiguity arises, the vector (x, x5, . . ., X;,) is
replaced by (1, 2, . . ., n). Thus any distribution A(x, x,, . . . , x,,) is written as

h(1,2,...,n).
2. The notation A(jj, j,, - - . , j,) for specific terms jj, j», . . . , j; stands for Z
N—J
h(1,2,...,n) where N={1,2, ..., n}and J={j;, j», . . ., j;}. Thatis, A
represents the probability distribution for the set of terms J={j, /5, . . .-, j;}
and the summation extends over all possible combinations of 0 and 1 for all
variables other than those in J. For example when n=4,

h(1,3) = ha, % = 0,3, %, = 0) + A(x;, X, = 0, X3, %5 = 1)
+ h(x, % = 1,x3, % = 0) + A(xp, %, = 1, X3, %4 = 1).

In particular,

represents the probability of occurrence of the ith term. An underlined variable
denotes a vector of variables; a variable that is not underlined stands for a single
variable.

2. PROPERTIES OF THE TREE DEPENDENCE MODEL

The tree dependence model is characterized by the fact that the dependence structure
between terms constitutes a tree in which the vertices represent the terms and the
edges represent the dependencies between pairs of terms. More specifically, let T be
a tree with root v. The tree can be represented by a directed graph G=(V,E), where
Vis the set of vertices and E is the set of directed edges (away from the root v). Then
the probability distribution of the terms on the items is given by the tree dependence
model as follows:

f(6G) = PO)[I] P@a| b) )
E . .

where b is the parent of @ and the product is taken over all edges of E (van
-Rijsbergen, 1977; Harper and van Rijsbergen, 1978; Robertson ef al., 1981). When
Eisnull, i.e., the graph has exactly one vertex, then the product over E is assumed to
be 1.

Consider as an example the dependence tree of Figure 1. The root is 1; the
~ immediate descendants are 2, 3 and 4, whose descendants are respectively {5, 6}, {7},
. {8}. Then o

f&G)=PMPQ|DHPE|)PA|D)PS |2 P6 | 2)P(T | 3)P(8_ | 4).

Expression (7) can now be rewritten as follows. Suppose an edge (v,«) incident on
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FiG. 1. Typical dependence tree

root v is deleted. Then the tree T is decomposed into two subtrees G, =(V,, E,) and
G,=(V,, E,) having roots u and v respectively. It is clear that E=E, UE, U{(v, u)}.
Hence

Sx:G) =PWMPuv)[ I Pa|b)]

E—-(v,u)

P() Pa | b) P(u) 11 P(a|b)
EV Eu

= P(v) P(u|v)
P(v) P(u)
P(u, v) . . A
P(u) P(Y) J:GY) fxy; Gy) ®)

where x, and x,, are the variables restricted to vertices of ¥, and V,, respectively.
Thus, (8) is an inductive definition, equivalent to (7). When the original tree G has
1 vertex only, say v (and no edge),

f(x;G) = P(v) &)

When the original tree G contains more than one vertex, expression (8) applies.

The next lemma shows that the tree expansion formulas (7), (8), (9) are well
defined in the sense that the same result is obtained if a different root is chosen for
expansion or a different edge (v, u) is deleted. In fact, a simple formula is given in
terms of the edges and the vertices of the tree.

Proposition 1: For a tree G=(V, E), the tree dependence f(x; G) is given by

PG

fG) = LLE d—1 (10)
I PGE™
i€V

where d; is the degree of (the number of edges igcident on) vertex . If E is null, the
numerator of (10) gives 1. Expression (10) shows that the tree dependence f(x;G) is
independent of the chosen root and of the direction of the edges.

Proof: Since (7) is equivalent to the inductive definition given by (8) and (9), it is
sufficient to show that (10) is equivalent to the inductive definition.
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The proof is by induction. If G has one vertex only, say vertex v, then both (9) and
(10) give P(v).

Consider a connected tree G having more than one vertex. The deletion of an edge
(v, u) causes the tree G=(V, E) to be decomposed into two subtrees G, =(V,, E,)
and G, =(V,, E,) such that the degree of each of the vertices # and v in the subtrees
is-one less than the degree of the same vertices in G (see Fig. 2). By the inductive
hypothesis, (8) gives

: o PG I PGJj)
: . P(u, v) () €EEY (i, J) € Ey
’G = ——— - — —
sy P2 T pof || P2 1 pg)o-!
’ i €Vy i€ Vu
i+v itu

O PGJj)
- G, j)EE
di—1
I pG™
i€V

which is identical with (10), since E=E, UE,U{(v, )} and V=V, UV,.

It is clear that (8) and hence (10) are identical with (7) for the tree decomposition
into subtrees G,, G, and edge (u, v). Furthermore, vertex v and edge («, v) do not
appear explicitly in (10). Hence any other decomposition will also produce the
formula of expression (10).(]

Gu///(-@\\( '\Gv
/ 5~ \
( /\ | )
N

FiG. 2. Tree decomposition using edge (u, v)

For the decomposition of Figure 2, expression (10) can be written as

P(i, 3)P1,4) PG, 7)P4,8)  _P2,5)PQ2,6)
P(12 P(3)! P@4)' P(T° P8  P(2)* P(5)° P(6)°

fxG) = P(1,2)-

= P(1,2)" P(3]1) P(411) P(7]3) P(814) - (P(512) P(62))
= P(1) P2|1) P(311) P(411) P(713) P(814) P(512) P(612)

This is of course identical with the formula derived from the tree of Figure 1.



C.T. Yu, C. BuCKLEY, K. LAMAND G. SALTON 135

It may be noted that the factors P(i) and P(i, j) used in (10) represent proba-
bilities. Hence every term in expression (10) is non-negative. The tree dependence
model cannot therefore lead to the computation of negative probability factors, no
matter how many, or how few, dependent term pairs are used in the computations.

The similarity between the BLE model and the tree dependence model will now be
examined. It will be shown that the tree dependence model places a constraint on the
second order correlations, g;, between term pairs. If these correlation parameters
(gy) are set in the BLE model so as to satisfy this constraint, and if the third and
higher order dependencies are negligible (that is, ;j, ks, €tc. are set to 0), then the
BLE model is for practical purposes equivalent to the tree dependence model. If the
third and higher order term dependencies are significant, then the generalized model
introduced in Section 3 should be applied.

"~ The formulation of expression (10) leads to the followmg proposition:

Proposition 2: In the tree dependence model, if i, j and k are vertices of a tree
G =(V, E) such that a path exists between i and j passing through k, then / and j are
independent conditional on k, that is,

S, jlky = filk) f(lk) (11a)

or equivalently
SUJ, k) f(k) = fG, k) - fU, k) (11b)

Proof: Consider the tree G following the deletion of vertex k. The resulting graph
now consists of two or more components, including G;=(V;, E;) containing vertex i,
G;=(V;, E;) containing vertex j, and possibly addmonal components which may
collectlvely be labelled G. Assume that edge (k, i) is the edge connecting vertex k to
G; along the path from & to i, and similarly that (k, j;) connects vertex k to G; along
the path from k to j.

Restoring vertex k and its incident edges, the decomposition of G leads to the
identification of the following subsets of vertices and edges.

for G;: (V; Uik}, E; Uik, ir})
for G;: (V;U{k}, EU{k, ji))
for G: (V=V—(V;UV)), E- (E\UE;U(k, ip Uk, j1))).

For the tree previously used as an illustration, the decomposition into three subtrees
is shown in Figure 3. .

Giy /‘\\5
/ |
| @ /
\\__’/ 7

Fi1G. 3. Decomposition into three subtrees following removal of vertex k
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The result of Lemma 1 shows that the tree expansion f(x;G) is independent of any
particular node v used for expansion. Furthermore, the numerator of expression
(10) can be divided into three parts involving the edge sets associated with G;, G; and
G (that is, E; U(k, i), E;U (k, jy), and E—(E; UE; U(k, i}) U(k, /1))); 51m11arly the
denomlnator of .(10) can be divided into three parts consisting of the vertex sets
- associated with G;, G;, and G, with vertex k appearing in all three sets. Expression
" (10) can then be rewritten as

Sx6) =) = h(x1) - h(x) - hy(xy)

where x,, X, X; involve variables in the three subsets of nodes and edges, and h,, A,,
hy are suitable functions representing the products included in (10).
Using the notation introduced earlier, one obtains

fGR = 2, f(x)

x—{i, k

D ) ) - hyx) (12)

x—{i, k}

With the formulation of expression (12), the four terms of expression (11b) can now
be rewritten as:

£, k) = [ Z{:} hlo_c,)][Z hz(’.‘z)][ 2 hso_cs)] - (12a)
Vi—ti v

7— k)

V —{k}

fU, k) =[Z hl(acl)] [ 2 hz()_cz)] [ > h3(,y3)] (12b)
Vi Vi-1i}

fG k) = [ 2 h,()_q)][ 2 hzo_@][_z hs(’_fs)] (12¢)
‘Lvi-ti} V- {k}

Vi—iil

and f{k} =[Zh1()_(1)]|:2 hz(’.‘z):l [ Z hs(«!s)] (12d)
Vi Vi V- {k}

It is clear that the product of (12a) and (12b) is identical with the product of (12¢)
and (12d). This proves the proposition of expression (11).[]

Consider as an example the tree of Figure 3. In that case, f(X)=#h (gc,) hy(x,) -
hy(x3)

_ [P(l,2)P(2,5)P(2,6) ] [P(I,S)P(3,7) P(1.4)P(4,8)]
- PQ)? P(1)? ’ P(3) ] [ P(4)

where P(1)? is arbitrarily included in A;(x;). From 12(a) to 12(d) it follows that
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_[3 P2 PR, 5 PR,6)] [ 30 AL PG, D[ X PUL4) P4, 8))
79 Lg%) P27 P(1)? ] lan PO Jles PO ]
Y AL PO TALY PG D[ P4 PG Y]
J&D Lase  P@PPOP o PO flay PO

[N~ P(1, 2) P2, 5) P(2, 6) P(1,3)P3,7) P(1,4) P4, 8)
JA,5.7) = (226:, PR PUY ][% 76 ] (428) P@) ]

e | 3 P2 PR, S) PR, 6] s~ PU, 3) PG, 7 P(1,4) P4, 9)
s a5  PQPPOY (327:) P(3) 423:) P& |

Thus, (1, 5)f(1,7) = f(l 5, 7)f(1) O

Using these results, it is now easy to show that a relatlonshlp exists in the tree
dependence model between the correlation coefficients which measure the
dependencies between term pairs. In particular for any term triplet, the correlation
coefficient of a given term pair included in the triplet is automatically derivable from
the coefficients of the other two term pairs in the triplet. The following proposition
states the result more formally:
Proposition 3: If the joint distribution of terms follows a tree dependence structure
and i, j and k are vertices of the tree such that there is path from 7 to j passing
through k, then

Qj = Qik * Q (13)

Remark: Van Rijsbergen (1979: 137-138) has pointed out that a formula by Kendall
and Stuart (1967: 318) could be used to prove the result of Proposition 3. However
the formula in Kendall is defined only for multivariate random variables, and not
for the discrete random variables used here.

The result of Proposition 3 could be proved using the log-linear model and
techniques similar to those given by Bishop et a/. (1974). A direct proof is given in
this study.

Proof:
_ El-p)a-pl  _ Sfl=lk=1)—p;p;
Qi = = (14)
Vpipe 1—p) (1= py) Vpipe(1—p) (1—py)

Similarly

SfU=1Lk=1)-p;p,
Voo 1=p;) (1 -py)

Qjk =

(15)
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From (14) and (15) one obtains that g; - ; equals
(16)
AfU=Lk=0)(fG=1,k=)-pip f(=1, k=1)-p;p, f(i=1, k=1)+p; p; D]
VoipiA=p)(=p;) - pe(1-py)

Since i, j are independent conditional on k, by Proposition 2, the left-hand side of

"(11b) can be substituted in (16) for f (i, k) f(j, k). Following cancellation of p; from

both numerator and denominator of (16), one obtains-

fU=1lj=Lk=1)-p;f(j=1k=1)— p,f(l—l k= 1)+P,.D,Pk
(I-p)V pip; (I—py (- -D;j)

an

Qik* Qi =

The numerator N of (17) may now be transformed in the following way:

N=f(i=1,j=Lk=1)-pif(j=Lk=1)-p;fli= 1,k=1)+pipj—l7ipj(l—p/;) (18)
Since p;=P(i=1)=f(i=1,k=0)+ f(i= 1,k=1), (18) is further transformed into v
f=1,j=Lk=1)-p,f(j=Lk=)+p;f(i= 1;k=0)—pipj(l—pk)
=fli=1j=Lk=D)-p f(=Lk=1)—p;p;(1 -py)

+fU=Lk=0)+f(j=1Lk=D]f(i=1,k=0)
=f(@=1,j=Lk=1)-p;p;(1 —pk)¥fU= Lk=0)f(i=1,k=0)
~fU=Lk=1)p;— fli=1,k=0)]

=fli=1,j=Lk=1)-pip;(1-p )+ f(k=0)f(i=1,j=1,k=0)
-fU=Lk=1)f(i=1,k=1)
using the independent conditional property of expressmn (1 1b) with i=1, j=1, and
k=0.

Using expression (11b) again with i=1, j=1, k 1, this is further transformed
into

=fli=1Lj=Lk=1)+f(k=0)f(i=1,j=1k=0)=p;p; (1 —p)
—pfli=1,j=Lk=1) = f(i=1,j=Lk=1) (1 =p)+ (1 —py)
SG=1,j=1,k=0)-(1-p) pip; (19)

The last expression can now be substituted for the numerator of (17 to prbduce

fli=1,j=1Lk=1)+f({=1,j=1,k=0)—p;p,
v pip;(1—p) (1= p;)

Qik " Qik =

fG=1,j=1)~p;p; ,
= : =gy O
VvV pip;(A-p)(A-p)) :
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Consider as an example @33 in the tree used as an example in Figures 1 to 3. Using -
the result derived in Proposition 3 one has from Figure 4:

Q38 = Q34 " Q48
but 03 =03 Qs
Thus 033 = 013" Q14 " Cas-

- F16. 4. Composition of correlation coefficients g3g = 013 - Q14 - 048

When Eq. (13) is valid, as it is in a pure tree dependence model, third and higher
. order correlations g, ©;;, are equal to zero. Hence when the higher order correla-
" tions are negligibly small in a practical case, the probabilities computed with
the tree dependence model are about the same as those obtained with the BLE model
‘where the actual g;; values are used for term palrs (i, j) that are explicitly included in
the dependence tree and g values for term pairs (k, /) not represented by an edge in
the tree are then computed as the product of the ¢ values for the unique path leading
from k to A in the tree.

Unfortunately, dependencies between term triplets and higher order term sets may
not always be small. In that case the tree dependence model may still be usable in an
extended form as explained in the next section:

3. A GENERALIZED DEPENDENCE MODEL

In the last section, a probabilistic expression was constructed for a given set of the
tree dependencies by decomposing the tree into two subtrees connected by edge
(1, v). This resulted in expressions (8) and (9). It is useful to extend the inductive
‘construction to render it applicable to connected graphs containing triangles (that is,
dependencies. between term triplets). The development which follows is applicable in
suitably altered form to higher order dependencies; however as a practical matter it
may suffice to extend the tree dependence model by inclusion of certain third order
dependencies only.

Let G be a graph consisting of three or more vertices and containing the triangle
(u, v, w), but not a cycle of length four or more. A cycle of length i contains exactly i
vertices and / edges. Expressions analogous to (8) and (9) may then be constructed
using the triangle (u, v, w). Specifically, the following definition applies using the
expansion about triangle (u, v, w):

J56) = __Pwv,w

P( u) P(v) P(w. ) f(X“;G“)f(xv;Gu)f(xw;Gw) : 20)

where G,, G,, and G,, are the connected subgraphs containing vertices u, v; and w,
respectively, after the three edges (v, v), (4, w) and (v, w) have been removed.
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When an expansion is performed about a triangle, then expression (20) can be used
to represent the probability distribution of the terms. Otherwise, expression (8)
which is based on the expansion about an edge not included in a triangle can be used.

It is necessary to show that the inductive-definition of expression (20) is well

defined and compatible with that given earlier in (8) and (9). This can be done in the

following four steps:

1. An expression identical with (8) must be obtained no matter what edge incident
on vertex v, other than (u, v) is chosen for expansion.

2. An expression identical with (20) must be obtained no matter what triangle
incident on vertex v other than (u, v, w) is chosen for expansion.

3. The two expansions of expressions (8) and (20) about vertex v, one using an
edge (u, v) and the other a triangle (u, x, y), where u and v are different from x
and y, must be identical.

4. The expansions must be independent of the chosen vertex v.

Proposition 4: The inductive definitions of expressions (8) and (20) are well defined
_if the connected graph G has no cycle of length 4 or more.
Proof:

1.

It has already been shown in Proposition 1 that the tree dgpendence approxima-
tion of expression (8) is independent of any particular edge chosen for
expansion in the absence of triangles. Consider a graph G with two edges («, v)
and (v, w) incident on vertex v, such that neither edge is part of a triangle. .
Expression (8) applies in this case. After removal of edge (u, v) from the graph,
two connected components remain, consisting of G, and G,U G, U (v, w), where
G,, G, and G,, are edge-disjoint subgraphs which together with the edges (u, v)
and (v, w) form the original graph G. (If the graph G were still connected
following removal of the edge (1, v), (¥, v) would be part of a cycle of length
three or more in the original graph contrary to assumption.) The situation is
represented schematically in Figure 5. Removal of edge (v, w) from the graph of
Figure 5 will similarly produce two subgraphs cons1st1ng of G, and G,U G,U
(u, v).

Gv

Gw Gu

Fi1G. 5. Decomposition following removal of edge (u, v)

Consider now the expansmn about vertex v using edge (¥, v). Applying (8)
one has

o P, v) P :
fx:G) Pu) PO) S G f XU X, GvU.GwQ(V, w))
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where x,U x,, represents the union of the variables in x, and x,,.
When the last factor is itself expanded using edge (v, w) the above expression
produces

Gy = -2V £ Py, W) _ G
J&6) = poy oy TG oy oy S XGN S EiG)
= PO W g P(u, V)
= Py 1@ | B py /€G30 |

But the above expression is the expansion using edge (v, w). Obviously the
expression about (u, v) is identical with the one about (v, w).

Consider now the application of expressions (20) to a situation involving
triangles. Let the two triangles be («, v, w) and (v, x, y) with common vertex v,
and consider the decomposition obtained by deletion of triangle (u, v, w). The
illustration of Figure 6 shows that three connected subgraphs are produced
consisting of G,, G, and G, U G, UG, U(v, x, y), respectively. On the other
hand, deletion of triangle (v, x, y) produces the three subgraphs G,, G,, and
G,UGUG,U (u, v, w).

FiG. 6. Decomposition following removal of triangle (¥, v, w)

A transformation similar to that carried out earlier for the edges makes clear
that the expansions for the two triangles are identical. _
Consider now a comparison of the expansion using a particular edge (x, v) with
the expansion using a triangle (u, v, w) both incident on vertex v as shown in the
sample graph of Figure 7. Using edge (x, v) one obtains from (8)

f6) = Pf‘;‘;?) F063G) £ Ux,Ux,3G, UG, UG, (1, v, W)

Using (20) this becomes

P( X ) P(u’ v, W)
P(x) P(v) Poa Py S &G —Pm— S xu3G) f(x,:G)) f(xu;Gy)

P(u, v, w)
= P(u) P(v) P(w) S &xu3G) f (XG0 f (x5, Ux,; G, Y, U, X))
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The last expression is precisely. the expansion using the triangle (u, v, w) whose
removal decomposes the graph into components G,, G,, and the connected part
consisting of G, and G, and the edge (v, x).

FiG. 7. Comparison of triangle and edge decomposition

4. It remains to show that in a connected graph G the expansion about any vertex v
is the same as that about some adjacent vertex u. If the edge (u, v) is not part
of a triangle, expression (8) produces identical expansions about either vertex u
or vertex v. Similarly, expression (20) produces identical expansions for any
triangle u, v, w regardless of how the vertices u, v, and w are chosen.(J

Using the inductive definition for the approximating distribution of a graph
dependence structure that does not include any cycles of length four or more, it is
now possible to show that for any tree, say G°, (and in particular also for the
maximum spanning tree that includes the most important dependencies for pairs of
terms: van Rijsbergen, 1977), the tree dependence approximation can be improved
by the addition to the original graph of ¢ edges, ¢ > 1. Each edge added to the
" original tree will produce a triangle, representing the dependence between a group of
three terms (a triplet). In the present development the added edges are chosen in such
a way that no higher order cycles are formed in the graph, that is no cycles of length
four or more.

Let the difference between two distributions A(x) and g(x) in n variables be
measured by the information theoretical measure as

e

Ih(), g) = 2 h(x)log 1. Q1)

X is a vector in 7 variables and A(x) and g(x) are the distributions whose difference
must be measured (van Rijsbergen, 1977). It is known that I(h(x), g(x)) > 0, the
equality holding when A(x) = g(x) for all x. The smaller the value of I(h(x), g(G?)) the
closer the two distributions are to each other. )

Consider, in particular, the original tree G° and the graph G* formed by adding ¢
edges (producing ¢ triangles) to GO. If P(x) represents the true probability distribu-
tion which presumably includes information about the occurrence characteristics of
all subsets of terms, and f(G°) and f(G?) are the dependence approximations using
the tree GY and the graph G, respectively, it is possible to show that

I(PX), f(G%) 2 I(P(x), f(G")). (22)
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The next proposition shows that each additional triangle gives a better approxima-
tion.

Lemma 5: Consider two graphs G’ and G*! such that Gi*+1 differs from G/ by
addition of edge (u, v) which forms the triangle (¢, v, w). Then

F(GHY/f(G™*Y) = [P(w) P(u|w) P(VIW)/P(u, v, W). 23)

Consider the situation in Figure 8 showing the two graphs G’ and Gi*!, The
original edge (1, w) cannot be part of a triangle (&, w, x) in G/, because otherwise the
addition of edge (u, v) would create a cycle (x, u, v, w) of length four in G'*1,
contrary to assumption. Similarly, the original edge (v, w) cannot be part of a
triangle in G'. Thus by (8) the expansion in G’ about vertex w using edge (u, w) is

iy o _Pw
f(G) = P) PW) f(G) f(G,UG,U(v, w))
= P(uy W) P(V, W)
P(u) P(w) P(v) P(w) f(Gu)f(Gw)f(Gv) (24)
GI-I GV Gu Gv
Gw G
Tree G Tree 6'+!

FiG. 8. Addition of one edge (, v) forming triangle (&, v, w)

An expansion in Gi*+! using triangle (u, v, w) can be written by (20) as

P(u,v,w)

i+1y = ik R A Z
7G P(u) P(v) P(w)

f(G)Sf(G)S(G) (25)

The lemma follows immediately by division of (24) by (25).
Using (23) it is now easy to establish (22).
Proposition 6:

I(P), f(G)) 2I(P(x), f(G'*1)).
Proof:
I(P(x), f(G))— I(P(x), f(G'*1))

PO ¥ PR
ZP(.x)logf(G) §Po_c)1og G
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_ P(u, v, w)
= EZ P(x) log POw) Pl w) PO W) from (23)

= Z P(u, v, w) log P(u, v, w)
(4, v, W) P(w) P(u|w) P(v|w)
= I(P(u, v, w), P(w) P(ul w) P(viw)) (26)

- The last expansion is necessarily greater or equal to zero because the information
theoretic measure is always non-negative. (]

The foregoing development shows that the information theoretic measure for the
two distributions using G’ and Gi+! differs precisely by the difference due to the use
of triangle (u, v, w) on the one hand, and the edges (4, w) and (v, w) on the other.
An improved approximation to the distribution can be obtained by selectively
adding edges to the dependence tree in such a way that at each point the value of

— P(u, v, w)
W= Plu, v, w1 27
gw w, v, wylog P(w) P(uiw) P(viw) @7

is maximized. The first triangle to be formed could be the one for which W is
maximum; the next triangle could produce the next highest value of W, and so on,
until no further triangles can be generated without adding cycles of length four or
more. ’

In summary, the tree dependence model is a computationally attractive method
for including dependencies between certain pairs of terms in a probabilistic retrieval
system. The computed probabilities are guaranteed to produce positive values, and
the differences between the tree dependence model and the optimum probabilistic
model will be small when the higher order term dependencies are small.

When dependencies between term triplets, quadruplets and higher order term
subsets become substantial, it is possible to improve the tree dependence model by
selective consideration of term triplets in addition to term pairs. The triplets to be
added could be chosen in decreasing order of the values of W in expression (27).
When triplets that do not form cycles of length four are exhausted, further improve-
ments may be obtainable by adding dependencies between term quadruplets that do
not produce cycles of length five, and so on for the higher order dependencies.
Eventually the extended tree dependence distribution converges with the true
distribution given by the Bahadur Lazarsfeld expression. However, in practice, it is
unlikely that fourth or higher order dependencies can be easily determined. The
extended tree dependence model described here is a product approximation of the
kind introduced in Lewis (1959).
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4. EXPERIMENTAL WORK

4.1 Parameter estimation process

To carry out experiments using the various probabilistic models (term independence,
standard tree dependence, and generalized term dependence), it is necessary to
obtain for each query a ranking of the documents x in decreasing order of the
expression P(x | rel)/P(x | non-rel). For each document, expressions (5) or (6) may
be used for the calculations in the term independence model. Expressions (7) and (8)
serve similarly in the tree dependence system, and expression (20) is used in the
generalized system for the term triplets. In each case, only those document terms
which are also included in the corresponding query are used in the calculations since
these may be of greatest importance in retrieval.

To illustrate the operations of the tree dependence systems it is necessary to
include in the calculations a certain number of dependent term pairs in addition to
the individual, single query terms. A sufficient number of usable term pairs can be
generated by modifying the original user queries before carrying out the proba-
bilistic calculations through addition of new query terms related to the ones
originally present. The following sequence of steps may be used for this purpose
(van Rijsbergen, 1977; Harper and van Rijsbergen, 1978; Salton et al., 1983):

1. A maximum spanning tree (MST) is constructed for the terms included in a
given document collection in such a way that each vertex represents a term,
each edge represents a dependent term pair, and the sum of the edge weights
identifying the amount of useful dependency information between pairs of
terms is maximized.

2. The original available queries are expanded by using the MST to add to each
query all terms that are immediately adjacent to the vertices representing the
original query terms.

3. The pairwise occurrence probabilities P(i, j | rel) and P(i, j | non-rel) are
obtained for all pairs (i, j) included in the expanded query (that is, for each
query term pair represented by an edge in the spanning tree). The co-occurrence
and dependency information allow these values to be calculated for pairs
included in the MST.

4. Term triples are identified for all sets of three terms for which the individual
terms occur in the expanded query, and two of the three possible edges appear
adjacently in the MST (that is, they share a common vertex). For example, the
triple (x;, x;, x) is identified if the three terms are included in the expanded
query and vertices (x;, x;) and (x;, x;) (or alternatively, pairs (x;, x;) and (x, X;),
or pairs (x;, x;) and (x;, x;)) appear in the MST. For each identified triple, the
probability factors P(i, j, k | rel) and P(i, j, k | non-rel) are computed as well as
the corresponding W value of expression (27).

5. For each document x, the factors P(x | rel) and P(x | non-rel) are computed,
assuming either the term independence model, the tree dependence model, or
the generalized term dependence model, by summing the values of the corres-
ponding probability expression for all query terms included in document x. The
documents are then ranked in decreasing order according to expression (1), and
the corresponding recall and precision values are computed.

In the experimental process, the maximum spanning tree is used for two distinct
purposes:



146 Generalized term dependence mode!

1. The tree specifies (m — 1) term pairs out of the m(m — 1)/2 possible pairs, and by
extension a subset of term triples, which can be taken into account in the tree
dependence system.

2. The tree is used to supply an adequate number of dependent query term pairs
using the previously mentioned query expansion process.

The spanning tree structure thus supplies a manageably small number of
dependent term pairs to be used in the tree dependency model, and the query
expansion system ensures that some of these same term pairs included in the
spanning tree are also present in an expanded query. On the other hand, certain term
pairs derivable from the original query terms may well not be included in. the
spanning tree even though these pairs might constitute important indicators of query
content. Obviously such pairs cannot be included in the tree dependency calcula-
tions. Furthermore, some term pairs derivable from an expanded query which are
usable in the tree dependence calculations might well not be helpful in retrieving
relevant documents. Whether the terms added by the query expansion process will
actually help in the retrieval activity depends on whether the added quéry terms are
reflective of the user’s information needs, or more precisely, on the occurrence
characteristics of the added terms in the relevant and non-relevant documents of the
collection. .

An example of the query expansion process is shown in simplified form in
Figure 9. Given an initial query Q=(x;, x;) and the maximum spanning tree of
Figure 9(b), only the term independence model is directly applicable, since pair (x,,
X3) is not available in the spanning tree. The expanded query Q= (x;, X3, X3, X4, X5)
leads to the use of the four pairs specified in the tree ((x;, x;), ¢x1, X3), (3, X4) and
(3, x5)). In Figure 9(c) a single dependent term triple (x;, X, x3) is used instead of
the two pairs (x;; x,) and (x;, x3).

a Original query : @= (x;,X3)

© O] Expanded query : Qeyo® (x|, X2, X3, X4, X5) =
X5 X3 .
° e "Px) = Px) )P (x2) Plx3) Pxg) Plxs)

" *a 5
a .

Term independence model

Flx) = Pl ) Playle, ) Plegla))s Plxglxs)-Plxgles)

Basic tree dependence model

Plx) = Plx), %, ,x3) Px4] x3) Plxglx3)

) X4 Xs
C Generalized tree dependence with one added triple
F1G. 9. Operations of extended tree dependence system
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In computing the formula of expression (1), it is necessary to estimate values of

pi = P(x;=1]rel)
1—p; = P(x; = 0 | rel)

’

p; = P(x; = 1 | non-rel)
and 1-p;/ = P(x; = 0 | non-rel). (28)

Normally, the occurrence probabilities p; and p; of terms x; in the relevant and non-
relevant documents of a collection are obtained by using actual occurrence fre-
quencies of the terms in the respective document subsets. In particular

’ ., .ni—r;
p;= r/Rand p;=

N-R 29)

where r; and n; represent the occurrence frequencies of term x; in the relevant
document set and in the whole collection, respectively, and R and N represent the
size of the relevant document set and the total collection size.

It is clear that unless the relevant and non-relevant document subsets with respect
to each query are properly identified, problems will arise in the evaluation of
expression (1). Two possibilities offer themselves for obtaining the values of p; and
p; in (29). A retrospective experiment can be performed in which the (unrealistic)
assumption is made that all relevant and non-relevant documents with respect to
each query are known in advance of each search. In that case, the values of p; and p;’
are readily computable for all terms x;. Alternatively, in a more realistic predictive
experiment the initial queries are first used to retrieve a subset R' € R of documents
identified as relevant to the query, and a subset NC N-—R' of documents
identified as non-relevant to the query. Instead of using the full set of relevant and
non-relevant documents R and N—R for the parameter estimation process, the
partial subsets of initially retrieved items R’ and N’ are used for the predictive
calculations (Robertson and Sparck Jones, 1976; van Rijsbergen, 1977; Harper and
van Rijsbergen, 1978).

Two problems arise in performing the predictive experiments: on the one hand,
not enough information may be available to permit an accurate estimation of the
parameters p; and p; for the terms x;; in particular the subset of relevant or non-
relevant items actually available may be very small, leading to inaccurate occurrence
probability estimates. The evaluation process is also complicated by the fact that the
relevant and non-relevant items initially retrieved and used to derive the p; and p;
values should not be used again in evaluating the results of the subsequent proba-
bilistic searches.

Consider first the problem of deriving the values for p; and p;” in the predictive
case. When a term does not occur in the relevant or non-relevant documents with
respect to some query, then p; or p;” are equal to 0. In that case P(x) will be ¢ and the
value of expression (1) may not be computable. Furthermore, when by mischance no
relevant items at all are initially retrieved in response to a given query, both r; and R

-are equal to 0, and the first expression in (29) is computed as 0/0. To avoid such an
undesirable result, it is customary to adjust expressions (29) by addition of constants -
as follows (Robertson and Sparck Jones, 1976; van Rijsbergen, 1977; Harper and
van Rijsbergen, 1978; Robertson ez al., 1981):
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r"+0.5 , n,-—r,-+0.5 ’
i ——and pjr ————M 30
Pi= = Pi~—NTR+1 (30)

The adjusted parameter estimation process of expression (30) has been widely
used in practice, but when r; and R are small, unsatisfactory estimates are often
produced (Sparck Jones, 1979). Consider, for example, the common situation where
R=1 and r;=0 (that is, one relevant document has been retrieved which does not
contain term x;). In that case, one finds that p;=0.25 and p; << 0.25 since N, the
total number of retrieved documents, is necessarily larger than n;, the number of
retrieved documents with term x;. So from the information that a term x; does not
occur in a relevant document, one reaches the unusual conclusion that term x; is
more likely to occur in the relevant than in the non-relevant items.

Instead of using the conventional adjustments of expression (30) it is desirable to
introduce modified expressions that are compatible with the probabilistic model and
produce more reasonable values for p; and p; than the conventional estimation
process. If one assumes that the number of relevant documents not yet retrieved is
not much larger than the number of relevant items retrieved in the initial search, and
that each term x; is randomly distributed in the relevant items that have not yet been
seen, one obtains the following probability estimates (Buckley, 1983):

ni—r;
r,-+ e
N-R
b= 7T .
R +1 (3la)
and
. . n—r;
, TITNCR
P = TNTRCT (31b)

The formulae of expression (31) add or subtract a very small amount to the values
of expression (29), the error correction being centred around the expected value
where r;/R =~ n;/N. When r;=0 and R#0, p, =~ p;' - 1/(R+1); that is p; < p; as
desired. Furthermore when r;,=R =0, p;= p,’—n,/N The formulae of expression
(31) were used to estimate the probablllty values in the experiments described in the

" remainder of this section. .

4.2 Retrospective experiments

To obtain a general idea of the operations of the generalized term dependence
model, 2 number of experiments were carried out using two sample document
collections:

1. The Medlars collection consisting of 1033 documents in biomedicine used with
30 queries.

2. The ISI collection consisting of 1460 highly cited documents in library science
and documentation extracted from the Social Science Citation Index and used
‘with 76 user queries.
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Both retrospective and predictive experiments were carried out, the output being
presented as recall-precision tables giving the precision values at certain fixed values
of the recall averaged over the respective query sets. For each experimental run a
composite precision value is also shown, representing the average precision at three
different recall points including recall values of 0.25, 0.50, and 0.75, respectively.
For the retrospective experiments, advance knowledge is assumed of the relevance,
or non-relevance, of all documents in the coilection. In that case it is unnecessary to
perform any retrieval runs at all because the original query (or alternatively the
expanded query obtained by adding adjacent terms from the maximum spanning
tree) may be used directly to compute the necessary probabilities.

More specifically, for each query term /, the values for p; and p; are calculated
using the occurrence properties of the terms in the full set of relevant and non-
relevant documents. Similarly, the values of the pairwise and tripletwise proba-
bilities are obtained for the term pairs and triples included in the spanning tree.
Finally, the documents may be ranked in decreasing order of the optimal decision
rule (1), P(x | rel) and P(x | non-rel) being computed by using formulae (5), (7), and
(20) for the term independence, tree dependence, and generalized term dependence
cases, respectively. Since the document ranking for the retrospective experiments is
obtained by using the full relevance information for all documents, the correspond-
ing evaluation results represent an upper bound of what can be achieved with the
given query and document collections for the corresponding methods.

The evaluation output for the retrospective case is presented in Tables 1 and 2.
The output of Table 1 shows that for both the Medlars and ISI collections, the query
expansion process using the maximum spanning tree helps in retrieving additional
relevant documents. Table 1 covers original as well as expanded queries under the
term independence model of equations (5) and (6). It may be noted that the ISI
collection performs relatively poorly even under the optimality assumptions inherent
in the retrospective case, the average precision for the expanded queries reaching
only 0.5797.

Table 1. Retrospective experiments comparing expanded and unexpanded queries

Medlars 1033, 30 queries IS1 1460, 76 queries
term independence, single term independence, single
terms (no pairs, no triples) terms (no pairs, no triples)

Expanded Original Expanded Original
Recall queries unexpanded queries queries
0.1 0.9603 0.9263 0.8911 0.7190
0.2 0.9375 0.8832 0.8023 0.5853
0.3 0.8913 0.8381 0.7244 0.4722
0.4 0.8703 0.8080 0.6489 0.4145
0.5 0.8415 0.7455 0.5949 0.3749
0.6 0.8084 0.6517 0.5175 0.3302
0.7 0.7499 0.5946 0.4260 0.2601
0.8 0.6661 0.4915 0.3499 0.2150
0.9 0.4738 0.3113 0.2627 0.1534
1.0 0.2708 0.1479 0.1937 0.1157
Average at R=0.25, 0.8239 0.7205 0.5797 0.3797

0.50,0.75 (—12.6%) (—34.5%)
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The retrospective output of Table 2 shows that when full relevance information is
available and the probabilistic parameters can therefore be computed exactly, the
theoretical results outlined in this study are precisely confirmed. For both the
Medlars and the ISI collections, the basic tree dependence system is substantially

“better than the term independence model. As additional term triples are taken into
account small improvements are obtained, and this advantage. grows with the
number of added triples. It is clear that in the retrospective case, where no proba-
bility estimation problems arise, the added term pairs and term triples make it
increasingly easier to distinguish the relevant from the non-relevant items. For the
Medlars collection, the average precision value rises from an already nearly perfect
value of 0.9314 for the tree dependence to 0.9538 for the extended dependence

Table 2. Retrospective experiments with expanded queries comparing various term
: dependence cases

Medlars 1033, 30 queries with tree expansion

Term Term Dependence Dependence Dependence
independence dependence all pairs all pairs all pairs

Recall (single terms) all pairs one triple two triples all triples
0.1 0.9603 0.9917 0.9917 . 1.0000 1.0000
0.2 0.9375 0.9846 0.9849 0.9921 0.9898
0.3 0.8913 0.9685 0.9710 0.9823 0.9843
0.4 0.8703 0.9590 0.9594 0.9719 0.9746
0.5 0.8415 0.9445 0.9488 0.9560 0.9717
0.6 0.8085 0.9222 0.9342 0.9410 0.9536
0.7 0.7499 0.8896 0.8976 0.9046 0.9257
0.8 0.6661 0.8410 0.8446 0.8491 0.8605
0.9 : 0.4738 0.6379 0.6471 0.6495 0.6876
1.0 0.2708 0.3706 0.3769 0.3797 0.4530
Average at .

R=0.25, 0.8239 0.9314 0.9336 0.9405 0.9538
0.50,0.75 (+13.1%) (+13.3%) (+ 14.2%) (+15.8%)

IS1 1460, 76 queries with tree expansion
Term , Term Dependence Dependence Dependence
independence dependence all pairs all pairs all pairs
Recall (single terms) all pairs one triple two triples all triples
0.1 0.8911 0.9436 0.9446 0.9520 0.9711
0.2 0.8023 0.8994 0.9012 0.9013 0.9332
0.3 0.7244 0.8479 0.8448 0.8555 0.8940
0.4 0.6489 0.7750 0.7757 0.7803 0.8310
0.5 0.5949 0.7253 0.7271 0.7333 0.7835
0.6 0.5175 0.6752 0.6807 0.6852 . 0.7291
0.7 0.4260 0.6103 0.6145 0.6184 - 0.6657
0.8 0.3499 0.5335 0.5355 0.5413 . 0.5921
0.9 0.2627 0.4089 0.4154 0.4233 0.4909
1.0 . 0.1937 0.2731 0.2838 0.2927 0.3275
~ Average at . ‘

R=0.25, 0.5797 0.7229 0.7247 0.7297 0.7774

0.50,0.75 (+24.7%) (+25.0%) (+25.9%) (+34.1%)
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system which includes all the triples derivable from the spanning tree. The corres-
ponding figures for ISI are 0.7229 and 0.7774, respectively. One may expect that
under the ideal retrospective conditions similar results are obtainable for other
document collections.

4.3 Predictive experiments

The predictive experiments differ from the retrospective ones.in that they are
designed to simulate an actual retrieval operation. In particular, a number of
documents are retrieved in some initial search operation. These initially retrieved
items are examined for relevance or non-relevance with respect to each query, and
the resulting information is used to compute the probability values p; and p,’ for
each term, as well as the pairwise and tripletwise probabilities for pairs and triples
included in the maximum spanning tree. The probabilistic parameters are then used
to rank the documents in decreasing order of the values of expression (1), as
previously explained.

To carry out the predictive experiments a standard vector processing run can be
performed based on a simple automatic indexing process in which word stems
extracted from document abstracts, or from natural language query formulations,
are used to represent document or query content. A term-weight can be auto-
matically assigned to each term, consisting of the product of the frequency of the
term in each document multiplied by the inverse document frequency of the term in
the collection under discussion. Finally the similarity of each document and each
query can be determined as the cosine of the corresponding term vectors (Salton and
McGill, 1983). In the predictive experiments the documents retrieved by the vector
processing run in the top 20 ranks can be used for the computation of the proba-
bilistic parameters. To obtain a fair comparison between the probabilistic retrieval
runs and the initial cosine run, it is necessary to discount the performance of the
relevant and non-relevant items retrieved in the top 20 ranks, since these are utilized
to estimate the parameters needed for the probabilistic formulae. This is done by
using a rank freezing process which fixes the relevant items originally retrieved at
their initial ranks, while discarding the non-relevant items initially seen and
replacing them by new items retrieved at lower ranks (Salton et al., 1983).

The predictive experiments carried out for purposes of this study produced
essentially negative results (see Table 3) in the sense that the best results were
obtained with the term independence method where only single terms are used. The
tree dependence method based on singles as well as pairs was less effective, and
additional small losses were produced when term triples were taken into account.
Three main explanations may be offered for the failure of the output in the predlc-
tive situation:

1. The probability estimation problems necessarily grow worse when higher order
dependencies must be included than for the term independence case where only
the single term probabilities are needed.

2. The relevant documents are characterized more precisely when the-higher order
term dependencies are taken into account than when they are not; hence any .

. new relevant documents not yet retrieved are constrained to look increasingly
similar to the originally retrieved relevant items when the higher order depen-
dencies are included. This is all to the good when the relevant items not yet seen
are indeed similar to the relevant originally retrieved in the top 20 ranks; but
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Table 3. Predictive expenments with expanded queries comparing various term dependence
cases

Medlars 1033, 30 queries with tree expansion

Vector
Term Term Dependence Dependence Dependence processing
independence dependence all pairs all pairs all pairs  cosine match
Recall single terms all pairs one triple two triples all triples  (continued)
0.1 0.9539 0.9499 0.9455 0.9461 0.9359 0.8908
0.2 0.9305 0.9104 0.9070 0.9049 0.9028 0.8627
0.3 0.9086 0.8848 0.8794 0.8758 0.8687 0.8211
0.4 0.8858 0.8374 0.8414 0.8342 0.8289 0.7729
0.5 0.8601 0.7546 0.7508 0.7374 0.7471 .0.7016
0.6 0.7955 0.6453 0.6431 0.6173 0.7313 0.6199
0.7 0.7195 0.5040 0.4782 0.4714 0.4941 0.5342
0.8 0.6273 0.3805 0.3808 0.3364 0.3473 0.4344
0.9 0.3988 0.1680 0.1540 0.1491 0.1512 0.2366
1.0 0.1942 0.0981 0.0859 0.0900 0.0878 0.1198
Average at
R=0.25, 0.8242 0.7066 0.6978  0.6938 0.6961 0.6739
0.50,0.75 (—14.3%) (—15.3%) (~15.8%) (—15.5%) (—18.2%)
ISI 1460, 76 queries with tree expansion
Vector
Term Term Dependence Dependence Dependence processing
independence dependence all pairs all pairs all pairs cosine match
Recall single terms all pairs one triple two triples all triples (continued)
0.1 0.3501 0.3181 0.3132 0.3092 0.3276 0.3952
0.2 0.2513 0.2149 0.2196 0.2212 0.2285 0.2962
.0.3 0.1983 0.1186 0.1186 0.1158 . 0.1411 0.2238
0.4 0.1539 0.0727 0.0713 - 0.0697 0.0883 0.1657
0.5 0.1241 0.0484 0.0488 0.0491 0.0571 0.1347
0.6 0.1007 0.0408 0.0414 0.0407 0.0417 0.1102
0.7 0.0777 0.0346 0.0340 0.0339 0.0345 0.0841
0.8 0.0626 0.0317 0.0314 0.0312 0.0316 . 0.0681
0.9 0.0495 0.0303 0.0301 0.0300 0.0296 0.0514
1.0 - 0.0393 0.0290 0.0290 0.0250 0.0291 0.0374
Average at g
R=0.25, 0.1415 0.0822 0.0829 0.0813 0.0923 0.1560
0.50, 0.75 (—41.9%) (—41.4%) (—42.5%) (—34.8%) (+10.2%)

when that condition is not met, as it may not be met for the experimental
collections, the term independence system may be expected to outperform the
dependency models.

3. The query expansion process using the maximum spanning tree may not supply
all the term pairs and/or triples that are required accurately to represent the
relevant items in the collection.

Experiments are currently under way designed to improve the probability
estimation process and to take into account term pairs and higher order term
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dependencies other than those specified by a maximum spanning tree. The corres-
ponding results may be presented in a subsequent note.
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