Information Technology: Research and Development (1983), 2 (73-88)

A PROPOSAL FOR AN ASSOCIATIVE FILE STORE
WITH RUN-TIME INDEXING.
PART I: SYSTEM DESCRIPTION

E. J. SCHUEGRAF

Department of Mathematics and Computing Sciences, St. Francis Xavier
University, Antigonish, Nova Scotia, Canada B2G 1C0

AND
R. M. LEA

Department of Electrical Engineering and Electronics, Brunel University,
: Uxbridge, Middlesex, UK

(Received 9 June 1982, revised 2 February 1983)

ABSTRACT

Information retrieval systems are described and their relation to associative
processing is established. An overview of present associative hardware is
given, followed by a proposal for an Associative File Store (AFS) for online
information retrieval systems. Its advantages over conventional file stores
in maxi-, mini- and microcomputer systems are outlined. The AFS
incorporates a microprogrammed Associative Processor. It is dedicated to
high-speed fragment processing, to support file compression, run-time
indexing and calculations of storage addresses for records, and file
searching. Performance estimates indicate that compared with con-
ventional file stores the AFS could achieve a speed advantage of over two
orders of magnitude. Use of fragments for compression approximately
doubles the storage capacity; the use of fragments for run-time indexing
reduces the volume of data to be searched, but it retains the full flexibility
of free text retrieval on variable-length records.

1. INTRODUCTION
1.1 Overview

The last decade has seen a phenomenal growth in the development of computer
based retrieval systems for a wide spectrum of applications. Hand in hand with this
development came the creation of databases of enormous size, covering various
fields ranging from fairly general topics such as ERIC or INDEX MEDICUS to very
specialized ones such as TOXLINE. ‘ _

Some databases are in the public domain and access privileges can easily be
obtained, while others, generally smaller ones, are private and access may be

0144-817X/83/02 0073-16 $03.00 © 1983 Butterworth & Co (Publishers) Ltd

74 Associative file store with run-time indexing

severely restricted. Most datafiles found in business systems tend to fall in the latter
category.

In document retrieval systems applications can be divided into two groups.
Retrospective search systems inform the user of past references to journal and
conference papers which are relevant to a particular field of specialization. Current
awareness systems keep the user up to date by periodic releases of the newest
references relevant to his research interests.

Datafiles of information retrieval systems usually consist of a collection of
records. A collection may be ordered or unordered. A record may be a description
of a single document and a reference to where it may be found, or it may be the
document itself. In a document retrieval system a record normally contains author,
title, keywords, abstract and citation. Records found in an office automation system
may be entire letters, possibly characterized by some content descriptors.

Operations on these datafiles include additions and deletions of records as well as
record modifications. Common to these activities is a search of the database, or
parts thereof, for a specified record.

A set of search terms connected by logical operators is commonly called a query.
A set of queries is called a profile. Considerable variety exists between -retrieval
systems with regard to construction of queries. Search terms may be keywords or
content descriptors, words or word phrases or character strings of variable length.
Words may include truncation symbols matching various endings. Many systems
also permit search terms to contain don’t care symbols, which match any character.
The operators connecting the search terms may be regular Boolean operators, AND,
OR, NOT, but also proximity operators such as adjacency and others. Additional
refinements may include weights to be attached to search terms.

A query is satisfied if the search terms in the query can be found in the record and
the logic expression is valid, or if the sum of the weights exceeds a previously
established threshold. Sophisticated retrieval systems order the relevant records
according to the sum of the weights before giving it to the user.

It is apparent that information retrieval is a form of set processing, in which a
subset of records associated with particular search terms is selected by matching the
textual content of a query with all records. Thus retrieval is an example of
associative processing and a retrieval system simulates an associative processor.
Ideally, therefore, any information retrieval system should incorporate an associa-
tive store, which should have a basic structure like the one shown in Figure 1.

1.2 Associative store

The centre of an associative store would be a Content Addressable Memory (CAM)
with flexible access to its word rows and bit columns. In the ideal case a word row
would contain a complete record and the CAM would be large enough to accom-
modate all records. A field mask would allocate bit fields of the CAM to key fields
of the stored records. In operation, search keys held in the comparand register
would be simultaneously compared with the contents of the corresponding key fields
of all records in the CAM. Each bit of the CAM would contain logic to compare its
content with the corresponding bit in the comparand register and generate the
appropriate match or mismatch signal; masked bits would generate a match signal.
If all bits in a particular word row generate match signals, then that word row would
be tagged in the Tag Register. A Match Reply (MR), which indicates the presence of
one or more tags in the tag register, provides feedback on the success of the

E. J. SCHUEGRAF AND R. M. LEA 75

I Comparand register I

¥

Field mask
3)] Record O I [
[[Record | [~ D)
__________ L]

] - Record 2 .)]
Row access Content Tag
control logic addressable register

memory

=7 R Iy S s)

———————— —_— - —

-] [Record -1 -~ D)

l Output register]

FiG. 1. Ideal associative store

associative search. Thus in a single operation the subset of matching records would
be indicated by the content of the tag register. Tagged word rows can be activated
for Read or Write operations by the Row Access Control Logic. Retrieval involves
reading the content of an activated word row into the output register and updates
involve writing the content of the unmasked fields of the comparand register into
activated word rows. In summary the ideal associative store is a Single-Instruction
Multiple-Data stream machine (Flynn, 1972). Overall control of the information
retrieval system would be entrusted to a conventional Single-Instruction Single-Data
stream (SISD) processor. _

Implementation of associative stores has been of interest for the last 25 years.
Many designs for structures such as that shown in Figure 1 have been proposed and
several associative machines have been built for mainly military applications. Details
about the historical development, and the many architectural variations of associa-
tive processors can be found in the literature (Hanlon, 1966; Minker, 1971;
Parhami, 1973; Thurber, 1975; Higbie, 1976; Yau and Fung, 1977). Best known are
the Goodyear STARAN (Rudolph, 1972), Bell Laboratories PEPE (Crane et al.,
1972) and Honeywell’s ECAM (Anderson and Kain, 1976).

The feasibility of applying such machines to information retrieval and database
management has been investigated by many researchers. Prominent among these
studies has been the work.of Savitt et al. (1967), De Fiore and Berra (1973, 1974),
Lea (1977a) and Moulder (1973) with the STARAN; Linde et al. (1973) with the
APCS and Anderson and Kain (1976) with the ECAM.

Emerging from this wave of endeavour is the growing realization that the ideal
associative store as shown in Figure 1 does not suit present information retrieval
applications for two reasons.

1. The sizes of many databases exceed the storage capacity of any realistically
sized CAM.

76 Associative file store with run-time indexing

2. Despite considerable efforts to develop cheap building blocks for associative
hardware Lea (1977a), it is evident that large-scale associative stores are not
cost effective for information retrieval applications.

The lack of cost-effective associative hardware has forced the designers of retrieval
systems to make use of inappropriate but available SISD hardware.

1.3 Current retrieval systems

For current awareness schemes a cost-effective retrieval system can be achieved by a
sequential scan of a datafile stored on disk or tape. Each search term in an ordered
batch of profiles stored in the primary memory of the search processor is compared
with the proper fields of every record in the datafile. The use of sophisticated term-
matching algorithms, such as those described by Salton (1980), permit very rapid
processing of records. Such SDI services are provided for example by CAN/SDI and
the SDI services of INSPEC and UKCIS.

In the ideal case, the speed of the search processor and the data transmission rate
from the device would be synchronized, such that all comparisons could be executed
by a single scan of the datafile. The search processor acts as a filter for the subset of
matching records from the data stream ‘flying’ by the heads of the disk or tape
drive. Such systems are well suited to services in which datafiles are small, the
number of queries predetermined and static and immediate response is not required.

In contrast to SDI schemes the basic assumptions are quite different for retro-
spective retrieval. Databases are large, queries are one-shot affairs, but are often
refined and resubmitted. Response time should not exceed users’ patience. Such
systems are usually implemented as remote access timesharing systems, commonly
based on a large SISD computer providing access to a range of magnetic disk units.
Examples include CAN/OLE, DIALOG and BLAISE.

‘On the fly’ retrieval is not feasible in this case for two reasons.

1. Datafiles are too large to be scanned sequentially within the limits of reasonable
response time.

2. Batching of queries is possible but generally not feasible as they are likely to be
submitted at different times and for only one search.

Instead the datafile is usually structured and an auxiliary file is created to provide
direct access to the elements of the datafile. The index sequential, the inverted, and
tree-structured file organizations are examples of this approach and have been
shown to provide fast access.

Most auxiliary files define a mapping froin a set of search terms to a set of lists
containing record identifiers. Each search term is mapped into a list of identifiers of
those records which contain the search term. Subsequent processing of these
identifier lists, by taking intersections and unions produces a list of records
satisfying the query. Thus, only relevant records in the datafile are being accessed.
For online retrieval associative file searching is implemented by processing of the
auxiliary file. This solves the problem of providing satisfactory response time, albeit
at the expense of extra complexity. Creation and maintenance of auxiliary files
incurs overhead in

1. Storage space. Extra storage is required for address pointers; in fact it is
common for auxiliary files to become larger than the original data files
(Cardenas, 1975).

E. J. SCHUEGRAF AND R. M. LEA 77

2. Processing time. Auxiliary files necessitate additional accesses to secondary
storage. This can become such a large problem, that special methods such as
hashing are required to access them effectively.

1.4 Back-end processors and associative file stores

An indication of the difficulties encountered in retrieval and database management
systems is given by the 90-10 rule which had been observed in experiments with large
databases (Banerjee and Hsiao, 1978). It states that for very large databases, nine
times as much irrelevant data as relevant data must be brought into main memory
for processing. If a query contains Boolean expressions, the relevant data in main
memory must be processed again to select the items relevant to the query. Here the
90-10 rule applies again.

To avoid these problems arising from the use of a SISD processor it has been
suggested that specialized additional hardware be used to increase the processing
power (Bullen and Mullen, 1972; Banerjee and Hsiao, 1978). In particular the
relegation of searching activities to disk controllers would free the central processor
from many file operations, avoid transmission delays and protocol processing
normally required for datablock transfer. Such an approach would eliminate any
application of the 90-10 rule, commonly observed in database management systems
(Hsiao, 1980).

The resulting reduction in load for the central processor would free it for other
activities. Moreover, if high-speed processing logic is incorporated in disk
controllers, on-the-fly searching can be supported. Such special purpose machines
are becoming known as back-end processors. They can support on-the-fly file
searching by dedicating key-matching logic to the heads of the disk drive. Logic-per-
track devices (Slotnick, 1970; Hsiao, 1980) provide very fast scans of entire disks
whereas lower-cost devices share comparison logic between data channels.

However, the implementation of back-end processors does not have to be
restricted to the application of SISD hardware. Since small and dedicated processors
are required, SIMD hardware can be employed cost effectively. A small Associative
Parallel Processor (APP) would be an ideal component for a device implementing
associative file searching. An APP comprises an associative store, similar to that
shown in Figure 1 operating under stored program control. To accomplish on-the-
fly searching a small APP would store the set of search keys for comparison with the
key fields of the records stored on disk. Such specialized back-end processors are
becoming known as Associative File Stores (AFS). Several associative file stores
have been reported in the literature (Parker, 1971; Healy ef al., 1972; Su et al., 1975;
Lin et al., 1976). The first proposal was RAPID (Rotating Associative Processor for
Information Dissemination) (Schuegraf and Lea, 1979); RAP (Relational Associa-
tive Processor) (Parhami, 1972) was specifically designed for the processing of
relational databases; fairly prominent, because of its commercial availability, is the
CAFS (Content Addressable File Store) system (Ozkarahan et al., 1975) of ICL.

Other hardware especially designed for efficient text searching are the Associative
File Processor (AFP) built by Operating Systems Inc., which is based on a patented
hardware comparator unit. The success of this unit has produced an improved
system, the High Speed Text Search System (HSTS). A description of the HSTS
system may be found in Moore and Michels (1980). The newest addition to text-
searching machines is the database engine developed by Textarcana, which claims to
be capable of searching up to 8 million characters/s (Product Description, 1982).

78 Associative file store with run-time indexing

It is the intention of this paper to add another proposal for an Associative File
Store to those already mentioned. It differs substantially from previous proposals by
not relying on hardware alone, but by combining it with software techniques.

2. ASSOCIATIVE FILE STORE—ORGANIZATION
2.1 Overview

The proposed associative file store is a. back-end processor consisting of a magnetic
disk unit with an APP incorporated within the disk controller. The overall structure
is shown in Figure 2. As the design philosophy of the AFS can be applied to all
computer systems ranging from maxis to micros, an AFS would include the
necessary logic to present a standard interface to the host’s hardware and operating
system. The file store itself is partitioned into a number of equally sized units, called
‘scan blocks’, each of which can be individually accessed and independently
scanned. The records of a datafile, compressed or uncompressed, are distributed
over a number of scan blocks and the APP is used as a search processor for on-the-
fly retrieval.

2.2 Scan blocks

The smallest addressable segment in the AFS is a scan block. Thus, each access to
the AFS involves scanning the entire content of the addressed scan block. To

Controt Display Record/
signals data query

.

Microprogram
control

APP

Byte count Data SB address

CBCR O
CBCR | SB O
CBCR 2 SB 1
CBCR 3 sB 2
Sai/ Scan control
CBCR -2
CBCR - SBn-2
SB -1

FiG. 2. Proposed associative file store

E. J. SCHUEGRAF AND R. M. LEA 79

facilitate the scanning each scan block has an associated register CBCR (Current
Byte Count Register) which records the total number of allocated bytes in that scan
block. This is shown in Figure 2.

To provide an idea of the volume of scanned data it is helpful to compare it with
the data segments of existing direct-access storage units. Table 1 compares the
amount of data accessed within the time for a single direct-access file probe, for
three commonly available moving head disk drives. These are:

1. Maxicomputer system: a 12 disk pack.
2. Minicomputer system: a single disk.
3. Microcomputer system: an 8 in. single surface floppy.

It has been assumed that a direct-access file probe involves two disk accesses; the
first to consult the directory of track and sector addresses and the second to read the
addressed sector. Table 1 shows that, in terms of the volume of accessed data, the
advantages of scanning over direct access are 58:1 for the maxi-, 42:1 for the mini-,
and 112:1 for the microcomputer system. It should be noted that these are conserva-
tive figures; indexing restrictions are likely to necessitate several direct accesses per
file probe. The availability of higher performance disk drives is increasing the
advantage of scanning. A further point in favour of scanning is that direct-access
disk sectors usually include ‘address headers’ which reduce the storage available for
useful data. This redundancy increases with decreasing sector size, such that the
utilization factor of floppy disks may be less than 70 per cent. Scanning reduces the
need for address headers, thereby achieving disk utilization factors much closer to
100 per cent.

Table 1. Comparison of scanning and direct-access file probes for
commonly available computer systems T

Volume of data
Time for one Sector scanned in one
direct-access size direct-access
Computer system file probe* (in bytes) file probe*
Maxi 79 ms 1024 58 KB
Mini 186 ms 512 21 KB
Micro 641 ms 128 15KB

* Assuming 2 disk accesses with average seek times and latency delays.

Scan-block size is determined by compromising the

1. Scantime.
2. Number of scan blocks per disk surface.
3. Total number of scan blocks within the AFS.

For convenient scan-block addressing the number of scan blocks per surface and the
total number of scan blocks should be powers of two. However, the major factor in
limiting scan-block size-is the requirement that the response to a user’s query should
be displayed within an acceptable period. Table 2 compares possible scan-block sizes

80 Associative file store with run-time indexing

with the three commonly available moving-head disk drives for a response time of
one second. The table also shows the total time required to scan all the scan blocks
with the given disk drive.

Table 2. Comparison of possible scan blocks for a response time of 1 s with commonly
available computer systems

Scan block Number of Number of Total number Total scan
size tracks per scan blocks of time for all
Computer system (in kbytes) scan block per surface scan blocks scan blocks*
Maxi 652 50 8 128 Ts
Mini 74 12 16 32 11s
Micro 16 4 16 16 11s

* Assuming all heads are sensed in parallel.

2.3 Data format

In keeping with current practice the scan blocks would be partitioned in sectors,
each comprising bit synchronization, data and error-check fields; scanning
eliminates the need for sector address fields. Successive datafields would be
allocated for the storage of datafile records. As usual, error control considerations
would govern the choice of sector size. In the event of error detection the scan would
be restarted.

Scanning allows variable-length records, separated by a special ‘EOR’ (End-of-
Record) character to be filed in a sequence which would be terminated by a special
‘EOS’ (End-of-Sequence) character. A new record would be added at the end of the
sequence. Such random order within a block is permissible since scanning the entire
block eliminates the need for sorting. The data records themselves may be in their
original form or compressed. Data compression offers two advantages, namely, a
considerable saving in storage space and a reduction in search time.

2.4 Record signatures

The user of an online retrieval system sitting at a terminal expects a reasonable
response time, especially during query refinement. The final query is expected to
provide high recall as well as high precision (Salton, 1968). Only in a few cases, such
as the final query, will a user tolerate a long response time. If the records matching
the query were uniformly distributed over all the scan blocks, then it would be
necessary to scan all blocks to find the relevant records. Response time would be the
worst scan time as indicated in Table 2.

Record signatures are an attempt to distribute records among scan blocks in such
a way that the distribution of records matching a query is non-uniform over all scan
blocks. Signatures are to indicate those scan blocks for which the hit rate could be
expected to be high, as well as those scan blocks which will not contain any hits. Any
reduction in the number of scan blocks which must be scanned to answer a query
will improve response time.

In analogy to a human signature which is characteristic of the writer, record
signatures characterize the content of the record. This can be achieved by choosing a
set of content indicators, enumerating its elements, and creating a bit map for each
record. This binary vector, where a 0 or 1 in a particular position indicates the

E. J. SCHUEGRAFAND R. M. LEA 81

absence or presence of that particular element, may be called its signature (Harrison,
1971). A record is assigned to a scan block on the basis of its signature. Records with
‘similar’ signatures would be assigned to the same scan block.

If the content indicators are the keywords, then the signature is called a document
vector, and the assignment of records with similar signatures to the same scan block
is a form of clustering (Salton, 1968). The procedure which assigns a record with a
given signature to a specific scan block may be called a signature-mapping function.
It is obvious that many signature-mapping functions exist, but that the restriction of
mapping ‘similar’ signatures to the same scan block severely limits the choice of
functions.

3. ASSOCIATIVE FILE STORE—OPERATION
3.1 Basic assumptions

A selection of what elements of a record could be used as content indicators must be
made before the operations of the AFS can be described in more detail. Choosing
keywords as content indicators generates a document vector with many components,
most of which are zero as a consequence of Zipf’s law. The number of components
in the vector is the same as the number of keywords in the keyword set, a number
that may be unlimited. This effectively eliminates keywords as signature elements in
the AFS, because of the difficulties encountered when manipulating large binary
vectors. '

Restricting the size of the content indicator set excludes the use of natural
linguistic units such as words, word stems or phrases. Instead, artificial elements,
namely fragments, are chosen as signature elements. Fragments or n-grams are
character strings of arbitrary length completely contained in a record. A set of
fragments, commonly called a dictionary, can be limited to any convenient size.
Algorithms for choosing a dictionary under varying constraints have been studied
extensively (Clare et al., 1972; Schuegraf and Heaps, 1973; Choueka et al., 1981). It
has been shown that dictionaries are fairly stable with regard to vocabulary changes
(Lynch et al., 1973) and that considerable overlap exists between dictionaries of
different languages (Doucette et al., 1977).

It has been shown that fragments can serve in two roles, as language elements for
compression (Schuegraf and Heaps, 1974) and as indexing elements for retrieval
(Schuegraf and Heaps, 1976). If the character set is included in the dictionary, then
every record can be represented as a concatenation of fragments. Considerable
savings in storage space, up to 50 per cent, can be realized if a code is substituted for
a fragment. It has been shown (Lea, 1978) that a small associative processor using a
fragment dictionary for compression and decompression is cost effective and can
carry out compression and decompression on the fly. Thus, the use of fragments as
signature elements in the AFS provides the option of employing the built-in APP for
data compression.

When inspecting a fragment dictionary generated for compression purposes, it is
noted immediately that the dictionary not only contains all single characters, but
such strings as ‘AND-THE’, ‘OF-A-’ and the like. These elements are obviously not
content indicators and, therefore, it is necessary to select a subset from the elements
of the dictionary. This subset of content fragments will be used to generate the
record signature, as shown in Figure 3. The signature is a bit vector in which each
content fragment is allocated a fixed position. The length of the bit vector is
determined by the number of content fragments found in the dictionary. The

82 Associative file store with run-time indexing

presence or absence of a specific content fragment in the record is indicated by a one
or zero in the corresponding position. In the following two sections it is described
how a file is created on the AFS and how the data are retrieved. For simplicity of
description it is assumed that only one datafile is to be supported by the AFS.

Record: clustering methodologies in exploratory data analysis

Fragmented

Record CL/U/STE/R/ING-/METH/0/DO/LOGI/ES~/IN-/EX/P/LOR/AT/Q/RY-/DAT/A/-/AN/A/LY/S/IS
Compressed l & / / / / / /
Record 16/241/228/185/65/123/148/24/85/31/62/36/162/91/7/148/191/21/2/1/5/2/102/218/ 77
Record

Signature [lO~-O|OO---OIO~--OI|l~-~OIO---OlO-~--El
Index .

fragment L2

FIG. 3. Sample record and signature

3.2 Datafile creation

The following sequence of steps describes the creation of a datafile with AFS. It is
assumed that the datafile will be stored in compressed form, since this can be
accomplished without extra expense.

SETUP:
1. Reset the AFS by writing EOS terminator to the first locations of all scan blocks
and clear the contents of their CBCRs. Clear record signature.
LOAD: _
2. Compress a record to generate a contiguous list of fragment codes and simul-
taneously count the number of bytes in the compressed record. :
3. Generate the record signature by setting the appropriate bit when encountering
a content fragment during compression.
4. Apply the signature-mapping function to compute the address of the most
suitable scan block for its storage. Set a flag if the mapping was successful,
otherwise clear it.
5. [If the flag was not set
then all scan blocks are full, abort datafile creation and inform the user
else read the content of the CBCR of the addressed scan block
If the value of the CBCR and the byte count of the compressed record exceeds
the size of the scan block

then returnto Step 4

else write the EOR separator followed by the compressed record and the EOS
terminator to the end of the addressed scan block and. smultaneously
update the corresponding CBCR. Return to Step 2.

E. J. SCHUEGRAF AND R. M. LEA 83

The loading process is repeated until there are no more records to be added to the
datafile or the AFS is full. During datafile creation, scan blocks are not scanned
from their start points for every write operation, but the track currently supporting
the EOS terminator is determined (from the content of the CBCR) -and this track is
addressed directly. It should be pointed out that the repeated application of Step 4
on the same signature will generate a sequence of suitable scan-block addresses for
that signature. If the mapping function cannot generate any more suitable scan-
block addresses, the scan blocks are full and the mapping-successful-flag will not be
set. The mapping function applied to a given signature must generate the address of
a suitable scan block only once.

3.3 Retrieval

The following sequence outlines the process of retrieval with the AFS. It is assumed
that one datafile on the AFS exists loaded by the procedure described in 3.2.

SETUP:
1. Compress the search query and generate a query signature.
SEARCH
Apply the signature mapping function to the signature to compute the address
of a scan block containing potentially matching records. Set a flag if the
mapping was successful, otherwise clear the flag.
3. Ifthe flag was set
then scan the addressed scan block, comparing the fragments of. the com-
pressed records with the fragments of the query, storing the count of
EOR separators for each matching record and simultaneously counting
the number- of hits until the EOS terminator is sensed. Display the hit
count. .
If the hit count exceeds user-defined limit
then terminate search
else returnto Step 2
else the sequence of scan blocks is exhausted
all scan blocks worth scanning have been searched,
the search is finished.
Display the hit count.

It is worth mentioning that the count of EOR separators for a matching record is a
convenient way of identifying the position of a record within a scan block. If the
user requests a display of the results of the search the above procedure is repeated
with the following modifications.

DISPLAY:
2. Sameasin Step 2 of SEARCH.
3. If the flag was set '
then scan the addressed block extracting and decompressing those records
corresponding to stored EOR counts.
Display user selected fields of matching records
If list of EOR counts is exhausted
then terminate DISPLAY
else returnto Step 2
else DISPLAY finished.

84 Associative file store with run-time indexing

Since the display of information to the user is controlled by the main processor
independently of the AFS, any display during retrieval can be carried out in parallel
with scan-block searching. A user can search for only a few relevant records by
choosing a small value for the hit count. In that case only those scan blocks are
searched which have the highest probability of containing a record. By choosing a
large number for the hit count, all relevant records may be retrieved. In this case the
AFS will search a subset of the database, consisting of all scan blocks which have a
non-zero probability of containing a relevant record. This subset can be easily
determined and even in the case of a single term query, will not be more than half the
database.

4. PRACTICAL CONSIDERATIONS
4.1 Role and status of the APP

As seen from Figure 2 the Associative Parallel Processor (APP) forms a major
component of the AFS distinguishing it from ordinary file stores. Operating under
microprogrammed control the APP has three roles, namely, to act as

1. Compressor/Decompressor Unit.
2. Signature Processor.
3. Search Processor.

In each role the associative memory of the APP stores the fragment dictionary.
During processing the currently active fragments are marked by ‘tag images’. Tag
images are one bit memory fields representing snapshots of the tag register. Hence,
the APP is mainly occupied with the generation and manipulation of tag images, an
application to which it is particularly well suited. Algorithms for text compression/
decompression and text searching with the APP are well known and may be found in
Lea (1977b, 1978).

Ideally the AFS would be implemented as a single unit, interfacing to a standard
communication bus. However, for mini- and microcomputer-based retrieval systems
the microprogrammed APP and byte-count registers could be implemented inde-
pendently of the disk unit, in a separate, bus-compatible module. In this case the
module, operating in parallel with the host computer, would control direct-memory
access data transfers between the APP and the disk unit. An advantage of this
approach is that one or more APP modules could be shared between a number of
disk units and other text-processing applications.

The associative processing group at Brunel University has been engaged in
research into the architecture software and hardware of APP structures since 1972.
Logic and language specifications have been established and machine implementa-
tions are being studied. In particular the feasibility of microelectronic APP building
blocks has been investigated resulting in the production of ‘micro associative
processor chips’ by Plessey Research Ltd (Lea, 1979). Current results suggest that
high-speed APPs could be implemented at low cost.

4.2 Potential benefits of the AFS

Text compression, automatic indexing, clustering, and associative file searching
have been the subjects of numerous research investigations making specific
contributions to the science of information storage and retrieval. The unique

E. J. SCHUEGRAFAND R. M. LEA 85

contribution of the proposed associative file store is that it combines the virtues of
those independent areas of interest within a simple machine.

Many studies have demonstrated that associative file searching can improve
retrieval performance by up to two orders of magnitude. Indeed, a recent study at
Brunel University indicated that a small APP would out-perform a microprocessor-
based search processor by a factor of 200 in flexible substring searching applica-
tions. Significantly, the APP could operate at typical disk speeds whereas the micro-
processor system was too slow and expensive buffering would be required for it to
support on-the-fly file searching. In fact, the APP-based search processor turned
out to be cheaper and much easier to program than its conventional counterpart.

Text compression has been of interest for many years (Schuegraf, 1976). Several
studies have shown that, with the use of 8 bit bytes to represent the 50 or so
characters and approximately 200 of the most frequent fragments supporting typical
databases, compression ratios of around 50 per cent can be achieved (Clare et al.,
1972; Schuegraf and Heaps, 1974; Lea, 1978). In terms of the AFS this means that
text compression can double the number of records stored in a scan block and
double the number of records scanned in a given time period. Fewer data exist on the
use of fragments for indexing.

A few studies have indicated the benefits of this approach and the special
problems arising (Clare et al., 1972; Lynch et al., 1973; Schuegraf and Heaps, 1976;
Schuegraf and Lea, 1979). It was shown that in a system indexed by fragments it is
necessary to scan records retrieved by a fragment index file (Schuegraf and Heaps,
1976). This is necessitated by the unfortunate, but unavoidable feature that a
fragment may be contained in more than one word. This implies that in such a
system, negated query terms must be ignored, because more than the negated term
would be excluded. In addition, it is possible that the fragments comprising a search
term may be found in a record, but as parts of other terms. In order to eliminate the
potentially large number of false hits, a scan of the ‘candidate’ records for the full
query is necessary. In a system with a fragment index file, this requires additional
effort, but in the AFS, scanning is automatically carried out by the APP when a scan
block is accessed. In addition, this feature does not put restrictions on the query
format, since scanning can easily accommodate different query forms. A special
index file is not needed at all; the signature provides a vector of index fragments
generated at run time. The signature-mapping function eliminates the auxiliary files
and includes a form of clustering of ‘similar’ signatures. It has been shown that
record signatures can work satisfactorily in non-numeric applications (Harrison,
1971; MacLaury, 1979), even though the data are scarce.

In certain applications the potential benefits of the AFS would have to be
analysed carefully with regard to its cost effectiveness. However, the simplicity of
the design suggests that an AFS could be built at low cost. To determine the cost
effectiveness of the AFS is a long-term project, since research vehicles must be
developed which support comparative measurements of performance parameters for
the various sized computer systems.

5. CONCLUSION

The proposed associative file store as described in the previous sections offers a
solution to current problems encountered by online information retrieval systems.
By supporting on-the-fly file searching the associative parallel processor avoids the
complexities and restrictions normally associated with structured datafiles. The

86 Assaciative file store with run-time indexing

indexing problem of directly accessing single records has been reduced to indicating
the most suitable scan block for a high recall of matching records. Use of fragments
not only provides the storage and transmission benefits of file compression, but also
provides a means of run-time indexing which eliminates the need for an auxiliary
file. Run-time indexing and mapping of signatures to scan block addresses make this
proposal significantly different from other ideas found in the literature. It had been
suggested that for fast searching it would be beneficial to set up a special file of
‘keys’ (Hickey, 1977; Roberts, 1979). The ‘keys’ are to be content indicators for the
record, but considerably smaller. To carry out a search, this file is first to be scanned
to determine possible candidate records which could satisfy the query. All candidate
records are then retrieved in full and subjected to a proper scan. It is interesting to
note that Roberts (1979) produces a bit vector which is reduced in size by the method
of superimposed codes (Moers, 1951). To speed up the search of the content-
indicator file it is suggested that specialized hardware—a new type of associative
memory—would be beneficial.

It must be mentioned that considerable work has yet to be carried out before the
design for the AFS is shown to be feasible. Some preliminary results on this have
been presented (Lea and Schuegraf, 1981). Even though the associative parallel
processor has been developed there is still a need to design suitable hardware for the
AFS. In addition, the software component of the AFS must be studied in detail,
since there is much scope for innovation in dictionary selection, signature genera-
tion, and particularly signature-mapping functions. Work in this area is currently
underway, leading up to the simulation of an associative file store (AFS). Results of
completed software experiments dealing with signature generation and mapping are
encouraging, and will be reported in a forthcoming paper (Schuegraf and Lea, in
preparation).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the Natural Science and
Engineering Research Council of Canada, and the Science Research Council and
British Library. The contacts and discussions with Professors M. F. Lynch, D.
Cooper and P. Willett of Sheffield University are also warmly appreciated.

REFERENCES

Anderson, G. A. and Kain, R. Y. (1976) A content addressed memory design for data base
applications. IEEE conference on parallel processing, pp. 191-195.

Banerjee, J. and Hsiao, D. K. (1978) Performance evaluation of a data base computer in
supporting relational data bases. Proceedings international conjerence on very large data

. bases.

Bullen, R. H. and Mullen, J. L. (1972) Microtext: the design of a microprogrammed finite
state search machine for full text retrieval. Proceedings FICC 41, 479-488.

Canaday, R. H., Harrison, R. D., lvie, E. L., Ryder, J. L. and Wehr, L. A. (1974) A backend
computer for data base management. Communications of the ACM 17, 53-56.

Cardenas, A. F. (1975) Analysis and performance of inverted data base structures. Com-
munications of the ACM 18, 253-263.

Choueka, Y., Fraenkel, A. S. and Perl, Y. (1981) Polynomial construction of optimal prefix
tables for text compression. Rehovot, Israel: Weizmann Institute of Science (Report
CS81-06).

E. J. SCHUEGRAF AND R. M. LEA 87

Clare, A. C., Cook, E. M. and Lynch, M. F. (1972) The identification of variable length,
equifrequent, character strings in a natural language data base. Computer Journal 15,
259-262.

Crane, B. A., Gilmartin, M. J., Huttenhoff, T. H., Rux, P. T. and Shively, R. R. (1972)
PEPE computer architecture. Proceedings IEEE CompCon, pp. 57-60.

De Fiore, C. R. and Berra, P. B. (1973) A data management system utilising an associative
memory. Proceedings national computer conference 42, 181-185.

De Fiore, C. R. and Berra, P. B. (1974) A quantitative analysis of the utilization of associa-
tive memories in data management. /JEEFE Transactions. Computers C-23 2, pp. 121-133.

De Fiore, C. R., Stillman, N. J. and Berra, P. B. (1971) Associative techniques in the solution
of data management problems. Proceedings of the ACM annual conference, pp. 28-36.

Doucette, V. L., Harrison, K. M. and Schuegraf, E. J. (1977) A comparative evaluation of
fragment dictionaries for the compression of French, English and German bibliographic
data bases. Proceedings 3rd international conference on computing in the humanities,
pp. 297-305.

Flynn, M. T. (1972) Some computer organizations and their effectiveness. IEEE Trans-
actions. Computers C-21, 948-960.

Hanlon, A. E. (1966) Content addressable and associative memory systems—A survey. IEEE
Transactions. EC-15, 509-521.

Harrison, M. C. (1971) Implementation of the substring test by hashing. Communications of
the ACM 14,777-779.

Healy, L. D., Lipovski, G. T. and Doty, K. L. (1972) The architecture of a content addressed
segment-sequential storage. Proceedings FJCC 41, 691-701.

Hickey, T. (1977) Searching linear files on-line. On-Line Review 1, 53-58.

Higbie, L. C. (1976) Associative processors: A panacea or specific? Computer Design July,
75-86.

Hsiao, D. K. (1980) Data base computers. Advances in Computers. (M. C. Yovits, ed.)
Vol. 19, pp. 1-64.

Lea, R. M. (1977a) Micro-APP—Building blocks for low-cost high-speed associative parallel
processing. Radio and Electrical Engmeermg 47,91-99.

Lea, R. M. (1977b) Associative processing of non-numerical mformatlon Proceedings NATO
ASIC-32,171-215.

Lea, R. M. (1978) Text compression with an associative parallel processor. Computer Journal
21, 45-46.

Lea, R. M. (1979) I2L micro-associative-processors. ESSIRC 79, Technical Digest, 104-106.

Lea, R. M. and Schuegraf, E. J. (1981) An associative file store using fragments for run-time
indexing and compression. Proceedings symposium on future directions in information
retrieval. pp. 321-335. London: Butterworths.

Lin, S. C., Smith, D. C. and Smith, J. M. (1976) The design of a rotating associative memory
for relational data-base applications. ACM Transactions on Data Base Systems 1, 1-8.

Linde, R. R., Gates, R. and Peng, T. (1973) Associative processor applications to real-time
data management. Proceedings national computer conference 42, 187-195.

Lynch, M. F., Petrie, T. H. and Snell, M. J. (1973) The microstructure of titles in the
INSPEC database. Information Storage and Retrieval 9, 331-337.

MacLaury, K. D. (1979) Automatic merging of bibliographic data bases—Use of fixed length
keys derived from the strings. Journal of Library Automation 12, 143-156.

Maller, V. A. (1979) The content addressable file store—CAFS. ICL Technical Journal.
pp- 265-279.

Minker, J. (1971) An overview of associative or content addressable memory systems and a
KWIC index to the literature 1956-1970. Computing Reviews 12, 453-504.

Moers, C. N. (1951) Zato-coding applied to mechanical organization of knowledge. American
Documentation 2, 20-32.

Moore, G. B. and Michels, L. S. (1980) OSI’s high speed text search system: A hardware
approach to full text searching. Proceedings ASIS annual meeting 17, 335-337.

88 Associative file store with run-time indexing

Moulder, R. (1973) An implementation of a data management system on an associative
processor. Proceedings national computer conference 42, 171-176.

Ozkarahan, E., Schuster, S. A. and Smith, K. C. (1975) RAP: An associative processor for
data base management. Proceedings national computer conference 44, 379-387.

Parhami, B. (1972) A highly parallel computer system for information retrieval. Proceedings
FJCC41, 681-690.

Parhami, B. (1973) Associative memories and processors—An overview and selected biblio-
graphy. Proceedings IEEE, 722-730.

Parker, I. L. (1971) A logic-per-track retrieval system. Proceedings IFIPS congress, 146-150.

Product Description (1982) Electronics April 7, 176.

Roberts, C. S. (1979) Partial-match retrieval via the method of superimposed codes. Pro-
ceedings IEEFE 67, 1624-1642.

Rudolph, J. A. (1972) A production implementation of an associative array processor—
STARAN. Proceedings FJCC, 229-241.

Salton, G. A. (1968) Automatic Information Organization and Retrieval. New York:
McGraw-Hill.

Salton, G. A. (1980) Automatic information retrieval. Computer September, 41-54.

Savitt, B. A., Love, H. H. and Troop, R. E. (1967) ASP—A new concept in language and
machine organization. Proceedings SJCC 30, 87-102.

Schuegraf, E. J. (1976) A survey of data compression methods for non-numerical records.
Canadian Journal of Information Science 2, 95-103.

Schuegraf, E. J. and Heaps, H. S. (1973) Selection of equifrequent fragments for information
retrieval. Information Storage and Retrieval 9, 697-711.

Schuegraf, E. J. and Heaps, H. S. (1974) A comparison of algorithms for data base compres-
sion by use of fragments as language elements. Information Storage and Retrieval 10,
309-319.

Schuegraf, E. J. and Heaps, H. S. (1976) Query processing in a retrospective document
retrieval system that uses word fragments as language elements. Information Processing
and Management 12, 283-292.

Schuegraf, E. J. and Lea, R. M. (1979) An integrated approach to on-line retrleval from non-
numeric data bases: An associative parallel processor using fragment indexing. Pro-
ceedings conference on information sciences and systems, Baltimore, MD, 395-401.

Schuegraf, E. J. and Lea, R. M. (in preparation) A proposal for an associative file store with
run-time indexing. Part II: Experimental evaluation of software algorithms.

Slotnick, D. L. (1970) Logic—per-track devices. Advances in Computers 10, 291-296.

Su, S. Y., Copeland, G. P. and Lipovski, G. J. (1975) Retrieval operations and data repre-
sentations in a content-addressed disk-system. SIG PLAN Notices 10, 144-153.

Thurber, K. J. (1975) Associative and parallel processors. Computing Surveys 7, 215-255.

Yau, S. S. and Fung, H. S. (1977) Associative processor architecture—A survey. Computing
Surveys 9, 3-21.

